Automatically selecting a suitable integration scheme for systems of differential equations in neuron models.

Inga Blundell ${ }^{1, *}$, Dimitri Plotnikov ${ }^{2,3}$, Jochen Martin Eppler ${ }^{2}$ and Abigail Morrison ${ }^{1,2,4}$
${ }^{1}$ Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6), JARA BRAIN Institute I, Forschungszentrum Jülich, Jülich, Germany
${ }^{2}$ Simulation Lab Neuroscience, Institute for Advanced Simulation, JARA, Forschungszentrum Jülich, Jülich, Germany
${ }^{3}$ Chair of Software Engineering, Jülich Aachen Research Alliance (JARA), RWTH Aachen University, Aachen, Germany
${ }^{4}$ Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University
Bochum, Bochum, Germany

Correspondence*:
Inga Blundell
i.blundell@fz-juelich.de

ABSTRACT

On the level of the spiking activity, the integrate-and-fire neuron is one of the most commonly used descriptions of neural activity. A multitude of variants has been proposed to cope with the huge diversity of behaviors observed in biological nerve cells. The main appeal of this class of model is that it can be defined in terms of a hybrid model, where a set of mathematical equations describes the sub-threshold dynamics of the membrane potential and the generation of action potentials is often only added algorithmically without the shape of spikes being part of the equations. In contrast to more detailed biophysical models, this simple description of neuron models allows the routine simulation of large biological neuronal networks on standard hardware widely available in most laboratories these days.

The time evolution of the relevant state variables is usually defined by a small set of ordinary differential equations (ODEs). A small
number of evolution schemes for the corresponding systems of ODEs are commonly used for many neuron models, and form the basis of the neuron model implementations built into commonly used simulators like Brian, NEST and NEURON.232425262728

However, an often neglected problem is that 29 the implemented evolution schemes are only rarely selected through a structured process based on numerical criteria. This practice cannot guarantee accurate and stable solutions for the equations and the actual quality of the solution depends largely on the parametrization of the model.

In this article, we give an overview of typical equations and state descriptions for the dynamics of the relevant variables in integrate-and-fire models. We then describe a formal mathematical process to automate the design or selection of a suitable evolution scheme for this large class of models. Finally, we present the reference implementation of our symbolic analysis toolbox for ODEs that can guide modelers313233343536373839404142434445
during the implementation of custom neuron models.

Keywords: integrate-and-fire neuron, model dynamics, numerics, integration schemes, ODE, symbolic analysis

1 INTRODUCTION

In common with all body cells, nerve cells (neurons) are delimited by a bi-lipid layer (the cell membrane) which is largely impermeable for ions and bigger molecules. Active ion pumps and passive channels embedded into the membrane allow the selective passage of certain ions. Through these transporter molecules, neurons maintain a gradient of different ion types across the membrane, which leads to the membrane potential (Kandel et al., 2013).

In the absence of input, the membrane potential fluctuates around the resting potential E_{L} (typically at around -70 mV). Excitatory input depolarizes the membrane, driving the membrane potential closer to zero, while inhibitory input hyperpolarizes the neuron, driving the membrane potential away from zero. If the membrane potential crosses the spiking threshold θ (typically at around -55 mV), the neuron fires an action potential (spike), which is transmitted to all downstream (postsynaptic) neurons, where it in turn elicits excursions of their membrane potentials.

The basic integrate-and-fire model describes the dynamics of the membrane potential in the following way: the time evolution of the membrane potential V is governed by a differential equation of the type

$$
\begin{equation*}
\frac{d}{d t} V(t)=R(V(t), \cdot) \tag{1}
\end{equation*}
$$

where R can be a function of other variables alongside V, whose time evolution is described by another ordinary differential equation which can again contain the membrane potential:

$$
\frac{d}{d t} \mathbf{X}=\frac{d}{d t}\left(\begin{array}{c}
V \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)(t)=\left(\begin{array}{c}
R_{0}(\mathbf{X}) \\
R_{1}(\mathbf{X}) \\
\vdots \\
R_{n}(\mathbf{X})
\end{array}\right)
$$

Once the membrane potential reaches its thresh- 80 old θ, a spike is fired and the membrane potential is 81 set back to E_{L} for a certain amount of time called 82 the refractory period. After this time the evolution 83 of Equation 1 starts again. An important simplifi- 84 cation in most models compared to biology is that 85 the exact course of the membrane potential during 86 the spike is either completely neglected or only con- 87 sidered partially. Threshold detection is typically 88 added algorithmically on top of the sub-threshold 89 dynamics.

The two most common variants of this type of model are the current-based and the conductancebased integrate-and-fire model. For the current- 93 based model we have the following general form of the equation:

$$
\begin{align*}
\frac{d}{d t} V(t) & =\frac{1}{\tau}\left(E_{\mathrm{L}}-V(t)\right) \\
& +\frac{1}{C} I(t)+F(V(t)) \tag{2}
\end{align*}
$$

Here C is the membrane capacitance, τ the mem- 96 brane time constant and I the input current to the 97 neuron. If we assume that spikes are constrained 98 to a fixed temporal grid, $I(t)$ represents the sum of 99 the currents elicited by all incoming spikes at all 100 grid points for times smaller than t, plus a piece- 101 wise constant function $I_{\text {ext }}$ that models additional 102 external input. F, in contrast to the first part of the 103 right-hand-side of Equation 2, is some non-linear 104 function of V that may also be zero. 105

For the conductance-based integrate-and-fire 106 model we have:

$$
\begin{align*}
\frac{d}{d t} V(t) & =\frac{1}{\tau}\left(E_{\mathrm{L}}-V(t)\right) \\
& +\frac{1}{C} G(t)(V(t)-E)+F(V(t)) . \tag{3}
\end{align*}
$$

G has the same form as I but models a conductance rather than a current. E is the reversal potential at which there is no net flow of ions from one side of the membrane to the other (for details see Kandel et al., 2013). Equation 3 will usually contain several summands $\frac{1}{C} G_{i}(t)\left(V(t)-E_{i}\right)$ for differing G_{i} and corresponding E_{i}, e.g. for inhibitory and excitatory synaptic conductance. For simplicity we assume only one summand. The differential equations for both the current- and conductance-based models are linear when $F \equiv 0$. For the current-based model this means that Equation 2 is a linear constant coefficient differential equation.

An example of a neuron model described by a system of differential equations, where $F \not \equiv 0$ is the adaptive exponential integrate-and-fire model:

$$
\begin{aligned}
\frac{d}{d t} V(t) & =\frac{1}{\tau}\left(E_{\mathrm{L}}-V(t)\right) \\
& +\frac{1}{C} G(t)(V(t)-E) \\
& +g \cdot \delta \cdot \exp \left(\frac{V(t)-V_{\mathrm{T}}}{\delta}\right)-w(t) \\
\frac{d}{d t} w(t) & =\frac{c}{\tau_{w}}\left(V(t)-E_{\mathrm{L}}\right)
\end{aligned}
$$

For the biophysical meaning of the variables V_{T}, $\delta, g, c, \tau_{\omega}$ and w see the original publication by Brette and Gerstner (2005).

Current-based neuron models with $F \not \equiv 0$ are unusual because models from this category are chosen primarily for their simplicity, while conductancebased neuron models are believed to describe neuronal activity in the brain more accurately, albeit at the cost of more complex differential equations.

It should be noted here that although some neuron 134 models are not explicitly referred to or described as 135 current-based or conductance-based models in the 136 literature their time evolution can still be expressed 137 by differential equations of the mathematical forms 138 shown in Equations 2 and 3.

The choice of an appropriate solver for a given 140 equation is a non-trivial task, as it requires deep 141 knowledge of ordinary differential equations and 142 numerics to assess the type of differential equation 143 and construct an appropriate numeric solver. This 144 choice depends not only on the form of the dif- 145 ferential equation but also on the magnitude of the 146 occurring parameters. For example, Rotter and Dies- 147 mann (1999) demonstrated that for neuron models 148 that can be expressed as time-invariant linear sys- 149 tems, the analytical solution to the evolution of the 150 dynamics from one time step to the next can be 151 achieved by a matrix multiplication. If applicable, 152 this kind of solution is to be preferred, as it is both 153 exact and computationally efficient.

However, this approach leaves two key steps up 155 to the modeller: firstly, analyzing the dynamics to 156 discern what category of dynamical system it is; sec-157 ondly, having performed this analysis, to construct 158 the appropriate solver, e.g. the terms of the propa-159 gator matrix for such neurons that can be solved in 160 this way (Rotter and Diesmann, 1999) or the config-161 uration of an implicit or explicit numeric solver for 162 all other neuron models. As these steps can be quite 163 challenging to many modellers, it would be of great 164 use to have a framework capable of automatically 165 performing this analysis and solver construction. 166

In Section 2 we therefore first derive compact 167 canonical representations of the equations and their 168 parts that allow an efficient implementation on a 169 computer system, and then show that the distinc-170 tion between current- and conductance-based, linear 171 and non-linear, stiff and non-stiff systems of differ- 172 ential equations is important for automatizing the 173 construction or selection of an optimal evolution 174 scheme.

Our reference implementation follows the mathe-176 matical observations and is described in Section 3.177

2 MATERIALS AND METHODS

Section 4 demonstrates our application of the framework to some commonly used models in computational neuroscience and explains the integration of the framework into the NEST Modeling Language (NESTML; Plotnikov et al., 2016). We close with a presentation of related work in Section 5 and a discussion and outlook in Section 6, where we summarize possible extensions and further applications of our system.

As already pointed out in the previous section, systems of differential equations describing the dynamics in neuron models can be divided into current-based and conductance-based systems. Additional distinguishing properties are whether the systems are linear or non-linear, stiff or non-stiff. We will now describe how these properties influence the choice of an appropriate solver.

For the current-based integrate-and-fire neuron with $F \equiv 0$, we have a first order constant coefficient linear differential equation where I typically satisfies a homogeneous linear differential equation of some order $n \in \mathbb{N}$. Any such ODE or system of ODEs can be solved analytically and efficiently as we will show in Section 2.1.

When evolving systems of ODEs for conductancebased linear or non-linear ODEs, it is necessary to use a numeric integration scheme. Depending on the system at hand, it is advisable to choose either an implicit or an explicit stepping function (Section 2.2)

2.1 Solving linear constant coefficient ODEs analytically

For simplicity we will assume E_{L} in Equation 2 to be zero or to be included in one of the other terms of the right hand side. As shown by Rotter and Diesmann (1999), if $V: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the first order constant coefficient linear differential equation

$$
\begin{equation*}
\frac{d}{d t} V(t)=-\frac{1}{\tau} V(t)+\frac{1}{C} I(t) \tag{4}
\end{equation*}
$$

with initial value $V(0)=V_{0}$, for a function $I: 216$ $\mathbb{R}^{+} \rightarrow \mathbb{R}$ and constants C (the capacitance of the 217 membrane) and τ (the membrane time constant), 218 and if I satisfies

$$
\begin{equation*}
\left(\frac{d}{d t}\right)^{n} I=\sum_{i=0}^{n-1} a_{i}\left(\frac{d}{d t}\right)^{i} I \tag{5}
\end{equation*}
$$

for some $n \in \mathbb{N}$ and a sequence $\left(a_{i}\right)_{i \in \mathbb{N}} \subset \mathbb{R}$, an 220 analytical solver can be constructed in the form of 221 a propagator matrix.222

Here, we show how to evaluate the dynamics to 223 discern whether V and I do indeed satisfy the condi- 224 tions stated above, and how to derive the evolutions 225 scheme for V accordingly. First, we verify that 226 the first order differential equation, $\frac{d}{d t} V=r(V), 227$ for a right hand side $r: \mathbb{R} \times \mathbb{R}^{+} \rightarrow \mathbb{R}$, is in-228 deed linear with a constant coefficient, i.e. that 229 $\left(\frac{d}{d V}\right)^{2} r(V)=0$ and $\left(\frac{d}{d V}\right) r(V)(t)$ is constant. Sec-230 ond we methodically determine whether I satisfies 231 a linear differential equation of some order n, i.e. 232 we check whether

$$
\begin{equation*}
\frac{d}{d t} I=a_{0} I \tag{6}
\end{equation*}
$$

for some $a_{0} \in \mathbb{R}$ by solving for a_{0}. If no such $a_{0} 234$ exists we check whether

$$
\begin{equation*}
\left(\frac{d}{d t}\right)^{2} I=a_{0} I+a_{1} \frac{d}{d t} I \tag{7}
\end{equation*}
$$

for some $a_{0}, a_{1} \in \mathbb{R}$ using the following proce-236 dure: we assume that a_{0}, a_{1} exist such that (7) is 237 satisfied. Then we have for some $t_{1}, t_{2} \in \mathbb{R}$ (for 238 example $t_{1}=1, t_{2}=2$):

$$
\begin{gathered}
\mathbf{X}\left(t_{1}, t_{2}\right):=\left(\begin{array}{ll}
I\left(t_{1}\right) & \frac{d}{d t} I\left(t_{1}\right) \\
I\left(t_{2}\right) & \frac{d}{d t} I\left(t_{2}\right)
\end{array}\right), \\
\mathbf{X}\left(t_{1}, t_{2}\right) \cdot\binom{a_{0}}{a_{1}}=\binom{\left(\frac{d}{d t}\right)^{2} I\left(t_{1}\right)}{\left(\frac{d}{d t}\right)^{2} I\left(t_{2}\right)}
\end{gathered}
$$

If $\operatorname{det}\left(\mathbf{X}\left(t_{1}, t_{2}\right)\right) \neq 0$ we therefore know that

$$
\binom{a_{0}}{a_{1}}=\mathbf{X}^{-1}\left(t_{1}, t_{2}\right) \cdot\binom{\left(\frac{d}{d t}\right)^{2} I\left(t_{1}\right)}{\left(\frac{d}{d t}\right)^{2} I\left(t_{2}\right)}
$$

Under the assumption that (7) is satisfied and that $\operatorname{det}\left(\mathbf{X}\left(t_{1}, t_{2}\right)\right) \neq 0$ this gives us a_{0} and a_{1}. If our second assumption is not satisfied we can easily chose t_{1} and t_{2} so that it is. We can now determine whether the first assumption is correct by inserting the calculated values for a_{0} and a_{1} and checking if the following equation is true:

$$
\begin{equation*}
\left(\frac{d}{d t}\right)^{2} I-a_{0} I-a_{1} \frac{d}{d t} I=0 \tag{8}
\end{equation*}
$$

Now, if such a_{0} and a_{1} exist, they are unique, as I and $\frac{d}{d t} I$ are linearly independent, since there was no $a_{0} \in \mathbb{R}$ such that (6) was satisfied. If a_{0} and a_{1} do not satisfy (8), we check methodically if constants $\left(a_{i}\right)_{i \in \mathbb{N}} \subset \mathbb{R}$ exist, for which (5) is satisfied for $n=3,4, \ldots$. Again we assume that $a_{0}, \ldots, a_{n} \in \mathbb{R}$ exist such that (5) is satisfied. Then we have for $t=\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$ (for example $\left.t_{1}=1, \ldots, t_{n}=n\right):$

$$
\begin{gather*}
\mathbf{X}(t):=\left(\begin{array}{ccc}
I\left(t_{1}\right) & \cdots & \left(\frac{d}{d t}\right)^{n-1} I\left(t_{1}\right) \\
\vdots & \ddots & \vdots \\
I\left(t_{n}\right) & \cdots & \left(\frac{d}{d t}\right)^{n-1} I\left(t_{n}\right)
\end{array}\right), \tag{9}\\
\mathbf{X}(t) \cdot\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{n-1}
\end{array}\right)=\left(\begin{array}{c}
\left(\frac{d}{d t}\right)^{n} I\left(t_{1}\right) \\
\vdots \\
\left(\frac{d}{d t}\right)^{n} I\left(t_{n}\right)
\end{array}\right) \tag{10}
\end{gather*}
$$

257 If $\operatorname{det}(\mathbf{X}(t)) \neq 0$ we get

$$
\left(\begin{array}{c}
a_{0} \tag{11}\\
\vdots \\
a_{n-1}
\end{array}\right)=\mathbf{X}^{-1}(t) \cdot\left(\begin{array}{c}
\left(\frac{d}{d t}\right)^{n} I\left(t_{1}\right) \\
\vdots \\
\left(\frac{d}{d t}\right)^{n} I\left(t_{n}\right)
\end{array}\right) .
$$

Again, if $\operatorname{det}(\mathbf{X}(t))=0$ we simply use another $t, 258$ for example $t=\left(t_{1}+1, \ldots, t_{n}+1\right)$. Then we obtain 259 the values of a_{0}, \ldots, a_{n} under the assumption that 260 (5) is satisfied for order n. We check whether the 261 assumption in (5) is true by symbolically evaluating 262 whether

$$
\left(\frac{d}{d t}\right)^{n} I-\sum_{i=0}^{n-1} a_{i}\left(\frac{d}{d t}\right)^{i} I=0 .
$$

If (5) is not satisfied we go on to check

$$
\left(\frac{d}{d t}\right)^{n+1} I=\sum_{i=0}^{n} a_{i}\left(\frac{d}{d t}\right)^{i} I
$$

for some a_{0}, \ldots, a_{n+1}, and so on. This way, for 265 every I that satisfies (5) for order n we can deter-266 mine the factors a_{0}, \ldots, a_{n}. Then we can rephrase 267 (4) as the homogeneous differential equation 268

$$
\begin{equation*}
\frac{d}{d t} \mathbf{y}(t)=\mathbf{A} \mathbf{y}(t) \tag{12}
\end{equation*}
$$

with initial values $\mathbf{y}(0)=\mathbf{y}_{0}, \mathbf{y}=269$ $\left(\frac{d^{n-1}}{d t^{n-1}} I, \frac{d^{n-2}}{d t^{n-2}} I, \ldots, I, V\right)$ and 270

$$
\mathbf{A}=\left(\begin{array}{cccccc}
a_{n-1} & a_{n-2} & \cdots & \cdots & a_{0} & 0 \tag{13}\\
1 & 0 & \cdots & 0 & 0 & 0 \\
0 & \ddots & \ddots & \vdots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & 0 & 0 \\
0 & 0 & \ddots & 1 & 0 & 0 \\
0 & 0 & \cdots & 0 & \frac{1}{C} & -\frac{1}{\tau}
\end{array}\right)
$$

Thus for $n=1$ we have

$$
\mathbf{A}=\left(\begin{array}{cc}
a_{0} & 0 \\
\frac{1}{C} & -\frac{1}{\tau}
\end{array}\right)
$$

and for $n=2$ we have

$$
\mathbf{A}=\left(\begin{array}{ccc}
a_{1} & a_{0} & 0 \\
1 & 0 & 0 \\
0 & \frac{1}{C} & -\frac{1}{\tau}
\end{array}\right)
$$

279 Then we can determine the solution \mathbf{y} at $t \in \mathbb{R}^{+}$ 280 using the matrix exponential:

$$
\begin{equation*}
\mathbf{y}(t)=e^{\mathbf{A} t} \mathbf{y}_{0} \tag{17}
\end{equation*}
$$

It is important to note here that the exact integration of (2) depends on the exact calculation of $e^{\mathbf{A} h}$. Let $I(t)$ be the sum of currents elicited by all incoming spikes at all grid points for times $t_{i} \leq t$,

$$
I(t)=\sum_{i \in \mathbb{N}, t_{i} \leq t} \sum_{k \in S_{t_{i}}} I_{k}(t)
$$

where $I_{k}(t)=\widehat{\iota}_{k} \iota\left(t-t_{i}\right)$, for $t \in \mathbb{R}^{+}$. $\widehat{\iota}_{k}$ 290 is the synaptic weight of synapse k and ι satis-

As it can be both more convenient and computationally more efficient when \mathbf{A} is a lower triangular matrix we give an alternative choice of \mathbf{A} and \mathbf{y}, where \mathbf{A} is a triangular matrix:

$$
\mathbf{A}=\left(\begin{array}{ccc}
a_{1}+x & 0 & 0 \tag{14}\\
1 & -x & 0 \\
0 & \frac{1}{C} & -\frac{1}{\tau}
\end{array}\right)
$$

where

$$
\begin{equation*}
x=-\frac{a_{1}}{2}+\sqrt{\frac{a_{1}^{2}}{4}+a_{0}} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{y}=\left(\frac{d}{d t} I+x I, I, V\right) \tag{16}
\end{equation*}
$$

We can rephrase this to obtain an incremental formulation which allows the evolution of the system by a single calculation of $e^{\mathbf{A} h}$ for a fixed step size $h \in \mathbb{R}^{+}$:

$$
\mathbf{y}(t+h)=e^{\mathbf{A}(t+h)} \cdot \mathbf{y}_{0}=e^{\mathbf{A} h} \cdot \mathbf{y}_{t}
$$ fies the differential equation (5) on \mathbb{R}^{+}for some constants $\left(a_{i}\right)_{i \in \mathbb{N}} \subset \mathbb{R}$ and some $n \in \mathbb{N}$. Then I satisfies the differential equation (5) on $\mathbb{R}^{+} \backslash$

$\left\{t_{1}, \ldots, t_{k}\right\}$. Therefore we can consider I as the 294 solution of the differential equation (5) on the inter-295 vals $\left(0, t_{1}\right),\left(t_{1}, t_{2}\right), \ldots$ with suitable initial values. 296 For $t \in\left(t_{i-1}, t_{i}\right)$ we can calculate

$$
\mathbf{y}(t)=e^{\mathbf{A}\left(t-t_{i-1}\right)} \mathbf{y}_{t_{i-1}}
$$

At time t_{i}, for $i \in \mathbb{N}$, the differential equation 298 (5) is not satisfied because ι does not satisfy the 299 equation at $t=0$, but we get $I\left(t_{i}\right)$ by continuous 300 continuation to the boundary of the interval $\left(t, t_{i}\right) .301$ The derivatives of I contained in \mathbf{y} must be up-302 dated by initial values of additional spikes at time 303 t_{i}, meaning for $\mathbf{P}(h)=e^{\mathbf{A} h}$

$$
\mathbf{y}\left(t_{i}\right)=\mathbf{P}(h) \mathbf{y}\left(t_{i-1}\right)+\mathbf{x}_{\mathbf{t}_{\mathbf{i}}}
$$

where

$$
\mathbf{x}_{\mathbf{t}_{\mathbf{i}}}=\mathbf{T}\left(\begin{array}{c}
\left(\frac{d}{d t}\right)^{n} \iota(0) \\
\vdots \\
\frac{d}{d t} \iota(0) \\
0 \\
0
\end{array}\right) \sum_{k \in S_{t_{i}+h}} \widehat{\iota}_{k}
$$

Here $\mathbf{T} \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ is such that

$$
\mathbf{y}=\mathbf{T}\left(\begin{array}{c}
\left(\frac{d}{d t}\right)^{n-1} I \\
\vdots \\
I \\
V
\end{array}\right)
$$

\mathbf{T} is the identity matrix when \mathbf{y} is chosen as the 307 vector of derivatives as in Equation 12 and Equa- 308 tion 13 but it may well be non-trivial, e.g. when y 309 is chosen as in Equation 16.

Now we know an analytical and efficient way 311 to evolve any linear constant coefficient ODE con-312 taining the convolution of the solution of a linear 313 homogeneous ODE and a weighted spike train.

2.1.1 Adding a constant external input current

A common requirement in neuroscientific modeling is to add a bias current to neurons. We will now show how to solve the differential equation when we have an additional constant external input current I_{E} :

$$
\frac{d}{d t} V(t)=-\frac{V(t)}{\tau}+\frac{1}{C}\left(I(t)+I_{\mathrm{E}}\right), V(0)=V_{0}
$$

As shown above, we can solve

$$
\begin{equation*}
\frac{d}{d t} V_{1}=-\frac{V_{1}(t)}{\tau}+\frac{I(t)}{C}, V_{1}(0)=V_{1_{0}} \tag{18}
\end{equation*}
$$

Consider the following differential equation,

$$
\begin{equation*}
\frac{d}{d t} V_{2}=-\frac{V_{2}(t)}{\tau}+\frac{I_{\mathrm{E}}}{C}, V_{2}(0)=V_{2_{0}} \tag{19}
\end{equation*}
$$

where τ, C and I_{E} are constants. By variation of constants (Walter, 2000) we have a solution of (19):

$$
\begin{aligned}
V_{2}(t) & =\left(\frac{I_{\mathrm{E}} \tau}{C} e^{t / \tau}+V_{2_{0}}\right) e^{-t / \tau} \\
& =\frac{I_{\mathrm{E}} \tau}{C}+V_{2_{0}} e^{-t / \tau} \\
V_{2}(t+h) & =\frac{I_{\mathrm{E}} \tau}{C}+V_{2_{0}} e^{-t / \tau} e^{-h / \tau} \\
& =V_{2}(t) e^{-h / \tau}+\frac{I_{\mathrm{E}} \tau}{C}\left(1-e^{-h / \tau}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t} V & =\frac{d}{d t}\left(V_{1}+V_{2}\right)=-\frac{V_{1}(t)+V_{2}(t)}{\tau} \\
& +\frac{1}{C}\left(I(t)+I_{\mathrm{E}}\right) \\
& =\frac{V(t)}{\tau}+\frac{1}{C} I(t)+\frac{I_{\mathrm{E}}}{C} .
\end{aligned}
$$

and for $\mathbf{P}:=\mathbf{P}(h)=e^{\mathbf{A} h}$ the following holds

$$
\begin{aligned}
V(t+h) & =\mathbf{P}_{n+1,1} \mathbf{y}_{1}(t)+\cdots \\
& +\mathbf{P}_{n+1, n+1} V_{1}(t)+V_{2}(t) e^{-h / \tau} \\
& +\frac{I_{\mathrm{E}}}{C}\left(1-e^{-h / \tau}\right) .
\end{aligned}
$$

As the last column a in \mathbf{A} has only one entry 329 $a_{n+1}=\frac{-1}{\tau}$ and $\mathbf{P}=e^{\mathbf{A} h}=\sum_{k=0}^{\infty} \frac{(\mathbf{A} h)^{k}}{k!}$,

$$
\begin{aligned}
\mathbf{P}_{n+1, n+1} & =\left(\sum_{k=0}^{\infty} \frac{(\mathbf{A} h)^{k}}{k!}\right)_{n+1, n+1} \\
& =\sum_{k=0}^{\infty} \frac{\left(\frac{-h}{\tau}\right)^{k}}{k!}=e^{-h / \tau} .
\end{aligned}
$$

We get:

$$
\begin{aligned}
V(t+h) & =\mathbf{P}_{n+1,1} \mathbf{y}_{1}(t)+\cdots \\
& +\mathbf{P}_{n+1, n} \mathbf{y}_{n}(t) \\
& +V(t) e^{-h / \tau}+\frac{I_{\mathrm{E}} \tau}{C}\left(1-e^{-h / \tau}\right)
\end{aligned}
$$

This method is also applicable when we have 332 a piece-wise constant function \widehat{y}_{0} instead of a 333 constant I_{E} :

326 Now we know solutions V_{1} and V_{2} of (18) and
327 (19). Therefore $V:=V_{1}+V_{2}$ solves

$$
\frac{d}{d t} V_{2}=-\frac{V_{2}(t)}{\tau}+\frac{\widehat{y}_{0}}{C}, V_{2}(0)=V_{2_{0}}
$$

where for all $i \in \mathbb{N}$ there is a $c_{i} \in \mathbb{R}$ such that $\widehat{y}_{0}(t)=c_{i}$ for all $t \in\left[t_{i}, t_{i}+h\right)$. We rephrase the problem as:

$$
\frac{d}{d t} V_{2_{i}}=-\frac{V_{2_{i}}(t)}{\tau}+\frac{c_{i}}{C}, V_{2_{i}}(0)=V_{2_{i 0}}
$$

on $t \in\left[t_{i}, t_{i}+h\right)$ for all $i \in \mathbb{N}$ and get

$$
V_{2}\left(t_{i}\right)=\frac{c_{i} \tau}{C}+V_{2}\left(t_{i-1}\right) e^{-h / \tau}
$$

and

$$
V\left(t_{i}\right)=V\left(t_{i-1}\right) e^{-h / \tau}+\frac{c_{i} \tau}{C}\left(1-e^{-h / \tau}\right)
$$

Now we have an exact description for how to handle the evolution of linear constant coefficient ODEs containing the convolution of the solution of a linear homogeneous ODE and a weighted spike train with an additional constant external input, that is still analytical and efficient.

2.1.2 Handling sums

The approximation of postsynaptic currents observed in real brain experiments is sometimes best modeled by different functions for different synapses. We can handle the case when I is the sum of functions I_{1}, I_{2} which satisfy a homogeneous differential equation of arbitrary order m and n in the following way. As seen above if V_{1} is a solution of

$$
\frac{d}{d t} V_{1}(t)=-\frac{V_{1}(t)}{\tau}+\frac{1}{C} I_{1}(t)
$$

and V_{2} is a solution of

$$
\frac{d}{d t} V_{2}(t)=-\frac{V_{2}(t)}{\tau}+\frac{1}{C} I_{2}(t)
$$

then $V=V_{1}+V_{2}$ is a solution of

$$
\frac{d}{d t} V(t)=-\frac{V(t)}{\tau}+\frac{1}{C}\left(I_{1}(t)+I_{2}(t)\right)
$$

If, furthermore, I_{1} satisfies (5) for $n \in \mathbb{N}$

$$
\begin{aligned}
V_{1}(t+h) & =\mathbf{P}_{n+1,1}^{1} \mathbf{y}_{1_{1}}(t)+\cdots \\
& +\mathbf{P}_{n+1, n}^{1} \mathbf{y}_{1_{n}}(t)+V_{1}(t) e^{-h / \tau}
\end{aligned}
$$

where \mathbf{P}^{1} is the corresponding propagator matrix 358 and I_{2} satisfies (5) for some $m \in \mathbb{N} 359$

$$
\begin{aligned}
V_{2}(t+h) & =\mathbf{P}_{m+1,1}^{2} \mathbf{y}_{2_{1}}(t)+\cdots \\
& +\mathbf{P}_{m+1, m}^{2} \mathbf{y}_{2_{m}}(t)+V_{2}(t) e^{-h / \tau}
\end{aligned}
$$

where \mathbf{P}^{2} is the corresponding propagator matrix, 360 then

$$
\begin{aligned}
V(t+h) & =\mathbf{P}_{n+1,1}^{1} \mathbf{y}_{1}(t)+\cdots \\
& +\mathbf{P}_{n+1, n}^{1} \mathbf{y}_{1}(t) \\
& +\mathbf{P}_{m+1,1}^{2} \mathbf{y}_{2_{1}}(t)+\cdots \\
& +\mathbf{P}_{m+1, n}^{2} \mathbf{y}_{2_{m}}(t)+V(t) e^{-h / \tau} .
\end{aligned}
$$

Therefore we just need to compute two propagator 362 matrices to handle the sum.

2.2 Choice of a suitable numeric

Explicit methods for solving differential equations 366 are methods that only use already known values 367 of the function at earlier grid points to determine 368 the value at the next grid point. The efficiency 369 and accuracy of explicit methods is typically suffi-370 cient for systems of ODEs used to model neuronal 371 behavior. Popular examples of such methods are 372 the explicit 4th order classical Runge-Kutta or the 373 explicit embedded Runge-Kutta-Fehlberg method 374 (Dahmen and Reusken, 2005) for the approximative 375
solution of ODEs. Most neuron model implementations currently use explicit stepping algorithms and still achieve satisfactory results in terms of accuracy and simulation time (Morrison et al., 2007; Hanuschkin et al., 2010). However, some published models involve possibly stiff differential equations (e.g. Brette and Gerstner, 2005), which potentially require a different class of solvers.

Lambert (1992) defines stiffness as follows:

If a numerical method [...] applied to a system with any initial conditions, is forced to use in a certain interval of integration a steplength which is excessively small in relation to the smoothness of the exact solution in that interval, then the system is said to be stiff in that interval.

A typical case of stiffness is for example, when different parts of the solution of a system of equations decays on different time scales.

This usually comes from very different scales inherent to the ODE. These scales will reflect in the parameters of the equations, i.e. the range of constants occuring in the equations of the systems. Therefore the stiffness of a system always depends not only on the mathematical form of the equations but heavily on the magnitude of the constants occuring in them.

In principle it is possible to solve stiff equations with explicit methods, but this comes at the expense of a very small step size when using an adaptive step size algorithm and trying to achieve a certain accuracy. This in turn leads to high computational costs. For non-adaptive step size algorithms it leads to plain wrong results without the user knowing, since the algorithm still terminates, but with large error. Moreover, as the limited machine precision on a digital computer constitutes a lower bound for the step size, explicit methods usually become unstable when applied to stiff problems.

Implicit methods, on the other hand, do not use previous values to calculate the solution at the next grid point, but only employ them implicitly
in the form of the solution of a system of equa-418 tions. This makes implicit methods computationally 419 much more costly, but usually allows a larger step 420 size to be chosen, thus avoiding stability problems 421 (Strehmel and Weiner, 1995).

422
In order to detect whether an explicit or implicit 423 method is better suited for a given ODE we devise 424 the following testing strategy.

First, we choose representative spike trains (drawn 426 from a Poisson distribution) and compute approxi-427 mate solutions for the given system of ODEs using 428 an explicit and implicit method of the same order: 429

1. an explicit 4th order Runge-Kutta method 430
2. an implicit Bulirsch-Stoer method of Bader and 431 Deuflhard (Strehmel and Weiner, 1995) 432
both with adaptive step size. We can then compare 433 them with respect to the required average step size 434 and minimal step size. In cases where the implicit 435 method performs better than the explicit method, 436 we have reason to believe that the ODE is stiff and 437 that the use of an implicit method is advisable. 438

Although ODEs may be stiff only for very spe-439 cific initial conditions, usually stiffness should be 440 observable for a wide range of initial values, or 441 in this case for a number of incoming spike trains 442 (Strehmel and Weiner, 1995). By choosing many 443 spike trains, evaluating the required step sizes for 444 the implicit and explicit method for each of them, 445 and comparing that to the machine precision ε, it is 446 thus possible to detect whether the problem at hand 447 is stiff or not. We propose the following rules for 448 choosing an implicit algorithm:

- if the minimal step size of runs using the ex-450 plicit method is close to machine precision (i.e. 451 less than $10 \cdot \varepsilon$) and this is not the case for the 452 minimal step size of runs using the implicit 453 method (i.e. greater than or equal to $10 \cdot \varepsilon$) this 454 is a hint that the system of ODEs is possibly 455 stiff. In this case an explicit stepping function 456 could become unstable or even abort, so we 457 suggest the use of an implicit algorithm.

3 REFERENCE IMPLEMENTATION

- if the minimal step size of runs using the explicit method is reasonably large (i.e. greater than or equal to $10 \cdot \varepsilon$) we have to test two cases:
- if the minimal step size of runs of the implicit method is very small (i.e. less than $10 \cdot \varepsilon$), we suggest using an explicit method.
- if the minimal step size of runs of the implicit method is large (i.e. greater than or equal to $10 \cdot \varepsilon$), we go on to check if the average step size of runs using the implicit algorithm is much larger than the average step size of runs using the explicit algorithm. If this is the case, this again indicates that the system of ODEs is stiff and therefore choosing an implicit evolution method is advisable.

For a non-stiff system of ODEs, the computation time of an explicit algorithm should be lower, as it does not require the solution of a system of equations (Dahmen and Reusken, 2005). Therefore the choice of an explicit evolution method is sensible in cases where none of the above conditions are met. The algorithm that follows from these rules is depicted in Figure 2.

In order to automate the process of finding the most appropriate solver for a given system of ODEs on a computer, we have designed and implemented an analysis toolbox in Python (http://github. $\mathrm{com} /$ nest/ode-toolbox). It builds on the formal mathematical foundations introduced in the previous sections and uses SymPy (Meurer et al., 2017) to carry out symbolic mathematical tests and transformations. To achieve a high degree of portability and re-usability, the input to the algorithm is given either in the form of JSON files or Python dictionaries, which specify equations, parameters and additional properties (for an example, see Section 3.4). These two means of input allow an easy embedding of the toolkit into third-party tool chains and enable us to leverage the Python and SymPy parsers, which delegates all syntax checking and

Figure 1. Activity diagram summarizing all steps of the ODE analysis algorithm. Steps executed in the main script of the toolbox are shown in green. The analysis of postsynaptic shapes (blue box) is detailed in Section 3.1. Parts shown in red represent the generation of an analytical solver, which is described in Section 3.2. The selection of a numerical stepper function is carried out by the yellow actions and explained in Section 3.3.
exception handling to well established and tested 500 tools.

The algorithm expects three components in the 502 input: i) an ODE describing the time evolution of 503 a state variable (e.g. V), ii) a list of postsynaptic 504 shapes (e.g. I) used within this ODE and specified 505 either as functions of time or as ODEs with initial 506 conditions and iii) a set of parameters with default 507
values for the equations. Fundamentally, the analysis algorithm checks the given system of ODEs for membership of the following two major categories and generates or selects an appropriate solver accordingly:

1. First order linear constant coefficient ODEs for the dynamics of a state variable (see Equation 4) whose inhomogeneous part is a postsynaptic shape (i.e. satisfies Equation 5) can be solved exactly using an analytical stepping scheme (Section 2.1).
2. All other systems of ODEs have to be solved by a numerical solver. ODEs in this category are, for example, non-linear ODEs describing the time evolution of a state variables, or linear ODEs with an inhomogeneous part which is not a postsynaptic shape, i.e. not satisfying Equation 5.

The implementation of the analysis toolbox consists of different Python components which are introduced in the activity diagram in Figure 1. The main script orchestrates the execution of the analysis and uses the functions and classes of the different submodules:
shapes.py contains classes and functions for analyzing and storing postsynaptic shapes either given as functions of time or ODEs with initial values (blue parts in Figure 1). The main algorithm in this module is explained in section Section 3.1. analytic.py provides the functionality to generate propagator matrices and compute a specification for the update step (red parts in Figure 1). A detailed description can be found in Section 3.2. numeric.py contains the code for creating a description of the update step for further processing by the stiffness tester or a numerical stepper function (upper yellow box in Figure 1). stiffness.py implements the stiffness tester (lower yellow box in Figure 1). This module can either be used as a module within the analysis toolbox or a third-party tool, or run in a standalone fashion. It is explained in Section 3.3
together with the preparatory steps carried out 551 in numeric.py. 552

The main script starts by reading and validating 553 the input from a JSON file or a Python dictionary. 554 It expects the keys shapes, odes and parameters to be 555 present in the input. For each postsynaptic shape in 556 the shapes section, it runs the algorithm described 557 in Section 3.1, which checks if the given postsy-558 naptic shape obeys a linear homogeneous ODE and 559 transforms it into a canonical representation suitable 560 for further processing. If one of the postsynaptic 561 shapes fails the test for linearity and homogeneity, 562 the script terminates with an error ((1) in Figure 1), 563 because this class of ODEs cannot be solved easily 564 with traditional methods as explained in Section 6. 565

After processing the postsynaptic shapes, the 566 script checks whether all equations in the odes sec- 567 tion of the input are linear constant coefficient 568 ODEs: the ODE is linear if the right hand side of 569 the ODE differentiated twice by its symbol is zero, 570 the coefficient of the symbol is constant if the right 571 hand side of the ODE differentiated by its symbol 572 is constant. If these two tests succeed, the system 573 can be solved analytically (see Section 3.2). If one 574 of them fails, a numerical stepper has to be chosen 575 (Section 3.3). The output of the main script is again 576 a Python dictionary or a JSON file, which contains 577 a specification of the most appropriate solver for 578 the given input (2) in Figure 1). The remainder of 579 this section explains the different algorithms in the 580 submodules of the analysis toolbox.

3.1 Analysis of postsynaptic shapes

In the neuroscience literature, postsynaptic shapes 583 are described either as functions of time or as ODEs 584 with initial values. To provide users with maximum 585 flexibility, both specifications are supported by our 586 toolbox. Regardless of the form of the specification, 587 each of the given postsynaptic shapes has to satisfy 588 a linear, homogeneous ODE (Equation 5) to be 589 solved either analytically or numerically.

In case the postsynaptic shape is given as an ODE 591 with initial values, the check for linearity an ho- 592 mogeneity is straightforward. For each occurring 593
derivative of the postsynaptic shape in the shape's definition, we simply have to iteratively subtract the product of the derivative and its factor from the original definition of the postsynaptic shape and check if the final difference is zero. This check fails if the postsynaptic shape is non-linear (i.e. at least one of the derivatives occurs as a power term) or not homogeneous (i.e. not all terms of the postsynaptic shape definition are products containing a derivative of the shape). This check is implemented in the function shape_from_ode() in the shape module of the toolbox.

In case the postsynaptic shape is given as a function of time, we check whether the function obeys a linear homogeneous ODE by trying to construct such an equation together with the initial values of all relevant derivatives. This procedure is implemented in the function shape_from_function() of the shape module. We start the evaluation by checking if the postsynaptic shape function obeys a linear homogeneous ODE of order 1.

```
t_value = None
ds = [shape, diff(shape, t)]
for t_ in range(1, max_t):
    if ds[0].subs(t, t_) != 0:
        t_value = t_
        break
found_ode = False
if t_value is not None:
    a0 = (1/ds[0] * ds[1]).subs(t, t_value)
    diff_lhs_rhs = ds[1] - a0 * ds[0]
    found_ode = diff_rhs_lhs == 0
```

615 In line 10 we calculate the factor a_{0} from Equation 6 by dividing the first derivative of the postsynaptic shape by the shape at an arbitrary point t. To avoid a division by zero, we have to find a t so that the postsynaptic shape function is not zero at this t (lines 3-6). Line 11 calculates the difference between the left and the right hand side of Equation 6. If this difference is zero (line 12) we know that the postsynaptic shape satisfies a linear homogeneous ODE of order 1. We also know the ODE itself by calculating its initial value in line 40 below.

If the postsynaptic shape does not obey a linear homogeneous ODE of order 1 , we check if the
postsynaptic shape function satisfies a linear ho-628 mogeneous ODE of a higher order. This test is run 629 in a loop (line 15) that increments the order to check 630 for each time Equation 5 is not satisfied. The loop 631 terminates if either an ODE is found or max_order 632 iterations are exceeded. The latter check prevents 633 expensive tests of unlikely high orders.

```
order = 1
factors = [a0]
while not found_ode and order < max_order:
    order += 1
    ds.append(diff(ds[-1], t))
    X = zeros(order)
    Y = zeros(order, 1)
```

We start the loop by setting the next potential order 635 (line 16), appending the next higher derivative of 636 postsynaptic shape to the list of derivatives (line 17) 637 and initializing the matrix \mathbf{X} with size order \times order 638 (Equation 9, line 18) and the vector \mathbf{Y} with length 639 order (right hand side of Equation 10, line 19). 640

```
invertible = False
for t_ in range(max_t):
    for i in range(order):
        substitute = i + t_}
        Y[i] = ds[order].subs(t, substitute)
        for j in range(order):
            X[i, j] = ds[j].subs(t, substitute)
    if det(X) != 0:
        invertible = True
        break
```

\mathbf{X} and \mathbf{Y} are assigned values according to Equa-641 tions 9 and 10 (line 24 and 26) for varying $t=642$ $\left(t_{1}, \ldots, t_{n}\right)$ (line 21) in order to find a t such that 643 the matrix \mathbf{X} is invertible, i.e $\operatorname{det}(\mathbf{X}) \neq 0$ (line 28). 644 In the inner loop (line 22-26), t_{i} is substituted so that 645 we first try $t=(1, \ldots, n)$, second $t=(2, \ldots, n+1) 646$ and so on (line 23).647

If we find an invertible \mathbf{X}, we calculate the po-648 tential factors a_{i} from Equation 5 according to 649 Equation 11 for the current order we are checking 650 for (factors, line 32).

```
if invertible:
        factors = X.inv() * Y
        diff_rhs_lhs = 0
        for k in range(order):
        diff_rhs_lhs -= factors[k] * ds[k]
        diff_rhs_lhs += ds[order]
        if diff_rhs_lhs == 0:
```

$\begin{array}{ll}38 & \text { found_ode }=\text { True } \\ 39 & \text { break }\end{array}$

Lines 33-36 calculate the difference between the left and the right hand side of Equation 5. If this difference is zero (line 37) we know that the postsynaptic shape satisfies an linear homogeneous ODE of order order.

If we do not find an ODE during the execution of the while loop, we terminate the algorithm with an error (① in Figure 1). If we do, we can go on to calculate the initial values of the postsynaptic shape equation by substituting t by 0 for all derivatives of the postsynaptic shape, which fully defines the found ODE.

40 iv $=[x . \operatorname{subs}(t, 0)$ for x in $d s[:-1]]$
In the case of successful termination, the functions shape_from_ode () and shape_from_function () both return a shape object to the main script of the toolbox, which encapsulates all attributes of the postsynaptic shape required for further processing.

3.2 Generation of an analytical evolution scheme

If the ODE describing the update of a state variable was found to be a constant coefficient ODE and all postsynaptic shapes obey linear homogeneous ODEs, we can solve the system of ODEs analytically according to Section 2.1. To this end, the module analytic provides a class Propagator, which has two member functions corresponding to the two steps required for the generation of an analytical evolution scheme.

The function compute_propagator_matrices() takes an ODE and a list of shape objects and computes a propagator matrix (Equation 17) for each postsynaptic shape. These matrices can be used to evolve the system from one point to the next. The basic idea here is to populate the matrix \mathbf{A} using the factors of the derivatives (factors, computed in lines 12 and 31 of the code in Section 3.1), the factor of the postsynaptic shape used in the ODE for the state variable (ode_shape_factor) and the factor of the symbol of the ODE (ode_sym_factor). For the equation

$$
\frac{d}{d t} V=\frac{1}{\tau} \cdot V+\frac{1}{C_{1}} \cdot I_{1}+\frac{1}{C_{2}} \cdot I_{2}
$$

ode_sym_factor would thus be $\frac{1}{\tau}$. It is calculated 691 using the following line of code:

```
ode_sym_factor = diff(ode_def, ode_symbol)
```

ode_shape_factor would be $\frac{1}{C_{1}}$ for postsynaptic 693 shape I_{1} in the example equation and $\frac{1}{C_{2}}$ for $I_{2} .694$ As these factors and other parameters depend on the 695 postsynaptic shape, we run the following code in a 696 loop (omitted for better readability), each iteration 697 assigning the current shape object to the variable 698 shape:

```
ode_shape_factor = diff(ode_def, shape.symbol)
if shape.order == 1:
    A = Matrix([
        [shape.factors[0], 0],
        [ode_shape_factor, ode_sym_factor]])
elif shape.order == 2:
    pq = -shape.factors[1] / 2 +
    sqrt(shape.factors[1]**2 / 4 +
    \hookrightarrow shape._factors[0])
    A = Matrix([
        [shape.factors[1] + pq, 0, 0 ],
        [1, -pq, 0 ],
        [0, shape_factor, ode_sym_factor]])
else:
    order = shape.order
    A = zeros(order + 1)
    A[order, order] = ode_sym_factor
    A[order, order - 1] = shape_factor
    for j in range(0, order):
        A[0, j] = shape.factors[order - j - 1]
    for i in range(1, order):
        A[i, i - 1] = 1
```

Line 2 computes the ode_shape_factor for the cur- 700 rent postsynaptic shape. In order to make the 701 calculation of the solution more efficient (i.e. us-702 ing fewer arithmetic operations on a computer), 703 compute_propagator_matrices() creates a lower trian-704 gular matrix for postsynaptic shapes of order 1 and 705 2 (lines 5-7 and 9-13, respectively) as explained 706 in Equation 14 and a generic matrix for all higher 707 orders according to Equation 13 (lines 15-22). The 708 variable pq in line 9 corresponds to Equation 15. 709

The propagator matrix for each postsynaptic shape can now be computed by taking the matrix exponential of the matrix A multiplied by the update step size h :.

```
propagator_matrices.append(exp(A * h))
```

The second function of the Propagator class, compute_propagation_step (), takes the list of propagator matrices and postsynaptic shapes and computes a calculation specification that can be executed to actually perform the system update. As this function merely runs a loop over all propagator matrices and generates the update instructions as a list of strings, the code is omitted here.

3.3 Finding an appropriate numerical solver

In case the differential equation describing the dynamics of a state variable was not found to be a linear constant coefficient ODE, the system must be evolved using a numerical stepping scheme as explained in Section 2. Instead of a full calculation specification, as produced for the analytical solution in Section 3.2, the numeric module of the toolbox just passes the specification of ODEs from the input and the shape objects created by the algorithm in Section 3.1 on to the stiffness tester, which is implemented in the stiffness module.

The stiffness tester uses the standard Python modules SymPy and NumPy for symbolic and numeric calculations. For evolving the ODEs during the test procedure, it currently uses PyGSL, a Python wrapper around the GNU Scientific Library (GSL; Gough, 2009). This library was chosen over more pythonic alternatives such as SciPy due to its more comprehensive selection of ODE solvers.

The stiffness tester executes the algorithm described in Section 2.2 and gives a recommendation as to whether the use of an explicit or an implicit evolution scheme is appropriate. The steps performed by the algorithm are shown in Figure 2. The choice of the factor 6 for comparing average step sizes of the explicit and the implicit schemes is motivated in Section 3.3.1. For the evolution of the
system of ODEs, the equations receive representa-751 tive spike trains drawn from a Poisson distribution 752 with a rate of $\nu=0.1 \mathrm{~s}^{-1}$ and inter-spike intervals 753 distributed around $\frac{1}{\nu}$ (Connors and Gutnick, 1990). 754

3.3.1 Comparison of average step sizes
 755

When comparing average step sizes of the im- 756 plicit and explicit method applied to a certain set 757 of ODEs, we assume that the set of ODEs is stiff 758 when the average step size of the implicit method 759 is considerably larger than the average step size 760 of the explicit method, see Section 2.2, i.e. when 761 $s_{\text {implicit }}>\beta \cdot s_{\text {explicit }}$ for some β.

To determine an appropriate factor β, we devel- 763 oped a testing strategy using a well known example 764 of a set of stiff ODEs: with $a=-100$ and initial 765 values $y_{1}(0)=y_{2}(0)=1$,

$$
\begin{align*}
& \frac{d y_{1}}{d t}=a y_{1} \tag{20}\\
& \frac{d y_{2}}{d t}=-2 y_{2}+y_{1}
\end{align*}
$$

is a typical stiff ODE system (example taken from 767 Dahmen and Reusken, 2005). The solution $y_{1}(t)=768$ $e^{-100 t}$ decays very quickly, whereas the solution 769 $y_{2}(t)=-\frac{1}{98} e^{-100 t}+\frac{99}{98} e^{-2 t}$ decreases a lot more 770 slowly, which causes the stiffness of this system.
y_{1} is already reduced by four decimal places at 772 $t=0.1$ and y_{1} is practically negligible for even 773 larger t. Nevertheless, it plays a major role in the 774 calculation of y_{2} when using an explicit integration 775 method. Using a simple explicit Euler method and 776 a resolution h for the approximation \tilde{y}_{1} of y_{1}, we 777 have the following recursive specification:

$$
\tilde{y}_{1}(t+h)=\tilde{y}_{1}(t)-100 h \tilde{y}_{1}(t)=(1-100 h) \tilde{y}_{1}(t) .
$$

$$
\begin{aligned}
& \text { For } h=\frac{1}{200} \text { and } t=\frac{1}{10} \text { we get } \\
& \qquad \tilde{y}_{1}(1 / 10)=2^{-20}<10^{-6} .
\end{aligned}
$$

779

Figure 2. Activity diagram summarizing the steps taken to recommend an appropriate numerical stepping scheme. The input to the algorithm are the ODEs and their parameters. After evolving the system of ODEs in parallel with an implicit and an explicit solver, it compares the minimal step sizes ($m_{\text {scheme }}$) of each scheme with the machine precision (ε). Depending on the outcome of the comparison, it recommends an appropriate stepping scheme (explicit or implicit) or compares the average step sizes ($s_{\text {scheme }}$) of the tested schemes. In the case that both the step size of the explicit and implicit solver are close to ε, the algorithm does not give a recommendation, but terminates with a warning instead.

For computational efficiency, we would like to choose a larger step size for y_{2} since the solution decays a lot slower than y_{1}. If we therefore choose $h=\frac{1}{2}$ to integrate y_{2}, we get

$$
\tilde{y}_{1}(t+h)=-49 \tilde{y}_{1}(t)
$$

causing an explosive growth in the course of the calculations.

A stiff set of ODEs will always result in the average step size of an implicit method exceeding by far the average step size of a comparable explicit method. Hence the runtime of the implicit method should be less than the explicit method's runtime. However, runtime is not solely affected by the grade of stiffness, so the stiffness of a given set of ODEs is evaluated more accurately by comparing average step sizes.

To isolate stiffness from other factors, we chose 795 Equation 20 for its simplicity. This problem is 796 clearly stiff, as described above, and the grade of 797 stiffness relates directly to the size of the factor $a .798$ Therefore it can be used as a controlled stiff problem 799 where other effects coming from the complexity of 800 the system do not play a role.

We measure the runtimes of the implicit and the 802 explicit methods (using the corresponding GSL-803 solvers) for five runs over 20 milliseconds each, 804 whilst systematically varying the stiffness control-805 ling parameters a and the resolution h. The quotient 806 of the average implicit and explicit runtimes is 807 shown in Figure 3. 808

For each measurement series, we can determine 809 a^{*}, the value of a for which the runtimes of the 810 explicit and the implicit evolution scheme are the 811 same. We then calculate the ratio of the step sizes 812 employed by the implicit and explicit schemes at $a^{*}: 813$

Figure 3. Comparison of implicit and explicit methods for a stiff ODE. Ratio of runtimes for the implicit and explicit method as a function of the factor a in Equation 20, for varying resolutions h and a desired accuracy of 10^{-3}. Curves averaged over 5 runs of 20 ms each. The red bar indicates when the explicit and implicit methods require the same amount of time to evolve the ODE system. Where a curve is below the red bar, the implicit method is faster than the corresponding explicit method.
$814 r^{*}=\frac{s_{\text {implicit }}\left(a^{*}\right)}{s_{\text {explicit }}\left(a^{*}\right)}$. Because in this problem the run815 time, stiffness and step size are solely influenced by 816 the factor a, we can consider r to be the borderline

827 3.4 Example

The use of the toolbox as a Python module is explained in detail in the readme.md file of the git repository at http://github.com/nest/ ode-toolbox. Here, we demonstrate the use of the analysis toolbox by executing the script file ode_analyzer.py in a stand-alone fashion for generating a solver specification for a conductance-based
integrate-and-fire neuron with alpha-shaped postsy- 835 naptic conductances. The script expects the name 836 of a JSON file as its only command line argument: 837

```
python ode_analyzer.py iaf_cond_alpha.json
```

The file iaf_cond_alpha.json is shown in Listing 1.838 It contains the specification of one differential equa- 839 tion for the membrane potential $\mathrm{v}_{\mathrm{f}} \mathrm{m}$ in the odes 840 section in lines 3-7. This section is a list and can 841 potentially contain multiple ODEs. The shapes sec- 842 tion defines two postsynaptic shapes, one of which 843 is specified as a function of time (g _in, lines $10-14$), 844 the other as an ODE with initial conditions (g_ex, 845 lines 15-20). The parameters and their default val- 846 ues are given in the parameters dictionary in lines 847 22-33. This dictionary maps default values to pa-848 rameter names and has to contain an entry for each 849 free variable occurring in the equations given in the 850 odes or shapes sections.

Depending on the complexity of the ODEs and 852 postsynaptic shapes contained in the input, the anal- 853 ysis may take some time. During its execution, 854 the analysis tool prints diagnostic messages about 855 the current processing steps. If all steps succeed, 856 it writes the result again to a JSON file, which 857 can be read by the next tool in the model gen- 858 eration pipeline to create the a complete model 859 implementation.

860
For the input shown in Listing 1, the analysis 861 toolbox produces the following output:

862

```
"solver": "numeric-explicit"
"shape_ode_definitions": [
        "-1/tau_syn_in**2 * g_in + -2/tau_syn_in *
    \hookrightarrow g_in__d",
    "-1/tau_syn_ex**2 * g_ex + -2/tau_syn_ex *
    \hookrightarrowg_ex__d"
],
"shape_state_variables": [
        "g_in__d",
        "g_in",
        "g_ex__d",
        "g_ex"
    ],
"shape_initial_values": [
    "0",
    "e/tau_syn_in",
    "0",
    "e/tau_syn_ex"
```

```
{
    "odes": [
        {
            "symbol": "V_m",
            "definition": "(-(g_L*(V_m-E_L))-(g_ex*(V_m-E_ex))-(g_in*(V_m-E_in))+I_stim+I_e)/C_m",
            "initial_values": ["E_L"]
        }
    ],
    "shapes": [
        {
            "type": "function",
            "symbol": "g_in",
            "definition": "(e/tau_syn_in)*t*exp((-1)/tau_syn_in*t)"
        },
        {
            "type": "ode",
            "symbol": "g_ex",
            "definition": "(-1)/(tau_syn_ex)**(2)*g_ex+(-2)/tau_syn_ex*g_ex'",
            "initial_values": ["0", "e/ tau_syn_ex"]
        }
    ],
    "parameters": {
        "V_th": -55.0,
        "g_L": 16.6667,
        "C_m": 250.0,
        "E_ex": 0,
        "E_in": -85.0,
        "E_I": -70.0,
        "tau_syn_ex": 0.2,
        "tau_syn_in": 2.0,
        "I_e": 0,
        "I_stim": 0
    }
}
```

Listing 1. Example JSON file as input to the analysis toolbox. The file contains three entries: odes describing the ODEs of the system, shapes containing the postsynaptic shapes used in the ODEs and parameters specifying the parameters and default values for the differential equations in the shapes and odes sections.

```
18 ],
```

19 \}

The meaning of the fields is explained in detail in the readme.md of the toolbox.

4 RESULTS

To evaluate the proposed framework for the semantic analysis of a system of ODEs and assessment of its stiffness we have chosen two approaches. One was to apply the stiffness tester to the neuron models currently implemented in the NEST Modeling Language (NESTML; Plotnikov et al., 2016), the other was to compare runtimes of explicit and implicit evolution schemes applied to two commonly used simplified versions of the Hodgkin-Huxley model.

The stiffness tester was integrated and success- 874 fully used in the tooling for NESTML, a domain 875 specific language for the definition of neuron mod- 876 els for the neuronal simulator NEST (Gewaltig and 877 Diesmann, 2007; Kunkel et al., 2017). NESTML is 878 built using MontiCore (e.g. Krahn, 2010; Grönniger 879 et al., 2008). MontiCore is a language work-880 bench (Erdweg et al., 2013) that enables an agile 881 and incremental implementation of lightweight 882 DSLs including the symbol table functionality (Mir 883 Seyed Nazari, 2017), code generation facilities (e.g. 884 Schindler, 2012; Rumpe, 2017) and support for edi-885 tors in Eclipse IDE (e.g. Völkel, 2011; Krahn et al., 886 2007). NEST's focus is on the simulation of the 887 dynamics of large networks of spiking neurons (e.g. 888 Potjans and Diesmann, 2012; van Albada et al., 889 2015; Kunkel et al., 2010). Neuron models in NEST 890
are usually rather simple point neurons or models with a few electrical compartments instead of rich compartmental neurons built from morphologically detailed reconstructions. The simulator is capable of running on a large range of computer architectures ranging from laptops over standard workstations to the largest supercomputers available today (Kunkel et al., 2014).

Within NESTML, the analysis toolbox developed in Sections 2 and 3 is used for the numerical analysis of neuron models defined as systems of ODEs and provides either the implementation of an efficient and accurate analytical integration scheme or recommends a good numerical solver. Therefore it allows the simulation of a large variety of biological neuron models in NEST.

As a simple yet meaningful validation of the stability checks introduced in Section 2.2, we applied the stiffness tester to all neuron models currently implemented in NESTML (see https: //github. com/ nest/nestml/tree/master/models). The result of this evaluation is that with default parametrization, the systems of ODEs of all neuron models are non-stiff and can thus be safely integrated using an explicit numerical integration scheme without any detrimental effects on efficiency and accuracy. This is a reassuring finding, as it indicates that previous studies using these neuron models are unlikely to contain distorted results due to numeric instabilities in the integration, for a counter-example see Pauli et al. (2018).

However, when the default parametrization is slightly altered, the stiffness test finds that some systems of ODEs are now evaluated as being stiff, which suggests that the choice of an implicit evolution scheme would be more advisable than the default choice. Figure 4 summarizes these observations for a selection of six commonly used neuron models and shows how a systematic change of one parameter in these models results in an evaluation as stiff or non-stiff.

As a second test, we apply the stiffness tester to the Fitzhugh-Nagumo and Morris-Lecar models (FitzHugh, 1961; Nagumo et al., 1962; Morris and

Figure 4. Results of the stiffness test for six neuron models from NEST. Red bars indicate the default value of the selected parameter in NEST, blue indicates the value range in which the system of ODEs evaluates as non-stiff, green indicates the range in which it evaluates as stiff. aeif_cond_alpha is a conductance-based adaptive exponential integrate-and-fire model with alphashaped postsynaptic conductances, hh_psc_alpha a Hodgkin-Huxley type model with alpha-shaped postsynaptic currents, iaf_cond_alpha a conductancebased integrate-and-fire neuron with alpha-shaped postsynaptic conductances, iaf_cond_alpha_mc a conductance-based integrate-and-fire neuron with alpha-shaped postsynaptic conductances and multiple compartments, iaf_psc_alpha a current-based integrate-and-fire neuron with alpha-shaped postsynaptic currents and izhikevich the model dynamics proposed by Izhikevich (2003). The test was applied to the ODE systems for varying values of the parameter tau_syn of the first five models and for the parameter a of the last model.

Lecar, 1981), non-linear oscillators that include the 935 generation of an action potential as part of the dy-936 namics, rather than applying an artificial threshold 937 as many point neuron models do. To assess the com-938 parative performance of the two approaches, we 939 vary both the stiffness controlling parameter of the 940 model equations and the resolution h, as a param- 941 eter of the stiffness tester (stiffness.py; see 942 Section 3). For small values of h, the explicit ap- 943 proach is expected to exhibit a better performance, 944 as it is relatively easy to find the solution, and the 945 explicit approach is computationally less expensive. 946 As h increases, it becomes harder to determine the 947

Figure 5. Application of the stiffness tester to the Fitzhugh-Nagumo model. Ratio of runtimes for the implicit and explicit method as a function of the factor τ in Equation 21, for varying resolution h and a desired accuracy of 10^{-5}. Curves averaged over 5 runs of 20 ms each. Red bar as in Figure 3.

Figure 6. Application of the stiffness tester to the Morris-Lecar model. Ratio of runtimes for the implicit and explicit method as a function of the factor ε in Equation 22, for varying resolution h and a desired accuracy of 10^{-5}. Curves averaged over 5 runs of 20 ms each. Red bar as in Figure 3.
correct solution, so that the more expensive, but more reliable, implicit method becomes advantageous. Alternatively, a systematic variation of the desired accuracy would yield the same insight (data not shown).

Figure 5 demonstrates a comparison of the im-953 plicit and explicit methods applied to the FitzHugh-954 Nagumo model. The model comprises two vari-955 ables, one for the membrane potential V and a 956 recovery variable W. The dynamics are given by: 957

$$
\begin{align*}
V^{\prime} & =V-\frac{1}{3} V^{3}-W+0.25 \\
W^{\prime} & =\tau(V+0.7-0.8 W) \tag{21}
\end{align*}
$$

The figure shows the quotient of the time that 958 the corresponding GSL-solvers for the explicit and 959 implicit methods spent on integrating the ODE sys-960 tem for 20 milliseconds with a desired accuracy of 961 10^{-5}. For all resolutions shown in Figure 5, the 962 explicit scheme is faster, and is also the approach 963 recommended by our toolbox. As the resolution be- 964 comes coarser (increased values of h), the curves 965 shift down towards the point at which the implicit 966 method would be faster. For $h>0.185$, our toolbox 967 recommends an implicit approach, and indeed in 968 such cases the explicit scheme, as implemented by 969 the GSL, exits with an error. This is due to the vari-970 able V becoming so large in one of the internal steps 971 that it can no longer be represented by a double. 972 For a higher required accuracy of 10^{-10}, all curves 973 shift to below the red line (data not shown), and 974 the toolbox recommends an implicit solver for all 975 tested resolutions.

We apply the same approach to the Morris-Lecar 977 model (Morris and Lecar, 1981):

$$
\begin{align*}
V^{\prime}= & I+2 W(-0.7-V)+0.5(-0.5-V) \\
& +1.1 m(V)(1-V) \\
W^{\prime}= & \alpha \lambda(V)(w(V)-W) \tag{22}\\
m(V)= & \frac{1}{2}\left(1+\tanh \left(\frac{V+0.01}{0.15}\right)\right) \\
w(V)= & \frac{1}{2}\left(1+\tanh \left(\frac{V+0.12}{0.3}\right)\right) \\
\lambda(V)= & \cosh \left(\frac{V-0.22}{2 \cdot 0.3}\right),
\end{align*}
$$

where I represents injected current. Figure 6 shows that for a resolution of $h=0.2$, the explicit solver is faster, but for larger values of h the implicit solver becomes more efficient. Accordingly, our toolbox recommends explicit for the former and implicit for the latter. Note also that the explicit solver exits with an overflow error for $h=1.5$ with values of α above 1.4. Again, the toolbox catches this risk of numerical instability and recommends the implicit scheme.

These results show that the toolbox can correctly assess where it is safe and efficient to use an explicit scheme, and where an implicit scheme would be appropriate, either for reasons of speed or for numerical stability.

5 RELATED WORK

In this section we compare our proposed framework for choosing evolution schemes for systems of ODEs in neural models with the corresponding approaches implemented in the simulators Brian (Goodman and Brette, 2009; Stimberg et al., 2014) and NEURON (Hines and Carnevale, 2000; Carnevale and Hines, 2006). These two simulators were chosen as they are in wide-spread use in the community. We will further consider the application of software for symbolic computation (for
exact mathematical calculations) or scientific com $\ddagger 004$ puting (for numerical calculations) to our setting in1 005 language modelling for neural simulators. 1006

5.1 Brian

Similar to our framework, the implementation1008 of the Brian simulator also makes a distinctiont 009 between systems of ODEs that can be solved anf 010 alytically and systems that can only be solved1011 efficiently in a numeric manner. In addition tot 012 simple integrate-and-fire neurons, Brian also sup 4013 ports multi-compartmental neurons and neurons 014 described by stochastic ODEs. As these types off015 models cannot be currently analyzed by our ODE1016 analysis toolbox, we will not take them into account1017 here. Instead we focus on single-compartmental de 4018 terministic neuron models as we can only draw a1019 meaningful comparison for this group of neuron 020 models.

1021

In Brian, neuron dynamics can be described by1022 a system consisting of ODEs and time-dependent1 023 functions. They are either classified as linear, mean 1024 ing they can be solved analytically, or as non-linear 1025 meaning they cannot be solved analytically and1026 must be solved numerically using the forward Eu千 027 ler method (if not stated otherwise by the author1028 of the model). In theory, linear constant coefficient1 029 ODEs can be solved analytically by Brian. However 030 if the dynamics of a neuron are described using a1031 non-constant function of time rather than an ODE1032 defining this function they are always solved nu4 033 merically. This could be improved by using our1034 proposed framework, which allows an analyticall 035 solver to be generated even for a system consist千 036 ing of time-dependent functions that satisfy a linear1037 homogeneous ODE and feed into a linear constant1038 coefficient ODE. Our framework thus allows an1039 analytical evolution for a larger class of neuron1040 dynamics. In particular, our framework seems tot 041 be more robust with respect to the use of severall 042 different postsynaptic shapes, as they are treatedt 043 seperately in contrast to Brian's approach, where1 044 the system is analyzed by SymPy as a whole. 1045

All systems of ODEs in Brian that are not evolved by an analytical evolution scheme are by default evolved using the simple Euler method. To circumvent this, it is possible to choose a numerical evolution scheme from a list of other methods. This approach works well for users who are aware of the numerical consequences of their choice of solver but can be problematic for scientists who lack the ability to weigh up the advantages and disadvantages of different numerical evolution schemes for their particular system of ODEs. Moreover, as demonstrated in Figure 3, the choice of an appropriate evolution scheme might depend on the exact parameters for the ODEs and thus not be obvious even for an advanced user.

5.2 NMODL

NMODL is the model specification language of the NEURON simulator. NEURON was created for describing large multi-compartmental neuron models and thus also supports a wider range of models than our proposed framework currently does. We will again only contrast those types of models for which a comparison is meaningful.

For linear systems of ODEs, NMODL chooses an evolution method that propagates the system by evolving each variable under the assumption that all other variables are constant during one time step. In many cases this approach approximates the true solution well, but it is still less accurate than an actual analytical solution. For all other systems of ODEs, i.e. all non-linear ODEs, an implicit method is chosen, regardless of the exact properties of the equations to guarantee an evolution of stiff ODEs without causing numeric instabilities. This is a robust solution but may lead to excessively large simulation run times in cases where the choice of an explicit evolution scheme for non-stiff ODE systems would be sufficient.

5.3 Software for symbolic computation and scientific computing

There are a number of high quality and widely used applications available for symbolic computation, most notably Wolfram Mathematica (Benker,
2016), Modelica (Tiller, 2001) and Maple (West 4089 ermann, 2010). All three provide frameworks for1090 solving ordinary differential equations both sym 7091 bolically and numerically. Here, we will briefly1092 describe their capabilities and limitations for both1 093 symbolic and numeric integration of systems off094 ODEs.

1095

5.3.1 Symbolic integrators

1096
At first appearance the integration schemes pro 7097 vided by the programming languages (or in the casel 098 of Modelica, modelling language) seem appropriate1 099 for the task addressed in our study. As discussed in1 100 Section 1, the ordinary differential equations used 101 to define neuron models and to describe their dy 4102 namical behaviour are typically linear (though notl 103 homogeneous and not linear with a constant coeffil 104 cient) and can in several cases be solved analytically1 105 by any of the programs above. However, for the1 106 specific requirements related to neural simulations, 107 there are several reasons why they are not entirelyl 108 well suited. 1109

Firstly, neurons receive input that generally1110 changes in every integration step due to the arrivall111 of incoming spikes, thus changing the differentiall 112 equations to be solved. Although each of these diff 113 ferential equations can be integrated easily using 1114 e.g. Wolfram Mathematica, none of these frame 1115 works provide a general, exact solution for each1 116 integration step, that takes a run-time generated 117 varying input into account. The next two points118 are related to the size of neural systems commonly1 119 investigated. Spiking neuronal network models of 120 ten contain of the order of $10^{3}-10^{5}$ neurons, andl 121 sometimes substantially more (Kunkel et al., 2014)1122 Calling external software for symbolic computał 123 tion of ordinary differential equations during runl 124 time for each neuron is therefore often too costly1 125 Moreover, for large models, the simulation softt 126 ware is likely to be deployed on a large cluster or1 127 supercomputer. The aforementioned applications1 128 are typically not installed on such architectures, 129 whereas Python is a standard installation, providing1 130 the package SymPy, which is sufficient for symbolic1 131 computation in this context.

1132

5.3.2 Numerical integrators

There are a number of approaches to automatically select numeric integrators depending on whether the problem is stiff or non-stiff (Shampine, 1983, 1991; Petzold, 1983). These approaches are typically designed to switch integration schemes during runtime when the problem changes its properties. All of them rely in one way or another on the behaviour of the Jacobian matrix evaluated at the point of integration. Typically, the methods try to approximate the dominant eigenvalue of the Jacobian with a low cost compared to that of the stepping algorithm. However, for a spiking neural network simulation, the determination of the stiffness of the system, and thus the solver, should occur before the simulation starts, as to minimize runtime costs.

Thus the question remains whether it would be possible to carry out these kind of tests during generation of the neuron model. Applying the test to a large number of randomly selected values of the state variables, or carrying out a number of test runs using representative spike trains would allow to work around the fact that the solution up to a given point is not yet known. However, as these tests rely on determining the stiffness through the properties of the Jacobian, they would still not be completely precise. As we have the advantage of effectively no computational constraints during generation of the neuron model, there is thus no advantage by using such a low-cost strategy. In our approach we compute the solution using both explicit and implicit schemes and compare their behavior a posteriori, thus obtaining an accurate assessment of the appropriate solver for a given set of parameters.

In addition, as for symbolic integration, the packages that provide such stiffness testing capability for numeric integration do not provide a framework for handling a run-time determined variable input due to incoming spikes. Thus we conclude that the specific problem addressed by our toolbox lies outside the scope of general purpose symbolic and numeric integration packages.

6 DISCUSSION

We have presented a novel simulator-independentl 175 framework for the analysis of systems of ODEs1 176 in the context of neuronal modeling and providedt 177 a reference implementation for the selection and 178 generation of appropriate integration schemes ast 179 open source software.

In this section we will summarize the restrica181 tions of our framework, discuss alternative ideas 182 for the implementation and describe possible futuret 183 additions.

1184
The framework we propose is currently limited tol 185 the analysis of equations for non-stochastic single 186 compartmental integrate-and-fire neuron models1 187 The reason for this is that the analysis toolbox wast 188 developed in the context of the NESTML project 189 in which we put our main focus on the class off 190 neurons presently available in the NEST simulator1 191 The extension of the framework to other classes off 192 neurons is one of our current research objectives. In1 193 particular, this work includes support for systems off 194 stochastic ODEs. The symbolic analysis of neuroni 195 ODEs enables generation of the sophisticated C+\#196 neuron implementation that switches between imf 197 plicit and explicit solvers at run-time of the neuronst 198 depending on the runtime performance of the part 199 ticular solver. This functionality will be integrated 200 in upcoming releases of NESTML.

Another restriction of the framework is that it cant 202 only analyze systems of ODEs with postsynaptict1203 shapes that obey a linear homogeneous ODE. Thist 204 is due to the fact that evolving a system including1205 postsynaptic shapes as functions of time rather thant 206 functions defined as ODEs would result in a veryl 207 long sum of multiple linear combinations of shiftst 208 of this function for each incoming spike. Evaluating 209 such a sum would make the evolution of the system 210 containing it computationally very costly. Finding at 211 more efficient solution for this problem is of high1212 priority in our current work.

As noted in Section 2, the calculation of $e^{A h}$ mayl214 become difficult to compute analytically rather thani 215 numerically if the matrix A becomes very large. In 216
this case, i.e. when $e^{A h}$ is computed as a numerical approximation, the integration scheme is, strictly speaking, not analytical. Here it might be sensible to look into other numerical methods, e.g integrating the system of ODEs using a quadrature formula of order 5 and thereby obtaining an accuracy of 10^{-8} despite the use of a numerical scheme.

When comparing implicit and explicit integration schemes, we compare the average step size and the minimal step size of the respective schemes. An alternative possibility would be to use fixed step sizes instead and compare the results of the explicit and implicit schemes using the results of the implicit scheme as a reference. This could be implemented alongside our current stiffness tester to provide a higher degree of certainty.

As pointed out in Section 4, the stiffness of a system of ODEs depends greatly on its parametrization. Therefore it might be a useful extension to run the stiffness test not only during the generation of the model code, but also when instantiating the model in a simulator, and when model parameters are changed. This would, however, require a call to the analysis toolbox at run time, which might not be easily possible on all machines a particular simulator may run on. For example, in a supercomputer environment, job allocations are usually fixed, and not all libraries required by the toolbox may be available. An alternative solution to the problem could be to run the stiffness test for varying parameters during the generation phase of the model. This way the analysis toolbox could create a lookup table, mapping parameter values to the most appropriate integration scheme.

Another possible extension of the current framework could be to implement implicit and explicit integration schemes for evolving the systems of ODEs during the stiffness analysis, and thereby gain independence of PyGSL, which can be challenging to install. These custom implementations could be tailored to our specific requirements and give us more control over the integration scheme and the exact methodology for adaptive step size control.

The current implementation of the framework1261 only supports fixed thresholds for the detection 262 of spikes and evaluates the spiking criterion on a1263 fixed temporal grid. A part of our current work is to1 264 evaluate more realistic scenarios, such as adaptivet 265 thresholds or precise detection of spike times in be 7266 tween the grid points. For a general discussion onl 267 the topic, see Hanuschkin et al. (2010).

1268
Our presented framework is re-usable indepen 7269 dently of NESTML and NEST. The source code ist 270 available under the terms of the GNU General Pub7 271 lic License version 2 or later on GitHub at https 1272 //github.com/nest/ode-toolbox/ and wet273 hope that the code can serve both as a useful1274 tool for neuroscientists today, and as a basis for a1275 future community effort in developing a simulatorf 276 independent system for the analysis of neuronal1277 model equations.

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted1279 in the absence of any commercial or financial re 7280 lationships that could be construed as a potential1281 conflict of interest.

1282

AUTHOR CONTRIBUTIONS

IB developed the mathematical derivations of the 283 solver selection system and devised the algorithms1284 The reference implementation was conceived andl 285 created by IB and DP. DP integrated the framework 286 into the NESTML system. JME and AM supervised 287 and guided the work. The article was written jointly1 288 by all authors.

1289

FUNDING

This work was supported by the JARA-HPC Seedt 290 Fund NESTML - A modeling language for spikł 291 ing neuron and synapse models for NEST and the 292 Initiative and Networking Fund of the Helmholtzi293 Association and the Hemholtz Portfolio Theme Sim 4294 ulation and Modeling for the Human Brain. Thel 295 current work on NESTML is partly funded by the1296
720270.

ACKNOWLEDGMENTS

REFERENCES

 in the NESTML project. (Springer) 2005 University Press) Biophysical J.European Union's Horizon 2020 research and innovation programme under grant agreement No.

We gratefully acknowledge the fruitful discussions with the users of NESTML, who provided use cases and guided the work through their critical questions and thoughts. We would especially like to thank Arnold Reusken, Markus Diesmann, Hans Ekkehard Plesser, Guido Trensch, Bernhard Rumpe and Tanguy Fardet for their ongoing support and interest

Benker, H. (2016). MATHEMATICA kompakt: Mathematische Problemlösungen für Ingenieure, Mathematiker und Naturwissenschaftler

Brette, R. and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiol 94, 3637-3642. doi:10.1152/jn. 00686.

Carnevale, N. T. and Hines, M. L. (2006). The NEURON Book (New York, NY, USA: Cambridge

Connors, B. W. and Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in neurosciences 13, 99-104
Dahmen, W. and Reusken, A. (2005). Numerik für Naturwissenschaftler (Springer)
Erdweg, S., van der Storm, T., Völter, M., Boersma, M., Bosman, R., Cook, W. R., et al. (2013). The state of the art in language workbenches. In Software Language Engineering, eds. M. Erwig, R. F. Paige, and E. Van Wyk (Cham: Springer International Publishing), 197-217
FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane.

Gewaltig, M.-O. and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia

Goodman, D. and Brette, R. (2009). The Brian1336 simulator. Frontiers in Neuroscience 1337
Gough, B. (2009). GNU scientific library referencel 338 manual (Network Theory Ltd.) 1339
Grönniger, H., Krahn, H., Rumpe, B., Schindler 340 M., and Völkel, S. (2008). Monticore: a frame 341 work for the development of textual domain1 342 specific languages. In Companion of the 30th in 1343 ternational conference on Software engineering1344 (ACM), 925-926

1345
Hanuschkin, A., Kunkel, S., Helias, M., Morri4346 son, A., and Diesmann, M. (2010). A generall347 and efficient method for incorporating precisel 348 spike times in globally time-driven simulations1349 In Frontiers in Neuroinform. doi:10.3389/fninf1350 2010.00113

Hines, M. and Carnevale, N. (2000). Expand 4352 ing NEURON's repertoire of mechanisms with1 353 NMODL. Neural Computation 1354
Izhikevich, E. M. (2003). Simple model of spiking1355 neurons. IEEE Transactions on neural networks 356 14, 1569-1572

1357
Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelf 358 baum, S. A., and Hudspeth, A. (2013). Principlest 359 of Neural Science. Principles of Neural Science1360 (McGraw-Hill Education), fifth edn.

1361
Krahn, H. (2010). MontiCore: Agile Entwicklung1362 von domänenspezifischen Sprachen im Software 1363 Engineering. No. 1 in Aachener Informatik 1364 Berichte, Software Engineering (Shaker Verlag) 1365
Krahn, H., Rumpe, B., and Völkel, S. (2007)1366 Efficient Editor Generation for Compositionall367 DSLs in Eclipse. In Domain-Specific Model4368 ing Workshop (DSM'07) (Jyväskylä University, 369 Finland)

1370
Kunkel, S., Diesmann, M., and Morrison, A. (2010)1371 Limits to the development of feed-forward struc 4372 tures in large recurrent neuronal networks. Fron 3373 tiers in Computational Neuroscience 4, 1-151374 doi:10.3389/fncom.2010.00160

1375
Kunkel, S., Morrison, A., Weidel, P., Eppler, J. M. 1376 Sinha, A., Schenck, W., et al. (2017). NEST1377 2.12.0

1378
Kunkel, S., Schmidt, M., Eppler, J. M., Plesser 379 H. E., Masumoto, G., Igarashi, J., et al. (2014)1380

Spiking network simulation code for petascale computers. Frontiers in Neuroinformatics 8
Lambert, J. D. (1992). Numerical Methods for Ordinary Differential Systems (Wiley)
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., et al. (2017). SymPy: symbolic computing in Python. PeerJ Computer Science 3, e103. doi:10.7717/peerj-cs. 103
Mir Seyed Nazari, P. (2017). MontiCore: Efficient Development of Composed Modeling Language Essentials. Aachener Informatik-Berichte, Software Engineering, Band 29 (Shaker Verlag)
Morris, C. and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophys. J.
Morrison, A., Straube, S., Plesser, H. P., and Diesmann, M. (2007). Exact Subthreshold Integration with Continuous Spike Times in Discrete-Time Neural Network Simulations. Neural Computation
Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE.
Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing polychronization: a guide to maximizing the reproducibility of spiking network models. Frontiers in Neuroinformatics (in press)
Petzold, L. (1983). Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing 4, 136-148. doi:10. 1137/0904010
Plotnikov, D., Blundell, I., Ippen, T., Eppler, J. M., Morrison, A., and Rumpe, B. (2016). NESTML: a modeling language for spiking neurons. In Modellierung 2016 Conference (Bonner Köllen Verlag), vol. 254 of LNI, 93-108
Potjans, T. and Diesmann, M. (2012). The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral Cortex 24
Rotter, S. and Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems
with applications to neuronal modeling. Biof426 logical Cybernetics 81, 381-402. doi:10.10074427 s004220050570

1428
Rumpe, B. (2017). Agile Modeling with UML. 1429 Code Generation, Testing, Refactoring (Springer1430 International)

1431
Schindler, M. (2012). Eine Werkzeuginfrastrukturl 432 zur agilen Entwicklung mit der UML/P. Aach 7433 ener Informatik-Berichte, Software Engineering1,434 Band 11 (Shaker Verlag)

1435
Shampine, L. (1983). Type-insensitive ode codest 436 based on extrapolation methods. SIAM Journah 437 on Scientific and Statistical Computing 4, 6354438 644. doi:10.1137/0904044

1439
Shampine, L. (1991). Diagnosing stiffness forl 440 Runge-Kutta methods. SIAM Journal on Scił441 entific and Statistical Computing 12, 260-2721442 doi:10.1137/0912015

1443
Stimberg, M., Goodman, Benichoux, V., and Brette, 444 R. (2014). Equation-oriented specification ofl 445 neural models for simulations. Frontiers in1446 Neuroinformatics

1447
Strehmel, K. and Weiner, R. (1995). Nuł448 merik gewöhnlicher Differentialgleichungen1449 (B.G. Teubner)

1450
Tiller, M. (2001). Introduction to physical modeling1451 with Modelica (Kluwer Academic Publishers) 1452 van Albada, S. J., Helias, M., and Diesmann, M1453 (2015). Scalability of asynchronous networks is1454 limited by one-to-one mapping between effectivet 455 connectivity and correlations. PLOS Computaf456 tional Biology 11, 1-37. doi:10.1371/journal1457 pcbi. 1004490

1458
Völkel, S. (2011). Kompositionale Entwick 1459 lung domänenspezifischer Sprachen. Aach4460 ener Informatik-Berichte, Software Engineering,1461 Band 9 (Shaker Verlag)

1462
Walter, W. (2000). Gewöhnliche Differentialgle 4463 ichungen (Springer)

1464
Westermann, T. (2010). Mathematische Problemel 465 lösen mit Maple (Springer)

1466

