
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

1 Helmholtz-Zentrum Dresden - Rossendorf
2 Technische Universität Dresden
3 CERN

ROOT Users’ Workshop

Parallelism, Heterogeneity and Distributed Data Processing

Sarajevo, September 10th 2018

S. Ehrig1,2, A. Naumann3, and A. Huebl1,2

Adding CUDA® Support to Cling:
JIT Compile to GPUs

Published under CC BY-SA 4.0 DOI: 10.5281/zenodo.1412256

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Introduction

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CPU/GPU Model

CPU

 Sources: Nvidia. CUDA Reference Guide

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CPU/GPU Model

CPU GPU

 Sources: Nvidia. CUDA Reference Guide

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA C++ in a Notebook: Runtime API

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

How to use CUDA®

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® source-code example

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){

// …

// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
kernel<int><<<32, 10>>>(a, b, c);

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);

// …
}

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® source-code example

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){

// …

// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
kernel<int><<<32, 10>>>(a, b, c);

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);

// …
}

Device-Code

Host-Code

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® C/C++-APIs

Driver API
 C/C++-conform
 Host and Device-Code

separated
 Compiling kernels via library

functons
during runtme

 Modifable kernel possible

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® C/C++-APIs

Driver API
 C/C++-conform
 Host and Device-Code

separated
 Compiling kernels via library

functons
during runtme

 Modifable kernel possible

→ Works on Cling without
modifcaton

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Driver API
 C/C++-conform
 Host and Device-Code

separated
 Compiling kernels via library

functons
during runtme

 Modifable kernel possible

→ Works on Cling without
modifcaton

Runtme API
 Special syntax and semantc

CUDA® C/C++-APIs

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® source-code example

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){

// …

// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
kernel<int><<<32, 10>>>(a, b, c);

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);

// …
}

//special kernel launch syntax!
kernel<int><<<32, 10>>>(a, b, c)

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® C/C++-APIs

Driver API
 C/C++-conform
 Host and Device-Code

separated
 Compiling kernels via library

functons
during runtme

 Modifable kernel possible

→ Works on Cling without
modifcaton

Runtme API
 Special syntax and semantc
 Single-Source-Design

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® source-code example

//function, which will run on GPU
template <typename T>
__global__ void copy_kernel(T * in, T * out, unsigned int N){

int id = blockIdx.x * gridDim.x + threadIdx.x;
if(id < N)

out[id] = in[id];
}

int main(){

// …

// copy memory from cpu to gpu
cudaMemcpy(device_in, host_in, sizeof(int) * N, cudaMemcpyHostToDevice);

// start function on GPU with 32 threads an 10 blocks
kernel<int><<<32, 10>>>(a, b, c);

// copy memory from gpu to cpu
cudaMemcpy(host_out, device_out, sizeof(int) * N, cudaMemcpyDeviceToHost);

// …
}

main.cu

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® C/C++-APIs

Driver API
 C/C++-conform
 Host and Device-Code

separated
 Compiling kernels via library

functons
during runtme

 Modifable kernel possible

→ Works on Cling without
modifcaton

Runtme API
 Special syntax and semantc
 Single-Source-Design
 Compiling kernels during

compiletme
 Modifable Kernels not

designated

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

CUDA® C/C++-APIs

Driver API
 C/C++-conform
 Host and Device-Code

separated
 Compiling kernels via library

functons
during runtme

 Modifable kernel possible

→ Works on Cling without
modifcaton

Runtme API
 Special syntax and semantc
 Single-Source-Design
 Compiling kernels during

compiletme
 Modifable Kernels not

designated

→ Cling needs modifcaton

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Implementation

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Implementation

 Handle special syntax, semantc and single-source design
 Enable Clang CUDA frontend[1] in Cling

[1] GPUCC - An Open-Source GPGPU Compiler CGO 16; nowadays mainline in Clang

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Implementation

 Handle special syntax, semantc and single-source design
 Enable Clang CUDA frontend[1] in Cling

 Generatng Device-Code during runtme
 Develop second compiler pipeline
 Rely on Clang CUDA Toolchain up to PTX
 Couple via Nvidia “fatbinary”
 Generate SASS code on Nvidia driver side

[1] GPUCC - An Open-Source GPGPU Compiler CGO 16; nowadays mainline in Clang

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Implementation

 Handle special syntax, semantc and single-source design
 Enable Clang CUDA frontend[1] in Cling

 Generatng Device-Code during runtme
 Develop second compiler pipeline
 Rely on Clang CUDA Toolchain up to PTX
 Couple via Nvidia “fatbinary”
 Generate SASS code on Nvidia driver side

 Cling-CUDA in Jupyter Notebook
 standard kernel of cling -x cuda
 using xeus-cling (patch to be upstreamed)

[1] GPUCC - An Open-Source GPGPU Compiler CGO 16; nowadays mainline in Clang

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Cling-CUDA Compiler Pipeline
Cling frontend

compiler-
instance

Cling specific
functionpass

C++

AST

modified AST

executer

JIT Backend

machinecode

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Cling-CUDA Compiler Pipeline
Cling frontend

compiler-
instance

Cling specific
functionpass

C++

AST

modified AST

AST-Printer

C++-file

PTX compiler
(clang)

PTX-file

fatbinary tool
fatbin-file

executer

JIT Backend

machinecode

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

 Some C++ and CUDA statements, although supported by
Clang 5.0 on CUDA 8.0
 AST-Printer: variable __atributes__, structured bindings

What is still missing

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

AST-Printer failure examples

__device__ int var = 42;

int var = 42 __atribute__((device));

// struct s { int x1 = 1; foat x2 = 2.0f;}; s S;
auto [a, b] = S;

auto = S

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

 Some C++ and CUDA statements, although supported by
Clang 5.0 on CUDA 8.0
 AST-Printer: variable __atributes__, structured bindings
 CUDA __device__ globals, __constant__

What is still missing

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

 Some C++ and CUDA statements, although supported by
Clang 5.0 on CUDA 8.0
 AST-Printer: variable __atributes__, structured bindings
 CUDA __device__ globals, __constant__

 Kernel unloading
 in contact with Nvidia about further documentaton

 Cleanup
 e.g. semantc detecton of CUDA device functons

What is still missing

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Summary

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Initial CUDA Support in Cling

 First interpreter for the CUDA runtie API
 Based on Clang CUDA toolchain, not cudafe

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Initial CUDA Support in Cling

 First interpreter for the CUDA runtie API
 Based on Clang CUDA toolchain, not cudafe

 Most features already upstream in cling master

 Member of the Helmholtz Association
Simeon Ehrig | HZDR - Research Group Computer Assisted Radiation Physics | picongpu.hzdr.de

Initial CUDA Support in Cling

 First interpreter for the CUDA runtie API
 Based on Clang CUDA toolchain, not cudafe

 Most features already upstream in cling master

 Easy access to HPC GPU systems via Jupyter Notebook
 Data analysis in notebooks with GPUs
 Big, interactve siiulaton with GPUs
 Teaching GPU programming
 Easing developient and debugging

 xeus-cling: patched kernel for cling -x cuda

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

