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CPU/GPU Model

CPU

 Sources: Nvidia. CUDA Reference Guide
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CUDA C++ in a Notebook: Runtime API
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How to use CUDA® 
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CUDA® source-code example

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){

// …

// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
kernel<int><<<32, 10>>>(a, b, c); 

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);

// …
}
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CUDA® source-code example

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){

// …

// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
kernel<int><<<32, 10>>>(a, b, c); 

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);

// …
}

Device-Code

Host-Code
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CUDA® C/C++-APIs

Driver API
 C/C++-conform
 Host and Device-Code 

separated 
 Compiling kernels via library 

functons 
during runtme

 Modifable kernel possible
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CUDA® source-code example

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){

// …

// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
kernel<int><<<32, 10>>>(a, b, c); 

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);

// …
}

//special kernel launch syntax!
kernel<int><<<32, 10>>>(a, b, c)
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CUDA® source-code example

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){

// …

// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
kernel<int><<<32, 10>>>(a, b, c); 

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);

// …
}

main.cu
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CUDA® C/C++-APIs

Driver API
 C/C++-conform
 Host and Device-Code 

separated 
 Compiling kernels via library 

functons 
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 Modifable kernel possible

→ Works on Cling without 
modifcaton

Runtme API
 Special syntax and semantc
 Single-Source-Design
 Compiling kernels during 

compiletme
 Modifable Kernels not 

designated

→ Cling needs modifcaton
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Implementation
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Implementation

 Handle special syntax, semantc and single-source design
 Enable Clang CUDA frontend[1] in Cling

[1] GPUCC - An Open-Source GPGPU Compiler CGO 16; nowadays mainline in Clang
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Implementation

 Handle special syntax, semantc and single-source design
 Enable Clang CUDA frontend[1] in Cling

 Generatng Device-Code during runtme
 Develop second compiler pipeline
 Rely on Clang CUDA Toolchain up to PTX
 Couple via Nvidia “fatbinary”
 Generate SASS code on Nvidia driver side

 Cling-CUDA in Jupyter Notebook
 standard kernel of cling -x cuda
 using xeus-cling (patch to be upstreamed)

[1] GPUCC - An Open-Source GPGPU Compiler CGO 16; nowadays mainline in Clang



           Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de       

Cling-CUDA Compiler Pipeline
Cling frontend

compiler-  
instance

Cling specific 
functionpass

C++

AST

modified AST

executer

JIT Backend

machinecode



           Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de       

Cling-CUDA Compiler Pipeline
Cling frontend

compiler-  
instance

Cling specific 
functionpass

C++

AST

modified AST

AST-Printer

C++-file

PTX compiler 
(clang)

PTX-file

fatbinary tool
fatbin-file

executer

JIT Backend

machinecode



           Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de       

 Some C++ and CUDA statements, although supported by 
Clang 5.0 on CUDA 8.0
 AST-Printer: variable __atributes__, structured bindings

What is still missing
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AST-Printer failure examples

__device__ int var = 42; 

int var = 42 __atribute__((device));

// struct s { int x1 = 1; foat x2 = 2.0f;}; s S;
auto [a, b] = S;

auto = S
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 CUDA __device__ globals, __constant__
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 Some C++ and CUDA statements, although supported by 
Clang 5.0 on CUDA 8.0
 AST-Printer: variable __atributes__, structured bindings
 CUDA __device__ globals, __constant__

 Kernel unloading
 in contact with Nvidia about further documentaton

 Cleanup
 e.g. semantc detecton of CUDA device functons

What is still missing
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Summary
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Initial CUDA Support in Cling

 First interpreter for the CUDA runtie API
 Based on Clang CUDA toolchain, not cudafe
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Initial CUDA Support in Cling

 First interpreter for the CUDA runtie API
 Based on Clang CUDA toolchain, not cudafe

 Most features already upstream in cling master

 Easy access to HPC GPU systems via Jupyter Notebook
 Data analysis in notebooks with GPUs
 Big, interactve siiulaton with GPUs
 Teaching GPU programming
 Easing developient and debugging

 xeus-cling: patched kernel for cling -x cuda
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