
Automatically selecting a suitable integration
scheme for systems of differential equations
in neuron models.
Inga Blundell 1,∗, Dimitri Plotnikov 2,3, Jochen Martin Eppler 2 and Abigail
Morrison 1,2,4

1Institute of Neuroscience and Medicine (INM-6), Institute for Advanced
Simulation (IAS-6), JARA BRAIN Institute I, Forschungszentrum Jülich, Jülich,
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ABSTRACT1

On the level of the spiking activity, the2
integrate-and-fire neuron is one of the most3
commonly used descriptions of neural activ-4
ity. A multitude of variants has been proposed5
to cope with the huge diversity of behaviors6
observed in biological nerve cells. The main7
appeal of this class of model is that it can be8
defined in terms of a hybrid model, where a9
set of mathematical equations describes the10
sub-threshold dynamics of the membrane po-11
tential and the generation of action potentials12
is often only added algorithmically without the13
shape of spikes being part of the equations. In14
contrast to more detailed biophysical models,15
this simple description of neuron models allows16
the routine simulation of large biological neu-17
ronal networks on standard hardware widely18
available in most laboratories these days.19

The time evolution of the relevant state vari-20
ables is usually defined by a small set of21
ordinary differential equations (ODEs). A small22

number of evolution schemes for the corre- 23
sponding systems of ODEs are commonly 24
used for many neuron models, and form the 25
basis of the neuron model implementations 26
built into commonly used simulators like Brian, 27
NEST and NEURON. 28

However, an often neglected problem is that 29
the implemented evolution schemes are only 30
rarely selected through a structured process 31
based on numerical criteria. This practice can- 32
not guarantee accurate and stable solutions for 33
the equations and the actual quality of the so- 34
lution depends largely on the parametrization 35
of the model. 36

In this article, we give an overview of typical 37
equations and state descriptions for the dynam- 38
ics of the relevant variables in integrate-and-fire 39
models. We then describe a formal mathemati- 40
cal process to automate the design or selection 41
of a suitable evolution scheme for this large 42
class of models. Finally, we present the refer- 43
ence implementation of our symbolic analysis 44
toolbox for ODEs that can guide modelers 45
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during the implementation of custom neuron46
models.47

Keywords: integrate-and-fire neuron, model dynamics, numer-48
ics, integration schemes, ODE, symbolic analysis49

1 INTRODUCTION

In common with all body cells, nerve cells (neurons)50
are delimited by a bi-lipid layer (the cell membrane)51
which is largely impermeable for ions and bigger52
molecules. Active ion pumps and passive channels53
embedded into the membrane allow the selective54
passage of certain ions. Through these transporter55
molecules, neurons maintain a gradient of different56
ion types across the membrane, which leads to the57
membrane potential (Kandel et al., 2013).58

In the absence of input, the membrane potential59
fluctuates around the resting potential EL (typically60
at around −70mV). Excitatory input depolarizes61
the membrane, driving the membrane potential62
closer to zero, while inhibitory input hyperpolarizes63
the neuron, driving the membrane potential away64
from zero. If the membrane potential crosses the65
spiking threshold θ (typically at around −55mV),66
the neuron fires an action potential (spike), which67
is transmitted to all downstream (postsynaptic) neu-68
rons, where it in turn elicits excursions of their69
membrane potentials.70

The basic integrate-and-fire model describes the71
dynamics of the membrane potential in the fol-72
lowing way: the time evolution of the membrane73
potential V is governed by a differential equation74
of the type75

d

dt
V (t) = R(V (t), ·) (1)

where R can be a function of other variables76
alongside V , whose time evolution is described by77
another ordinary differential equation which can78
again contain the membrane potential:79

d

dt
X =

d

dt


V

x1
...
xn

 (t) =


R0(X)
R1(X)

...
Rn(X)



Once the membrane potential reaches its thresh- 80
old θ, a spike is fired and the membrane potential is 81
set back to EL for a certain amount of time called 82
the refractory period. After this time the evolution 83
of Equation 1 starts again. An important simplifi- 84
cation in most models compared to biology is that 85
the exact course of the membrane potential during 86
the spike is either completely neglected or only con- 87
sidered partially. Threshold detection is typically 88
added algorithmically on top of the sub-threshold 89
dynamics. 90

The two most common variants of this type of 91
model are the current-based and the conductance- 92
based integrate-and-fire model. For the current- 93
based model we have the following general form of 94
the equation: 95

d

dt
V (t) =

1

τ
(EL − V (t))

+
1

C
I(t) + F (V (t)). (2)

Here C is the membrane capacitance, τ the mem- 96
brane time constant and I the input current to the 97
neuron. If we assume that spikes are constrained 98
to a fixed temporal grid, I(t) represents the sum of 99
the currents elicited by all incoming spikes at all 100
grid points for times smaller than t, plus a piece-101
wise constant function Iext that models additional 102
external input. F , in contrast to the first part of the 103
right-hand-side of Equation 2, is some non-linear 104
function of V that may also be zero. 105

For the conductance-based integrate-and-fire 106
model we have: 107
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d

dt
V (t) =

1

τ
(EL − V (t))

+
1

C
G(t)(V (t)− E) + F (V (t)). (3)

G has the same form as I but models a con-108
ductance rather than a current. E is the reversal109
potential at which there is no net flow of ions110
from one side of the membrane to the other (for111
details see Kandel et al., 2013). Equation 3 will usu-112
ally contain several summands 1

CGi(t)(V (t)− Ei)113
for differing Gi and corresponding Ei, e.g. for in-114
hibitory and excitatory synaptic conductance. For115
simplicity we assume only one summand. The116
differential equations for both the current- and117
conductance-based models are linear when F ≡ 0.118
For the current-based model this means that Equa-119
tion 2 is a linear constant coefficient differential120
equation.121

An example of a neuron model described by a122
system of differential equations, where F 6≡ 0 is123
the adaptive exponential integrate-and-fire model:124

d

dt
V (t) =

1

τ
(EL − V (t))

+
1

C
G(t)(V (t)− E)

+ g · δ · exp
(
V (t)− VT

δ

)
− w(t)

d

dt
w(t) =

c

τw
(V (t)− EL)

For the biophysical meaning of the variables VT,125
δ, g, c, τω and w see the original publication by126
Brette and Gerstner (2005).127

Current-based neuron models with F 6≡ 0 are un-128
usual because models from this category are chosen129
primarily for their simplicity, while conductance-130
based neuron models are believed to describe neu-131
ronal activity in the brain more accurately, albeit at132
the cost of more complex differential equations.133

It should be noted here that although some neuron 134
models are not explicitly referred to or described as 135
current-based or conductance-based models in the 136
literature their time evolution can still be expressed 137
by differential equations of the mathematical forms 138
shown in Equations 2 and 3. 139

The choice of an appropriate solver for a given 140
equation is a non-trivial task, as it requires deep 141
knowledge of ordinary differential equations and 142
numerics to assess the type of differential equation 143
and construct an appropriate numeric solver. This 144
choice depends not only on the form of the dif-145
ferential equation but also on the magnitude of the 146
occurring parameters. For example, Rotter and Dies-147
mann (1999) demonstrated that for neuron models 148
that can be expressed as time-invariant linear sys-149
tems, the analytical solution to the evolution of the 150
dynamics from one time step to the next can be 151
achieved by a matrix multiplication. If applicable, 152
this kind of solution is to be preferred, as it is both 153
exact and computationally efficient. 154

However, this approach leaves two key steps up 155
to the modeller: firstly, analyzing the dynamics to 156
discern what category of dynamical system it is; sec-157
ondly, having performed this analysis, to construct 158
the appropriate solver, e.g. the terms of the propa-159
gator matrix for such neurons that can be solved in 160
this way (Rotter and Diesmann, 1999) or the config-161
uration of an implicit or explicit numeric solver for 162
all other neuron models. As these steps can be quite 163
challenging to many modellers, it would be of great 164
use to have a framework capable of automatically 165
performing this analysis and solver construction. 166

In Section 2 we therefore first derive compact 167
canonical representations of the equations and their 168
parts that allow an efficient implementation on a 169
computer system, and then show that the distinc-170
tion between current- and conductance-based, linear 171
and non-linear, stiff and non-stiff systems of differ-172
ential equations is important for automatizing the 173
construction or selection of an optimal evolution 174
scheme. 175

Our reference implementation follows the mathe-176
matical observations and is described in Section 3.177
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Section 4 demonstrates our application of the frame-178
work to some commonly used models in computa-179
tional neuroscience and explains the integration of180
the framework into the NEST Modeling Language181
(NESTML; Plotnikov et al., 2016). We close with182
a presentation of related work in Section 5 and a183
discussion and outlook in Section 6, where we sum-184
marize possible extensions and further applications185
of our system.186

2 MATERIALS AND METHODS

As already pointed out in the previous section,187
systems of differential equations describing the188
dynamics in neuron models can be divided into189
current-based and conductance-based systems. Ad-190
ditional distinguishing properties are whether the191
systems are linear or non-linear, stiff or non-stiff.192
We will now describe how these properties influence193
the choice of an appropriate solver.194

For the current-based integrate-and-fire neuron195
with F ≡ 0, we have a first order constant coeffi-196
cient linear differential equation where I typically197
satisfies a homogeneous linear differential equation198
of some order n ∈ N. Any such ODE or system of199
ODEs can be solved analytically and efficiently as200
we will show in Section 2.1.201

When evolving systems of ODEs for conductance-202
based linear or non-linear ODEs, it is necessary203
to use a numeric integration scheme. Depending204
on the system at hand, it is advisable to choose205
either an implicit or an explicit stepping function206
(Section 2.2).207

2.1 Solving linear constant coefficient208
ODEs analytically209

For simplicity we will assume EL in Equation 2210
to be zero or to be included in one of the other211
terms of the right hand side. As shown by Rotter212
and Diesmann (1999), if V : R → R satisfies the213
first order constant coefficient linear differential214
equation215

d

dt
V (t) = −1

τ
V (t) +

1

C
I(t) (4)

with initial value V (0) = V0, for a function I : 216
R+ → R and constants C (the capacitance of the 217
membrane) and τ (the membrane time constant), 218
and if I satisfies 219

(
d

dt

)n
I =

n−1∑
i=0

ai

(
d

dt

)i
I (5)

for some n ∈ N and a sequence (ai)i∈N ⊂ R, an 220
analytical solver can be constructed in the form of 221
a propagator matrix. 222

Here, we show how to evaluate the dynamics to 223
discern whether V and I do indeed satisfy the condi-224
tions stated above, and how to derive the evolutions 225
scheme for V accordingly. First, we verify that 226
the first order differential equation, d

dtV = r(V ), 227
for a right hand side r : R × R+ → R, is in-228
deed linear with a constant coefficient, i.e. that 229(
d
dV

)2
r(V ) = 0 and

(
d
dV

)
r(V )(t) is constant. Sec-230

ond we methodically determine whether I satisfies 231
a linear differential equation of some order n, i.e.232
we check whether 233

d

dt
I = a0I (6)

for some a0 ∈ R by solving for a0. If no such a0 234
exists we check whether 235

(
d

dt

)2

I = a0I + a1
d

dt
I (7)

for some a0, a1 ∈ R using the following proce-236
dure: we assume that a0, a1 exist such that (7) is 237
satisfied. Then we have for some t1, t2 ∈ R (for 238
example t1 = 1, t2 = 2): 239

X(t1, t2) :=

(
I(t1)

d
dtI(t1)

I(t2)
d
dtI(t2)

)
,

X(t1, t2) ·
(
a0
a1

)
=

((
d
dt

)2
I(t1)(

d
dt

)2
I(t2)

)

If det(X(t1, t2)) 6= 0 we therefore know that 240
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(
a0
a1

)
= X−1(t1, t2) ·

((
d
dt

)2
I(t1)(

d
dt

)2
I(t2)

)
.

Under the assumption that (7) is satisfied and that241
det(X(t1, t2)) 6= 0 this gives us a0 and a1. If our242
second assumption is not satisfied we can easily243
chose t1 and t2 so that it is. We can now determine244
whether the first assumption is correct by inserting245
the calculated values for a0 and a1 and checking if246
the following equation is true:247

(
d

dt

)2

I − a0I − a1
d

dt
I = 0 (8)

Now, if such a0 and a1 exist, they are unique,248
as I and d

dtI are linearly independent, since there249
was no a0 ∈ R such that (6) was satisfied. If a0250
and a1 do not satisfy (8), we check methodically251
if constants (ai)i∈N ⊂ R exist, for which (5) is252
satisfied for n = 3, 4, . . . . Again we assume that253
a0, . . . , an ∈ R exist such that (5) is satisfied. Then254
we have for t = (t1, . . . , tn) ∈ Rn (for example255
t1 = 1, . . . , tn = n):256

X(t) :=

I(t1) · · ·
(
d
dt

)n−1
I(t1)

... . . . ...

I(tn) · · ·
(
d
dt

)n−1
I(tn)

 , (9)

X(t) ·

 a0
...

an−1

 =


(
d
dt

)n
I(t1)

...(
d
dt

)n
I(tn)

 . (10)

If det(X(t)) 6= 0 we get257

 a0
...

an−1

 = X−1(t) ·


(
d
dt

)n
I(t1)

...(
d
dt

)n
I(tn)

 . (11)

Again, if det(X(t)) = 0 we simply use another t, 258
for example t = (t1+1, . . . , tn+1). Then we obtain 259
the values of a0, . . . , an under the assumption that 260
(5) is satisfied for order n. We check whether the 261
assumption in (5) is true by symbolically evaluating 262
whether 263

(
d

dt

)n
I −

n−1∑
i=0

ai

(
d

dt

)i
I = 0.

If (5) is not satisfied we go on to check 264

(
d

dt

)n+1

I =
n∑
i=0

ai

(
d

dt

)i
I

for some a0, . . . , an+1, and so on. This way, for 265
every I that satisfies (5) for order n we can deter-266
mine the factors a0, . . . , an. Then we can rephrase 267
(4) as the homogeneous differential equation 268

d

dt
y(t) = Ay(t) (12)

with initial values y(0) = y0, y = 269

( d
n−1

dtn−1 I,
dn−2

dtn−2 I, . . . , I, V ) and 270

A =



an−1 an−2 · · · · · · a0 0
1 0 · · · 0 0 0

0
. . . . . . ...

...
...

... . . . . . . 0 0 0

0 0
. . . 1 0 0

0 0 · · · 0 1
C − 1

τ


(13)

Thus for n = 1 we have 271

A =

(
a0 0
1
C − 1

τ

)
and for n = 2 we have 272

A =

a1 a0 0
1 0 0

0 1
C − 1

τ
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As it can be both more convenient and computa-273
tionally more efficient when A is a lower triangular274
matrix we give an alternative choice of A and y,275
where A is a triangular matrix:276

A =

a1 + x 0 0
1 −x 0

0 1
C − 1

τ

 (14)

where277

x = −a1
2

+

√
a21
4

+ a0 (15)

and278

y =

(
d

dt
I + xI, I, V

)
. (16)

Then we can determine the solution y at t ∈ R+279
using the matrix exponential:280

y(t) = eAty0 (17)

We can rephrase this to obtain an incremental for-281
mulation which allows the evolution of the system282
by a single calculation of eAh for a fixed step size283
h ∈ R+:284

y(t+ h) = eA(t+h) · y0 = eAh · yt.

It is important to note here that the exact inte-285
gration of (2) depends on the exact calculation of286
eAh. Let I(t) be the sum of currents elicited by all287
incoming spikes at all grid points for times ti ≤ t,288

I(t) =
∑

i∈N,ti≤t

∑
k∈Sti

Ik(t),

where Ik(t) = ι̂kι(t − ti), for t ∈ R+. ι̂k289
is the synaptic weight of synapse k and ι satis-290
fies the differential equation (5) on R+ for some291
constants (ai)i∈N ⊂ R and some n ∈ N. Then292
I satisfies the differential equation (5) on R+ \293

{t1, . . . , tk}. Therefore we can consider I as the 294
solution of the differential equation (5) on the inter-295
vals (0, t1), (t1, t2), . . . with suitable initial values.296
For t ∈ (ti−1, ti) we can calculate 297

y(t) = eA(t−ti−1)yti−1
.

At time ti, for i ∈ N, the differential equation 298
(5) is not satisfied because ι does not satisfy the 299
equation at t = 0, but we get I(ti) by continuous 300
continuation to the boundary of the interval (t, ti).301
The derivatives of I contained in y must be up-302
dated by initial values of additional spikes at time 303
ti, meaning for P(h) = eAh 304

y(ti) = P(h)y(ti−1) + xti ,

where 305

xti = T



(
d
dt

)n
ι(0)

...
d
dtι(0)
0
0


∑

k∈Sti+h

ι̂k.

Here T ∈ Rn+1 × Rn+1 is such that 306

y = T


(
d
dt

)n−1
I

...
I
V


T is the identity matrix when y is chosen as the 307

vector of derivatives as in Equation 12 and Equa-308
tion 13 but it may well be non-trivial, e.g. when y 309
is chosen as in Equation 16. 310

Now we know an analytical and efficient way 311
to evolve any linear constant coefficient ODE con-312
taining the convolution of the solution of a linear 313
homogeneous ODE and a weighted spike train. 314

This is a provisional file, not the final typeset article 6



Blundell et al., 2017 Solver selection for neuron models

2.1.1 Adding a constant external input315
current316

A common requirement in neuroscientific mod-317
eling is to add a bias current to neurons. We will318
now show how to solve the differential equation319
when we have an additional constant external input320
current IE:321

d

dt
V (t) = −V (t)

τ
+

1

C
(I(t) + IE), V (0) = V0

As shown above, we can solve322

d

dt
V1 = −

V1(t)

τ
+
I(t)

C
, V1(0) = V10 . (18)

Consider the following differential equation,323

d

dt
V2 = −

V2(t)

τ
+
IE

C
, V2(0) = V20 , (19)

where τ, C and IE are constants. By variation of324
constants (Walter, 2000) we have a solution of (19):325

V2(t) =

(
IEτ

C
et/τ + V20

)
e−t/τ

=
IEτ

C
+ V20e

−t/τ ,

V2(t+ h) =
IEτ

C
+ V20e

−t/τe−h/τ

= V2(t)e
−h/τ +

IEτ

C
(1− e−h/τ ).

Now we know solutions V1 and V2 of (18) and326
(19). Therefore V := V1 + V2 solves327

d

dt
V =

d

dt
(V1 + V2) = −

V1(t) + V2(t)

τ

+
1

C
(I(t) + IE)

=
V (t)

τ
+

1

C
I(t) +

IE

C
.

and for P := P(h) = eAh the following holds 328

V (t+ h) = Pn+1,1y1(t) + · · ·

+ Pn+1,n+1V1(t) + V2(t)e
−h/τ

+
IE

C
(1− e−h/τ ).

As the last column a in A has only one entry 329

an+1 =
−1
τ and P = eAh =

∑∞
k=0

(Ah)k
k! , 330

Pn+1,n+1 =

( ∞∑
k=0

(Ah)k

k!

)
n+1,n+1

=
∞∑
k=0

(−hτ )k

k!
= e−h/τ .

We get: 331

V (t+ h) = Pn+1,1y1(t) + · · ·
+ Pn+1,nyn(t)

+ V (t)e−h/τ +
IEτ

C
(1− e−h/τ ).

This method is also applicable when we have 332
a piece-wise constant function ŷ0 instead of a 333
constant IE: 334

d

dt
V2 = −

V2(t)

τ
+
ŷ0
C
, V2(0) = V20 .
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where for all i ∈ N there is a ci ∈ R such that335
ŷ0(t) = ci for all t ∈ [ti, ti + h). We rephrase the336
problem as:337

d

dt
V2i = −

V2i(t)

τ
+
ci
C
, V2i(0) = V2i0

on t ∈ [ti, ti + h) for all i ∈ N and get338

V2(ti) =
ciτ

C
+ V2(ti−1)e

−h/τ

and339

V (ti) = V (ti−1)e
−h/τ +

ciτ

C
(1− e−h/τ ).

Now we have an exact description for how to340
handle the evolution of linear constant coefficient341
ODEs containing the convolution of the solution of342
a linear homogeneous ODE and a weighted spike343
train with an additional constant external input, that344
is still analytical and efficient.345

2.1.2 Handling sums346

The approximation of postsynaptic currents ob-347
served in real brain experiments is sometimes348
best modeled by different functions for different349
synapses. We can handle the case when I is the sum350
of functions I1, I2 which satisfy a homogeneous351
differential equation of arbitrary order m and n in352
the following way. As seen above if V1 is a solution353
of354

d

dt
V1(t) = −

V1(t)

τ
+

1

C
I1(t)

and V2 is a solution of355

d

dt
V2(t) = −

V2(t)

τ
+

1

C
I2(t)

then V = V1 + V2 is a solution of356

d

dt
V (t) = −V (t)

τ
+

1

C
(I1(t) + I2(t)).

If, furthermore, I1 satisfies (5) for n ∈ N 357

V1(t+ h) = P1
n+1,1y11(t) + · · ·

+ P1
n+1,ny1n(t) + V1(t)e

−h/τ .

where P1 is the corresponding propagator matrix 358
and I2 satisfies (5) for some m ∈ N 359

V2(t+ h) = P2
m+1,1y21(t) + · · ·

+ P2
m+1,my2m(t) + V2(t)e

−h/τ

where P2 is the corresponding propagator matrix, 360
then 361

V (t+ h) = P1
n+1,1y1(t) + · · ·

+ P1
n+1,ny1(t)

+ P2
m+1,1y21(t) + · · ·

+ P2
m+1,my2m(t) + V (t)e−h/τ .

Therefore we just need to compute two propagator 362
matrices to handle the sum. 363

2.2 Choice of a suitable numeric 364
integration scheme 365

Explicit methods for solving differential equations 366
are methods that only use already known values 367
of the function at earlier grid points to determine 368
the value at the next grid point. The efficiency 369
and accuracy of explicit methods is typically suffi-370
cient for systems of ODEs used to model neuronal 371
behavior. Popular examples of such methods are 372
the explicit 4th order classical Runge-Kutta or the 373
explicit embedded Runge-Kutta-Fehlberg method 374
(Dahmen and Reusken, 2005) for the approximative 375
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solution of ODEs. Most neuron model implemen-376
tations currently use explicit stepping algorithms377
and still achieve satisfactory results in terms of ac-378
curacy and simulation time (Morrison et al., 2007;379
Hanuschkin et al., 2010). However, some published380
models involve possibly stiff differential equations381
(e.g. Brette and Gerstner, 2005), which potentially382
require a different class of solvers.383

Lambert (1992) defines stiffness as follows:384

If a numerical method [. . .] applied to a system385
with any initial conditions, is forced to use in386
a certain interval of integration a steplength387
which is excessively small in relation to the388
smoothness of the exact solution in that inter-389
val, then the system is said to be stiff in that390
interval.391

A typical case of stiffness is for example, when392
different parts of the solution of a system of393
equations decays on different time scales.394

This usually comes from very different scales395
inherent to the ODE. These scales will reflect in396
the parameters of the equations, i.e. the range of397
constants occuring in the equations of the systems.398
Therefore the stiffness of a system always depends399
not only on the mathematical form of the equa-400
tions but heavily on the magnitude of the constants401
occuring in them.402

In principle it is possible to solve stiff equations403
with explicit methods, but this comes at the expense404
of a very small step size when using an adaptive405
step size algorithm and trying to achieve a certain406
accuracy. This in turn leads to high computational407
costs. For non-adaptive step size algorithms it leads408
to plain wrong results without the user knowing,409
since the algorithm still terminates, but with large410
error. Moreover, as the limited machine precision on411
a digital computer constitutes a lower bound for the412
step size, explicit methods usually become unstable413
when applied to stiff problems.414

Implicit methods, on the other hand, do not use415
previous values to calculate the solution at the416
next grid point, but only employ them implicitly417

in the form of the solution of a system of equa-418
tions. This makes implicit methods computationally 419
much more costly, but usually allows a larger step 420
size to be chosen, thus avoiding stability problems 421
(Strehmel and Weiner, 1995). 422

In order to detect whether an explicit or implicit 423
method is better suited for a given ODE we devise 424
the following testing strategy. 425

First, we choose representative spike trains (drawn 426
from a Poisson distribution) and compute approxi-427
mate solutions for the given system of ODEs using 428
an explicit and implicit method of the same order: 429

1. an explicit 4th order Runge-Kutta method 430

2. an implicit Bulirsch-Stoer method of Bader and 431
Deuflhard (Strehmel and Weiner, 1995) 432

both with adaptive step size. We can then compare 433
them with respect to the required average step size 434
and minimal step size. In cases where the implicit 435
method performs better than the explicit method, 436
we have reason to believe that the ODE is stiff and 437
that the use of an implicit method is advisable. 438

Although ODEs may be stiff only for very spe-439
cific initial conditions, usually stiffness should be 440
observable for a wide range of initial values, or 441
in this case for a number of incoming spike trains 442
(Strehmel and Weiner, 1995). By choosing many 443
spike trains, evaluating the required step sizes for 444
the implicit and explicit method for each of them, 445
and comparing that to the machine precision ε, it is 446
thus possible to detect whether the problem at hand 447
is stiff or not. We propose the following rules for 448
choosing an implicit algorithm: 449

• if the minimal step size of runs using the ex-450
plicit method is close to machine precision (i.e.451
less than 10 · ε) and this is not the case for the 452
minimal step size of runs using the implicit 453
method (i.e. greater than or equal to 10 · ε) this 454
is a hint that the system of ODEs is possibly 455
stiff. In this case an explicit stepping function 456
could become unstable or even abort, so we 457
suggest the use of an implicit algorithm. 458
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• if the minimal step size of runs using the ex-459
plicit method is reasonably large (i.e. greater460
than or equal to 10 · ε) we have to test two461
cases:462

• if the minimal step size of runs of the implicit463
method is very small (i.e. less than 10 · ε),464
we suggest using an explicit method.465

• if the minimal step size of runs of the implicit466
method is large (i.e. greater than or equal to467
10 · ε), we go on to check if the average step468
size of runs using the implicit algorithm is469
much larger than the average step size of470
runs using the explicit algorithm. If this is471
the case, this again indicates that the system472
of ODEs is stiff and therefore choosing an473
implicit evolution method is advisable.474

For a non-stiff system of ODEs, the computation475
time of an explicit algorithm should be lower, as it476
does not require the solution of a system of equa-477
tions (Dahmen and Reusken, 2005). Therefore the478
choice of an explicit evolution method is sensible479
in cases where none of the above conditions are480
met. The algorithm that follows from these rules is481
depicted in Figure 2.482

3 REFERENCE IMPLEMENTATION

In order to automate the process of finding the most483
appropriate solver for a given system of ODEs on484
a computer, we have designed and implemented485
an analysis toolbox in Python (http://github.486
com/nest/ode-toolbox). It builds on the for-487
mal mathematical foundations introduced in the488
previous sections and uses SymPy (Meurer et al.,489
2017) to carry out symbolic mathematical tests and490
transformations. To achieve a high degree of porta-491
bility and re-usability, the input to the algorithm is492
given either in the form of JSON files or Python493
dictionaries, which specify equations, parameters494
and additional properties (for an example, see Sec-495
tion 3.4). These two means of input allow an easy496
embedding of the toolkit into third-party tool chains497
and enable us to leverage the Python and SymPy498
parsers, which delegates all syntax checking and499

Figure 1. Activity diagram summarizing all
steps of the ODE analysis algorithm. Steps ex-
ecuted in the main script of the toolbox are shown
in green. The analysis of postsynaptic shapes (blue
box) is detailed in Section 3.1. Parts shown in red
represent the generation of an analytical solver,
which is described in Section 3.2. The selection
of a numerical stepper function is carried out by the
yellow actions and explained in Section 3.3.

exception handling to well established and tested 500
tools. 501

The algorithm expects three components in the 502
input: i) an ODE describing the time evolution of 503
a state variable (e.g. V ), ii) a list of postsynaptic 504
shapes (e.g. I) used within this ODE and specified 505
either as functions of time or as ODEs with initial 506
conditions and iii) a set of parameters with default 507
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values for the equations. Fundamentally, the anal-508
ysis algorithm checks the given system of ODEs509
for membership of the following two major cate-510
gories and generates or selects an appropriate solver511
accordingly:512

1. First order linear constant coefficient ODEs for513
the dynamics of a state variable (see Equation 4)514
whose inhomogeneous part is a postsynaptic515
shape (i.e. satisfies Equation 5) can be solved516
exactly using an analytical stepping scheme517
(Section 2.1).518

2. All other systems of ODEs have to be solved519
by a numerical solver. ODEs in this category520
are, for example, non-linear ODEs describing521
the time evolution of a state variables, or lin-522
ear ODEs with an inhomogeneous part which523
is not a postsynaptic shape, i.e. not satisfying524
Equation 5.525

The implementation of the analysis toolbox con-526
sists of different Python components which are527
introduced in the activity diagram in Figure 1. The528
main script orchestrates the execution of the analy-529
sis and uses the functions and classes of the different530
submodules:531

532
shapes.py contains classes and functions for analyz-533

ing and storing postsynaptic shapes either given534
as functions of time or ODEs with initial values535
(blue parts in Figure 1). The main algorithm in536
this module is explained in section Section 3.1.537

analytic.py provides the functionality to generate538
propagator matrices and compute a specifica-539
tion for the update step (red parts in Figure 1). A540
detailed description can be found in Section 3.2.541

numeric.py contains the code for creating a descrip-542
tion of the update step for further processing543
by the stiffness tester or a numerical stepper544
function (upper yellow box in Figure 1).545

stiffness.py implements the stiffness tester (lower546
yellow box in Figure 1). This module can ei-547
ther be used as a module within the analysis548
toolbox or a third-party tool, or run in a stand-549
alone fashion. It is explained in Section 3.3550

together with the preparatory steps carried out 551
in numeric.py. 552

The main script starts by reading and validating 553
the input from a JSON file or a Python dictionary.554
It expects the keys shapes, odes and parameters to be 555
present in the input. For each postsynaptic shape in 556
the shapes section, it runs the algorithm described 557
in Section 3.1, which checks if the given postsy-558
naptic shape obeys a linear homogeneous ODE and 559
transforms it into a canonical representation suitable 560
for further processing. If one of the postsynaptic 561
shapes fails the test for linearity and homogeneity, 562
the script terminates with an error ( 1© in Figure 1), 563
because this class of ODEs cannot be solved easily 564
with traditional methods as explained in Section 6. 565

After processing the postsynaptic shapes, the 566
script checks whether all equations in the odes sec-567
tion of the input are linear constant coefficient 568
ODEs: the ODE is linear if the right hand side of 569
the ODE differentiated twice by its symbol is zero, 570
the coefficient of the symbol is constant if the right 571
hand side of the ODE differentiated by its symbol 572
is constant. If these two tests succeed, the system 573
can be solved analytically (see Section 3.2). If one 574
of them fails, a numerical stepper has to be chosen 575
(Section 3.3). The output of the main script is again 576
a Python dictionary or a JSON file, which contains 577
a specification of the most appropriate solver for 578
the given input ( 2© in Figure 1). The remainder of 579
this section explains the different algorithms in the 580
submodules of the analysis toolbox. 581

3.1 Analysis of postsynaptic shapes 582

In the neuroscience literature, postsynaptic shapes 583
are described either as functions of time or as ODEs 584
with initial values. To provide users with maximum 585
flexibility, both specifications are supported by our 586
toolbox. Regardless of the form of the specification, 587
each of the given postsynaptic shapes has to satisfy 588
a linear, homogeneous ODE (Equation 5) to be 589
solved either analytically or numerically. 590

In case the postsynaptic shape is given as an ODE 591
with initial values, the check for linearity an ho-592
mogeneity is straightforward. For each occurring 593
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derivative of the postsynaptic shape in the shape’s594
definition, we simply have to iteratively subtract the595
product of the derivative and its factor from the orig-596
inal definition of the postsynaptic shape and check597
if the final difference is zero. This check fails if the598
postsynaptic shape is non-linear (i.e. at least one599
of the derivatives occurs as a power term) or not600
homogeneous (i.e. not all terms of the postsynaptic601
shape definition are products containing a deriva-602
tive of the shape). This check is implemented in the603
function shape_from_ode() in the shape module of the604
toolbox.605

In case the postsynaptic shape is given as a func-606
tion of time, we check whether the function obeys607
a linear homogeneous ODE by trying to construct608
such an equation together with the initial values609
of all relevant derivatives. This procedure is imple-610
mented in the function shape_from_function() of the611
shape module. We start the evaluation by checking612
if the postsynaptic shape function obeys a linear613
homogeneous ODE of order 1.614

1 t_value = None
2 ds = [shape, diff(shape, t)]
3 for t_ in range(1, max_t):
4 if ds[0].subs(t, t_) != 0:
5 t_value = t_
6 break
7
8 found_ode = False
9 if t_value is not None:
10 a0 = (1/ds[0] * ds[1]).subs(t, t_value)
11 diff_lhs_rhs = ds[1] - a0 * ds[0]
12 found_ode = diff_rhs_lhs == 0

In line 10 we calculate the factor a0 from Equa-615
tion 6 by dividing the first derivative of the postsy-616
naptic shape by the shape at an arbitrary point t. To617
avoid a division by zero, we have to find a t so that618
the postsynaptic shape function is not zero at this619
t (lines 3-6). Line 11 calculates the difference be-620
tween the left and the right hand side of Equation 6.621
If this difference is zero (line 12) we know that the622
postsynaptic shape satisfies a linear homogeneous623
ODE of order 1. We also know the ODE itself by624
calculating its initial value in line 40 below.625

If the postsynaptic shape does not obey a linear626
homogeneous ODE of order 1, we check if the627

postsynaptic shape function satisfies a linear ho-628
mogeneous ODE of a higher order. This test is run 629
in a loop (line 15) that increments the order to check 630
for each time Equation 5 is not satisfied. The loop 631
terminates if either an ODE is found or max_order 632
iterations are exceeded. The latter check prevents 633
expensive tests of unlikely high orders. 634

13 order = 1
14 factors = [a0]
15 while not found_ode and order < max_order:
16 order += 1
17 ds.append(diff(ds[-1], t))
18 X = zeros(order)
19 Y = zeros(order, 1)

We start the loop by setting the next potential order 635
(line 16), appending the next higher derivative of 636
postsynaptic shape to the list of derivatives (line 17) 637
and initializing the matrix X with size order×order 638
(Equation 9, line 18) and the vector Y with length 639
order (right hand side of Equation 10, line 19). 640

20 invertible = False
21 for t_ in range(max_t):
22 for i in range(order):
23 substitute = i + t_ + 1
24 Y[i] = ds[order].subs(t, substitute)
25 for j in range(order):
26 X[i, j] = ds[j].subs(t, substitute)
27
28 if det(X) != 0:
29 invertible = True
30 break

X and Y are assigned values according to Equa-641
tions 9 and 10 (line 24 and 26) for varying t = 642
(t1, . . . , tn) (line 21) in order to find a t such that 643
the matrix X is invertible, i.e det(X) 6= 0 (line 28).644
In the inner loop (line 22-26), ti is substituted so that 645
we first try t = (1, . . . , n), second t = (2, . . . , n+1) 646
and so on (line 23). 647

If we find an invertible X, we calculate the po-648
tential factors ai from Equation 5 according to 649
Equation 11 for the current order we are checking 650
for (factors, line 32). 651

31 if invertible:
32 factors = X.inv() * Y
33 diff_rhs_lhs = 0
34 for k in range(order):
35 diff_rhs_lhs -= factors[k] * ds[k]
36 diff_rhs_lhs += ds[order]
37 if diff_rhs_lhs == 0:
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38 found_ode = True
39 break

Lines 33-36 calculate the difference between the652
left and the right hand side of Equation 5. If this653
difference is zero (line 37) we know that the postsy-654
naptic shape satisfies an linear homogeneous ODE655
of order order.656

If we do not find an ODE during the execution of657
the while loop, we terminate the algorithm with an658
error ( 1© in Figure 1). If we do, we can go on to659
calculate the initial values of the postsynaptic shape660
equation by substituting t by 0 for all derivatives661
of the postsynaptic shape, which fully defines the662
found ODE.663

40 iv = [x.subs(t, 0) for x in ds[:-1]]

In the case of successful termination, the functions664
shape_from_ode() and shape_from_function() both re-665
turn a Shape object to the main script of the toolbox,666
which encapsulates all attributes of the postsynaptic667
shape required for further processing.668

3.2 Generation of an analytical evolution669
scheme670

If the ODE describing the update of a state vari-671
able was found to be a constant coefficient ODE and672
all postsynaptic shapes obey linear homogeneous673
ODEs, we can solve the system of ODEs analyt-674
ically according to Section 2.1. To this end, the675
module analytic provides a class Propagator, which676
has two member functions corresponding to the two677
steps required for the generation of an analytical678
evolution scheme.679

The function compute_propagator_matrices() takes680
an ODE and a list of Shape objects and computes a681
propagator matrix (Equation 17) for each postsynap-682
tic shape. These matrices can be used to evolve the683
system from one point to the next. The basic idea684
here is to populate the matrix A using the factors of685
the derivatives (factors, computed in lines 12 and 31686
of the code in Section 3.1), the factor of the postsy-687
naptic shape used in the ODE for the state variable688
(ode_shape_factor) and the factor of the symbol of689
the ODE (ode_sym_factor). For the equation690

d

dt
V =

1

τ
· V +

1

C1
· I1 +

1

C2
· I2

ode_sym_factor would thus be 1
τ . It is calculated 691

using the following line of code: 692

1 ode_sym_factor = diff(ode_def, ode_symbol)

ode_shape_factor would be 1
C1

for postsynaptic 693

shape I1 in the example equation and 1
C2

for I2.694
As these factors and other parameters depend on the 695
postsynaptic shape, we run the following code in a 696
loop (omitted for better readability), each iteration 697
assigning the current Shape object to the variable 698
shape: 699

2 ode_shape_factor = diff(ode_def, shape.symbol)
3
4 if shape.order == 1:
5 A = Matrix([
6 [shape.factors[0], 0],
7 [ode_shape_factor, ode_sym_factor]])
8 elif shape.order == 2:
9 pq = -shape.factors[1] / 2 +

sqrt(shape.factors[1]**2 / 4 +
shape._factors[0])

↪→
↪→

10 A = Matrix([
11 [shape.factors[1] + pq, 0, 0 ],
12 [1, -pq, 0 ],
13 [0, shape_factor, ode_sym_factor]])
14 else:
15 order = shape.order
16 A = zeros(order + 1)
17 A[order, order] = ode_sym_factor
18 A[order, order - 1] = shape_factor
19 for j in range(0, order):
20 A[0, j] = shape.factors[order - j - 1]
21 for i in range(1, order):
22 A[i, i - 1] = 1

Line 2 computes the ode_shape_factor for the cur-700
rent postsynaptic shape. In order to make the 701
calculation of the solution more efficient (i.e. us-702
ing fewer arithmetic operations on a computer), 703
compute_propagator_matrices() creates a lower trian-704
gular matrix for postsynaptic shapes of order 1 and 705
2 (lines 5-7 and 9-13, respectively) as explained 706
in Equation 14 and a generic matrix for all higher 707
orders according to Equation 13 (lines 15-22). The 708
variable pq in line 9 corresponds to Equation 15. 709
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The propagator matrix for each postsynaptic shape710
can now be computed by taking the matrix exponen-711
tial of the matrix A multiplied by the update step712
size h:.713

23 propagator_matrices.append(exp(A * h))

The second function of the Propagator class,714
compute_propagation_step(), takes the list of propaga-715
tor matrices and postsynaptic shapes and computes716
a calculation specification that can be executed to717
actually perform the system update. As this function718
merely runs a loop over all propagator matrices and719
generates the update instructions as a list of strings,720
the code is omitted here.721

3.3 Finding an appropriate numerical722
solver723

In case the differential equation describing the724
dynamics of a state variable was not found to be a725
linear constant coefficient ODE, the system must726
be evolved using a numerical stepping scheme as727
explained in Section 2. Instead of a full calculation728
specification, as produced for the analytical solution729
in Section 3.2, the numeric module of the toolbox730
just passes the specification of ODEs from the in-731
put and the Shape objects created by the algorithm732
in Section 3.1 on to the stiffness tester, which is733
implemented in the stiffness module.734

The stiffness tester uses the standard Python mod-735
ules SymPy and NumPy for symbolic and numeric736
calculations. For evolving the ODEs during the737
test procedure, it currently uses PyGSL, a Python738
wrapper around the GNU Scientific Library (GSL;739
Gough, 2009). This library was chosen over more740
pythonic alternatives such as SciPy due to its more741
comprehensive selection of ODE solvers.742

The stiffness tester executes the algorithm de-743
scribed in Section 2.2 and gives a recommendation744
as to whether the use of an explicit or an implicit745
evolution scheme is appropriate. The steps per-746
formed by the algorithm are shown in Figure 2.747
The choice of the factor 6 for comparing average748
step sizes of the explicit and the implicit schemes is749
motivated in Section 3.3.1. For the evolution of the750

system of ODEs, the equations receive representa-751
tive spike trains drawn from a Poisson distribution 752
with a rate of ν = 0.1 s−1 and inter-spike intervals 753
distributed around 1

ν (Connors and Gutnick, 1990). 754

3.3.1 Comparison of average step sizes 755

When comparing average step sizes of the im-756
plicit and explicit method applied to a certain set 757
of ODEs, we assume that the set of ODEs is stiff 758
when the average step size of the implicit method 759
is considerably larger than the average step size 760
of the explicit method, see Section 2.2, i.e. when 761
simplicit > β · sexplicit for some β. 762

To determine an appropriate factor β, we devel-763
oped a testing strategy using a well known example 764
of a set of stiff ODEs: with a = −100 and initial 765
values y1(0) = y2(0) = 1, 766

dy1
dt

= ay1 (20)

dy2
dt

= −2y2 + y1

is a typical stiff ODE system (example taken from 767
Dahmen and Reusken, 2005). The solution y1(t) = 768
e−100t decays very quickly, whereas the solution 769
y2(t) = − 1

98e
−100t + 99

98e
−2t decreases a lot more 770

slowly, which causes the stiffness of this system. 771

y1 is already reduced by four decimal places at 772
t = 0.1 and y1 is practically negligible for even 773
larger t. Nevertheless, it plays a major role in the 774
calculation of y2 when using an explicit integration 775
method. Using a simple explicit Euler method and 776
a resolution h for the approximation ỹ1 of y1, we 777
have the following recursive specification: 778

ỹ1(t+ h) = ỹ1(t)− 100hỹ1(t) = (1− 100h)ỹ1(t).

For h = 1
200 and t = 1

10 we get 779

ỹ1(1/10) = 2−20 < 10−6.
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Read input: 
ODEs, parameters

Evolve ODEs with 
implicit solver bsimp

Evolve ODEs with 
explicit solver rk4

Compare minimal 
step sizes mscheme to 
machine precision ε

mimplicit < 10εmexplicit < 10ε

mexplicit ≥ 10ε

mimplicit ≥ 10ε mexplicit < 10ε

mexplicit ≥ 10ε

simplicit > 6sexplicit else

Recommend 
explicit

No 
recommendation

Recommend 
impllicit

Compare average step sizes of
implicit scheme (simplicit) and

explicit scheme (sexplicit)

Recommend 
explicit

Recommend 
impllicit

Figure 2. Activity diagram summarizing the steps taken to recommend an appropriate numerical
stepping scheme. The input to the algorithm are the ODEs and their parameters. After evolving the system
of ODEs in parallel with an implicit and an explicit solver, it compares the minimal step sizes (mscheme) of
each scheme with the machine precision (ε). Depending on the outcome of the comparison, it recommends
an appropriate stepping scheme (explicit or implicit) or compares the average step sizes (sscheme) of the
tested schemes. In the case that both the step size of the explicit and implicit solver are close to ε, the
algorithm does not give a recommendation, but terminates with a warning instead.

For computational efficiency, we would like to780
choose a larger step size for y2 since the solution781
decays a lot slower than y1. If we therefore choose782
h = 1

2 to integrate y2, we get783

ỹ1(t+ h) = −49ỹ1(t),

causing an explosive growth in the course of the784
calculations.785

A stiff set of ODEs will always result in the av-786
erage step size of an implicit method exceeding by787
far the average step size of a comparable explicit788
method. Hence the runtime of the implicit method789
should be less than the explicit method’s runtime.790
However, runtime is not solely affected by the grade791
of stiffness, so the stiffness of a given set of ODEs792
is evaluated more accurately by comparing average793
step sizes.794

To isolate stiffness from other factors, we chose 795
Equation 20 for its simplicity. This problem is 796
clearly stiff, as described above, and the grade of 797
stiffness relates directly to the size of the factor a.798
Therefore it can be used as a controlled stiff problem 799
where other effects coming from the complexity of 800
the system do not play a role. 801

We measure the runtimes of the implicit and the 802
explicit methods (using the corresponding GSL-803
solvers) for five runs over 20 milliseconds each, 804
whilst systematically varying the stiffness control-805
ling parameters a and the resolution h. The quotient 806
of the average implicit and explicit runtimes is 807
shown in Figure 3. 808

For each measurement series, we can determine 809
a∗, the value of a for which the runtimes of the 810
explicit and the implicit evolution scheme are the 811
same. We then calculate the ratio of the step sizes 812
employed by the implicit and explicit schemes at a∗: 813
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Figure 3. Comparison of implicit and explicit
methods for a stiff ODE. Ratio of runtimes for the
implicit and explicit method as a function of the fac-
tor a in Equation 20, for varying resolutions h and
a desired accuracy of 10−3. Curves averaged over
5 runs of 20 ms each. The red bar indicates when
the explicit and implicit methods require the same
amount of time to evolve the ODE system. Where
a curve is below the red bar, the implicit method is
faster than the corresponding explicit method.

r∗ =
simplicit(a

∗)
sexplicit(a∗)

. Because in this problem the run-814

time, stiffness and step size are solely influenced by815
the factor a, we can consider r to be the borderline816
factor, i.e. problems with simplicit > r∗ · sexplicit are817
sufficiently stiff to make the implicit method faster.818

For all the curves in Figure 3, we determine a819
value for r∗ between 6 and 7. As some input sce-820
narios may result in a somewhat stiffer system than821
that brought about by the representative spike train822
chosen in the stiffness tester, we choose β = 6 con-823
servatively on the low side of the range of r∗, to824
ensure that the implicit scheme is used in all stiff825
cases.826

3.4 Example827

The use of the toolbox as a Python module828
is explained in detail in the README.md file of the829
git repository at http://github.com/nest/830
ode-toolbox. Here, we demonstrate the use of831
the analysis toolbox by executing the script file832
ode_analyzer.py in a stand-alone fashion for generat-833
ing a solver specification for a conductance-based834

integrate-and-fire neuron with alpha-shaped postsy-835
naptic conductances. The script expects the name 836
of a JSON file as its only command line argument: 837

python ode_analyzer.py iaf_cond_alpha.json

The file iaf_cond_alpha.json is shown in Listing 1.838
It contains the specification of one differential equa-839
tion for the membrane potential V_m in the odes 840
section in lines 3-7. This section is a list and can 841
potentially contain multiple ODEs. The shapes sec-842
tion defines two postsynaptic shapes, one of which 843
is specified as a function of time (g_in, lines 10-14), 844
the other as an ODE with initial conditions (g_ex, 845
lines 15-20). The parameters and their default val-846
ues are given in the parameters dictionary in lines 847
22-33. This dictionary maps default values to pa-848
rameter names and has to contain an entry for each 849
free variable occurring in the equations given in the 850
odes or shapes sections. 851

Depending on the complexity of the ODEs and 852
postsynaptic shapes contained in the input, the anal-853
ysis may take some time. During its execution, 854
the analysis tool prints diagnostic messages about 855
the current processing steps. If all steps succeed, 856
it writes the result again to a JSON file, which 857
can be read by the next tool in the model gen-858
eration pipeline to create the a complete model 859
implementation. 860

For the input shown in Listing 1, the analysis 861
toolbox produces the following output: 862

1 {
2 "solver": "numeric-explicit"
3 "shape_ode_definitions": [
4 "-1/tau_syn_in**2 * g_in + -2/tau_syn_in *

g_in__d",↪→
5 "-1/tau_syn_ex**2 * g_ex + -2/tau_syn_ex *

g_ex__d"↪→
6 ],
7 "shape_state_variables": [
8 "g_in__d",
9 "g_in",
10 "g_ex__d",
11 "g_ex"
12 ],
13 "shape_initial_values": [
14 "0",
15 "e/tau_syn_in",
16 "0",
17 "e/tau_syn_ex"
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1 {
2 "odes": [
3 {
4 "symbol": "V_m",
5 "definition": "(-(g_L*(V_m-E_L))-(g_ex*(V_m-E_ex))-(g_in*(V_m-E_in))+I_stim+I_e)/C_m",
6 "initial_values": ["E_L"]
7 }
8 ],
9 "shapes": [
10 {
11 "type": "function",
12 "symbol": "g_in",
13 "definition": "(e/tau_syn_in)*t*exp((-1)/tau_syn_in*t)"
14 },
15 {
16 "type": "ode",
17 "symbol": "g_ex",
18 "definition": "(-1)/(tau_syn_ex)**(2)*g_ex+(-2)/tau_syn_ex*g_ex'",
19 "initial_values": ["0", "e / tau_syn_ex"]
20 }
21 ],
22 "parameters": {
23 "V_th": -55.0,
24 "g_L": 16.6667,
25 "C_m": 250.0,
26 "E_ex": 0,
27 "E_in": -85.0,
28 "E_L": -70.0,
29 "tau_syn_ex": 0.2,
30 "tau_syn_in": 2.0,
31 "I_e": 0,
32 "I_stim": 0
33 }
34 }

Listing 1. Example JSON file as input to the analysis toolbox. The file contains three entries: odes

describing the ODEs of the system, shapes containing the postsynaptic shapes used in the ODEs and
parameters specifying the parameters and default values for the differential equations in the shapes and odes

sections.

18 ],
19 }

The meaning of the fields is explained in detail in863
the README.md of the toolbox.864

4 RESULTS

To evaluate the proposed framework for the seman-865
tic analysis of a system of ODEs and assessment of866
its stiffness we have chosen two approaches. One867
was to apply the stiffness tester to the neuron models868
currently implemented in the NEST Modeling Lan-869
guage (NESTML; Plotnikov et al., 2016), the other870
was to compare runtimes of explicit and implicit871
evolution schemes applied to two commonly used872
simplified versions of the Hodgkin-Huxley model.873

The stiffness tester was integrated and success-874
fully used in the tooling for NESTML, a domain 875
specific language for the definition of neuron mod-876
els for the neuronal simulator NEST (Gewaltig and 877
Diesmann, 2007; Kunkel et al., 2017). NESTML is 878
built using MontiCore (e.g. Krahn, 2010; Grönniger 879
et al., 2008). MontiCore is a language work-880
bench (Erdweg et al., 2013) that enables an agile 881
and incremental implementation of lightweight 882
DSLs including the symbol table functionality (Mir 883
Seyed Nazari, 2017), code generation facilities (e.g.884
Schindler, 2012; Rumpe, 2017) and support for edi-885
tors in Eclipse IDE (e.g. Völkel, 2011; Krahn et al., 886
2007). NEST’s focus is on the simulation of the 887
dynamics of large networks of spiking neurons (e.g.888
Potjans and Diesmann, 2012; van Albada et al., 889
2015; Kunkel et al., 2010). Neuron models in NEST 890
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are usually rather simple point neurons or models891
with a few electrical compartments instead of rich892
compartmental neurons built from morphologically893
detailed reconstructions. The simulator is capable of894
running on a large range of computer architectures895
ranging from laptops over standard workstations to896
the largest supercomputers available today (Kunkel897
et al., 2014).898

Within NESTML, the analysis toolbox developed899
in Sections 2 and 3 is used for the numerical analy-900
sis of neuron models defined as systems of ODEs901
and provides either the implementation of an effi-902
cient and accurate analytical integration scheme or903
recommends a good numerical solver. Therefore it904
allows the simulation of a large variety of biological905
neuron models in NEST.906

As a simple yet meaningful validation of the stabil-907
ity checks introduced in Section 2.2, we applied the908
stiffness tester to all neuron models currently imple-909
mented in NESTML (see https://github.com/910
nest/nestml/tree/master/models). The re-911
sult of this evaluation is that with default912
parametrization, the systems of ODEs of all neu-913
ron models are non-stiff and can thus be safely914
integrated using an explicit numerical integration915
scheme without any detrimental effects on effi-916
ciency and accuracy. This is a reassuring finding,917
as it indicates that previous studies using these neu-918
ron models are unlikely to contain distorted results919
due to numeric instabilities in the integration, for a920
counter-example see Pauli et al. (2018).921

However, when the default parametrization is922
slightly altered, the stiffness test finds that some923
systems of ODEs are now evaluated as being stiff,924
which suggests that the choice of an implicit evo-925
lution scheme would be more advisable than the926
default choice. Figure 4 summarizes these observa-927
tions for a selection of six commonly used neuron928
models and shows how a systematic change of one929
parameter in these models results in an evaluation930
as stiff or non-stiff.931

As a second test, we apply the stiffness tester932
to the Fitzhugh-Nagumo and Morris-Lecar models933
(FitzHugh, 1961; Nagumo et al., 1962; Morris and934
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Figure 4. Results of the stiffness test for six
neuron models from NEST. Red bars indicate
the default value of the selected parameter in
NEST, blue indicates the value range in which
the system of ODEs evaluates as non-stiff, green
indicates the range in which it evaluates as stiff.
aeif_cond_alpha is a conductance-based adaptive
exponential integrate-and-fire model with alpha-
shaped postsynaptic conductances, hh_psc_alpha a
Hodgkin-Huxley type model with alpha-shaped
postsynaptic currents, iaf_cond_alpha a conductance-
based integrate-and-fire neuron with alpha-shaped
postsynaptic conductances, iaf_cond_alpha_mc a
conductance-based integrate-and-fire neuron with
alpha-shaped postsynaptic conductances and mul-
tiple compartments, iaf_psc_alpha a current-based
integrate-and-fire neuron with alpha-shaped postsy-
naptic currents and izhikevich the model dynamics
proposed by Izhikevich (2003). The test was ap-
plied to the ODE systems for varying values of the
parameter tau_syn of the first five models and for the
parameter a of the last model.

Lecar, 1981), non-linear oscillators that include the 935
generation of an action potential as part of the dy-936
namics, rather than applying an artificial threshold 937
as many point neuron models do. To assess the com-938
parative performance of the two approaches, we 939
vary both the stiffness controlling parameter of the 940
model equations and the resolution h, as a param-941
eter of the stiffness tester (stiffness.py; see 942
Section 3). For small values of h, the explicit ap-943
proach is expected to exhibit a better performance, 944
as it is relatively easy to find the solution, and the 945
explicit approach is computationally less expensive.946
As h increases, it becomes harder to determine the 947

This is a provisional file, not the final typeset article 18



Blundell et al., 2017 Solver selection for neuron models

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
1

2

3

4

5

6

7

ru
nt

im
e 

im
pl

ici
t /

 ru
nt

im
e 

ex
pl

ici
t

h=0.10
h=0.15
h=0.18

Figure 5. Application of the stiffness tester to
the Fitzhugh-Nagumo model. Ratio of runtimes
for the implicit and explicit method as a function of
the factor τ in Equation 21, for varying resolution
h and a desired accuracy of 10−5. Curves averaged
over 5 runs of 20 ms each. Red bar as in Figure 3.
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Figure 6. Application of the stiffness tester to
the Morris-Lecar model. Ratio of runtimes for
the implicit and explicit method as a function of the
factor ε in Equation 22, for varying resolution h and
a desired accuracy of 10−5. Curves averaged over 5
runs of 20 ms each. Red bar as in Figure 3.

correct solution, so that the more expensive, but948
more reliable, implicit method becomes advanta-949
geous. Alternatively, a systematic variation of the950
desired accuracy would yield the same insight (data951
not shown).952

Figure 5 demonstrates a comparison of the im-953
plicit and explicit methods applied to the FitzHugh-954
Nagumo model. The model comprises two vari-955
ables, one for the membrane potential V and a 956
recovery variable W . The dynamics are given by: 957

V ′ = V − 1

3
V 3 −W + 0.25

W ′ = τ(V + 0.7− 0.8W ). (21)

The figure shows the quotient of the time that 958
the corresponding GSL-solvers for the explicit and 959
implicit methods spent on integrating the ODE sys-960
tem for 20 milliseconds with a desired accuracy of 961
10−5. For all resolutions shown in Figure 5, the 962
explicit scheme is faster, and is also the approach 963
recommended by our toolbox. As the resolution be-964
comes coarser (increased values of h), the curves 965
shift down towards the point at which the implicit 966
method would be faster. For h > 0.185, our toolbox 967
recommends an implicit approach, and indeed in 968
such cases the explicit scheme, as implemented by 969
the GSL, exits with an error. This is due to the vari-970
able V becoming so large in one of the internal steps 971
that it can no longer be represented by a double.972
For a higher required accuracy of 10−10, all curves 973
shift to below the red line (data not shown), and 974
the toolbox recommends an implicit solver for all 975
tested resolutions. 976

We apply the same approach to the Morris-Lecar 977
model (Morris and Lecar, 1981): 978
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V ′ = I + 2W (−0.7− V ) + 0.5(−0.5− V )

+ 1.1m(V )(1− V )

W ′ = αλ(V )(w(V )−W ) (22)

m(V ) =
1

2

(
1 + tanh

(
V + 0.01

0.15

))
w(V ) =

1

2

(
1 + tanh

(
V + 0.12

0.3

))
λ(V ) = cosh

(
V − 0.22

2 · 0.3

)
,

where I represents injected current. Figure 6979
shows that for a resolution of h = 0.2, the explicit980
solver is faster, but for larger values of h the im-981
plicit solver becomes more efficient. Accordingly,982
our toolbox recommends explicit for the former and983
implicit for the latter. Note also that the explicit984
solver exits with an overflow error for h = 1.5 with985
values of α above 1.4. Again, the toolbox catches986
this risk of numerical instability and recommends987
the implicit scheme.988

These results show that the toolbox can correctly989
assess where it is safe and efficient to use an ex-990
plicit scheme, and where an implicit scheme would991
be appropriate, either for reasons of speed or for992
numerical stability.993

5 RELATED WORK

In this section we compare our proposed frame-994
work for choosing evolution schemes for systems995
of ODEs in neural models with the correspond-996
ing approaches implemented in the simulators997
Brian (Goodman and Brette, 2009; Stimberg et al.,998
2014) and NEURON (Hines and Carnevale, 2000;999
Carnevale and Hines, 2006). These two simula-1000
tors were chosen as they are in wide-spread use1001
in the community. We will further consider the ap-1002
plication of software for symbolic computation (for1003

exact mathematical calculations) or scientific com-1004
puting (for numerical calculations) to our setting in1005
language modelling for neural simulators. 1006

5.1 Brian 1007

Similar to our framework, the implementation1008
of the Brian simulator also makes a distinction1009
between systems of ODEs that can be solved an-1010
alytically and systems that can only be solved1011
efficiently in a numeric manner. In addition to1012
simple integrate-and-fire neurons, Brian also sup-1013
ports multi-compartmental neurons and neurons1014
described by stochastic ODEs. As these types of1015
models cannot be currently analyzed by our ODE1016
analysis toolbox, we will not take them into account1017
here. Instead we focus on single-compartmental de-1018
terministic neuron models as we can only draw a1019
meaningful comparison for this group of neuron1020
models. 1021

In Brian, neuron dynamics can be described by1022
a system consisting of ODEs and time-dependent1023
functions. They are either classified as linear, mean-1024
ing they can be solved analytically, or as non-linear,1025
meaning they cannot be solved analytically and1026
must be solved numerically using the forward Eu-1027
ler method (if not stated otherwise by the author1028
of the model). In theory, linear constant coefficient1029
ODEs can be solved analytically by Brian. However,1030
if the dynamics of a neuron are described using a1031
non-constant function of time rather than an ODE1032
defining this function they are always solved nu-1033
merically. This could be improved by using our1034
proposed framework, which allows an analytical1035
solver to be generated even for a system consist-1036
ing of time-dependent functions that satisfy a linear1037
homogeneous ODE and feed into a linear constant1038
coefficient ODE. Our framework thus allows an1039
analytical evolution for a larger class of neuron1040
dynamics. In particular, our framework seems to1041
be more robust with respect to the use of several1042
different postsynaptic shapes, as they are treated1043
seperately in contrast to Brian’s approach, where1044
the system is analyzed by SymPy as a whole. 1045
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All systems of ODEs in Brian that are not evolved1046
by an analytical evolution scheme are by default1047
evolved using the simple Euler method. To cir-1048
cumvent this, it is possible to choose a numerical1049
evolution scheme from a list of other methods. This1050
approach works well for users who are aware of the1051
numerical consequences of their choice of solver but1052
can be problematic for scientists who lack the abil-1053
ity to weigh up the advantages and disadvantages1054
of different numerical evolution schemes for their1055
particular system of ODEs. Moreover, as demon-1056
strated in Figure 3, the choice of an appropriate1057
evolution scheme might depend on the exact param-1058
eters for the ODEs and thus not be obvious even for1059
an advanced user.1060

5.2 NMODL1061

NMODL is the model specification language of1062
the NEURON simulator. NEURON was created1063
for describing large multi-compartmental neuron1064
models and thus also supports a wider range of1065
models than our proposed framework currently does.1066
We will again only contrast those types of models1067
for which a comparison is meaningful.1068

For linear systems of ODEs, NMODL chooses1069
an evolution method that propagates the system1070
by evolving each variable under the assumption1071
that all other variables are constant during one time1072
step. In many cases this approach approximates1073
the true solution well, but it is still less accurate1074
than an actual analytical solution. For all other sys-1075
tems of ODEs, i.e. all non-linear ODEs, an implicit1076
method is chosen, regardless of the exact proper-1077
ties of the equations to guarantee an evolution of1078
stiff ODEs without causing numeric instabilities.1079
This is a robust solution but may lead to excessively1080
large simulation run times in cases where the choice1081
of an explicit evolution scheme for non-stiff ODE1082
systems would be sufficient.1083

5.3 Software for symbolic computation1084
and scientific computing1085

There are a number of high quality and widely1086
used applications available for symbolic computa-1087
tion, most notably Wolfram Mathematica (Benker,1088

2016), Modelica (Tiller, 2001) and Maple (West-1089
ermann, 2010). All three provide frameworks for1090
solving ordinary differential equations both sym-1091
bolically and numerically. Here, we will briefly1092
describe their capabilities and limitations for both1093
symbolic and numeric integration of systems of1094
ODEs. 1095

5.3.1 Symbolic integrators 1096

At first appearance the integration schemes pro-1097
vided by the programming languages (or in the case1098
of Modelica, modelling language) seem appropriate1099
for the task addressed in our study. As discussed in1100
Section 1, the ordinary differential equations used1101
to define neuron models and to describe their dy-1102
namical behaviour are typically linear (though not1103
homogeneous and not linear with a constant coeffi-1104
cient) and can in several cases be solved analytically1105
by any of the programs above. However, for the1106
specific requirements related to neural simulations,1107
there are several reasons why they are not entirely1108
well suited. 1109

Firstly, neurons receive input that generally1110
changes in every integration step due to the arrival1111
of incoming spikes, thus changing the differential1112
equations to be solved. Although each of these dif-1113
ferential equations can be integrated easily using,1114
e.g. Wolfram Mathematica, none of these frame-1115
works provide a general, exact solution for each1116
integration step, that takes a run-time generated1117
varying input into account. The next two points1118
are related to the size of neural systems commonly1119
investigated. Spiking neuronal network models of-1120
ten contain of the order of 103 - 105 neurons, and1121
sometimes substantially more (Kunkel et al., 2014).1122
Calling external software for symbolic computa-1123
tion of ordinary differential equations during run1124
time for each neuron is therefore often too costly.1125
Moreover, for large models, the simulation soft-1126
ware is likely to be deployed on a large cluster or1127
supercomputer. The aforementioned applications1128
are typically not installed on such architectures,1129
whereas Python is a standard installation, providing1130
the package SymPy, which is sufficient for symbolic1131
computation in this context. 1132
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5.3.2 Numerical integrators1133

There are a number of approaches to automatically1134
select numeric integrators depending on whether1135
the problem is stiff or non-stiff (Shampine, 1983,1136
1991; Petzold, 1983). These approaches are typi-1137
cally designed to switch integration schemes during1138
runtime when the problem changes its properties.1139
All of them rely in one way or another on the be-1140
haviour of the Jacobian matrix evaluated at the point1141
of integration. Typically, the methods try to approxi-1142
mate the dominant eigenvalue of the Jacobian with a1143
low cost compared to that of the stepping algorithm.1144
However, for a spiking neural network simulation,1145
the determination of the stiffness of the system, and1146
thus the solver, should occur before the simulation1147
starts, as to minimize runtime costs.1148

Thus the question remains whether it would be1149
possible to carry out these kind of tests during gen-1150
eration of the neuron model. Applying the test to1151
a large number of randomly selected values of the1152
state variables, or carrying out a number of test runs1153
using representative spike trains would allow to1154
work around the fact that the solution up to a given1155
point is not yet known. However, as these tests rely1156
on determining the stiffness through the properties1157
of the Jacobian, they would still not be completely1158
precise. As we have the advantage of effectively1159
no computational constraints during generation of1160
the neuron model, there is thus no advantage by1161
using such a low-cost strategy. In our approach1162
we compute the solution using both explicit and1163
implicit schemes and compare their behavior a pos-1164
teriori, thus obtaining an accurate assessment of the1165
appropriate solver for a given set of parameters.1166

In addition, as for symbolic integration, the pack-1167
ages that provide such stiffness testing capability for1168
numeric integration do not provide a framework for1169
handling a run-time determined variable input due1170
to incoming spikes. Thus we conclude that the spe-1171
cific problem addressed by our toolbox lies outside1172
the scope of general purpose symbolic and numeric1173
integration packages.1174

6 DISCUSSION

We have presented a novel simulator-independent1175
framework for the analysis of systems of ODEs1176
in the context of neuronal modeling and provided1177
a reference implementation for the selection and1178
generation of appropriate integration schemes as1179
open source software. 1180

In this section we will summarize the restric-1181
tions of our framework, discuss alternative ideas1182
for the implementation and describe possible future1183
additions. 1184

The framework we propose is currently limited to1185
the analysis of equations for non-stochastic single-1186
compartmental integrate-and-fire neuron models.1187
The reason for this is that the analysis toolbox was1188
developed in the context of the NESTML project,1189
in which we put our main focus on the class of1190
neurons presently available in the NEST simulator.1191
The extension of the framework to other classes of1192
neurons is one of our current research objectives. In1193
particular, this work includes support for systems of1194
stochastic ODEs. The symbolic analysis of neuron1195
ODEs enables generation of the sophisticated C++1196
neuron implementation that switches between im-1197
plicit and explicit solvers at run-time of the neurons1198
depending on the runtime performance of the par-1199
ticular solver. This functionality will be integrated1200
in upcoming releases of NESTML. 1201

Another restriction of the framework is that it can1202
only analyze systems of ODEs with postsynaptic1203
shapes that obey a linear homogeneous ODE. This1204
is due to the fact that evolving a system including1205
postsynaptic shapes as functions of time rather than1206
functions defined as ODEs would result in a very1207
long sum of multiple linear combinations of shifts1208
of this function for each incoming spike. Evaluating1209
such a sum would make the evolution of the system1210
containing it computationally very costly. Finding a1211
more efficient solution for this problem is of high1212
priority in our current work. 1213

As noted in Section 2, the calculation of eAh may1214
become difficult to compute analytically rather than1215
numerically if the matrix A becomes very large. In1216
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this case, i.e. when eAh is computed as a numerical1217
approximation, the integration scheme is, strictly1218
speaking, not analytical. Here it might be sensible to1219
look into other numerical methods, e.g integrating1220
the system of ODEs using a quadrature formula of1221
order 5 and thereby obtaining an accuracy of 10−81222
despite the use of a numerical scheme.1223

When comparing implicit and explicit integration1224
schemes, we compare the average step size and the1225
minimal step size of the respective schemes. An1226
alternative possibility would be to use fixed step1227
sizes instead and compare the results of the explicit1228
and implicit schemes using the results of the implicit1229
scheme as a reference. This could be implemented1230
alongside our current stiffness tester to provide a1231
higher degree of certainty.1232

As pointed out in Section 4, the stiffness of a1233
system of ODEs depends greatly on its parametriza-1234
tion. Therefore it might be a useful extension to1235
run the stiffness test not only during the generation1236
of the model code, but also when instantiating the1237
model in a simulator, and when model parameters1238
are changed. This would, however, require a call1239
to the analysis toolbox at run time, which might1240
not be easily possible on all machines a particular1241
simulator may run on. For example, in a supercom-1242
puter environment, job allocations are usually fixed,1243
and not all libraries required by the toolbox may1244
be available. An alternative solution to the problem1245
could be to run the stiffness test for varying parame-1246
ters during the generation phase of the model. This1247
way the analysis toolbox could create a lookup table,1248
mapping parameter values to the most appropriate1249
integration scheme.1250

Another possible extension of the current frame-1251
work could be to implement implicit and explicit1252
integration schemes for evolving the systems of1253
ODEs during the stiffness analysis, and thereby1254
gain independence of PyGSL, which can be chal-1255
lenging to install. These custom implementations1256
could be tailored to our specific requirements and1257
give us more control over the integration scheme1258
and the exact methodology for adaptive step size1259
control.1260

The current implementation of the framework1261
only supports fixed thresholds for the detection1262
of spikes and evaluates the spiking criterion on a1263
fixed temporal grid. A part of our current work is to1264
evaluate more realistic scenarios, such as adaptive1265
thresholds or precise detection of spike times in be-1266
tween the grid points. For a general discussion on1267
the topic, see Hanuschkin et al. (2010). 1268

Our presented framework is re-usable indepen-1269
dently of NESTML and NEST. The source code is1270
available under the terms of the GNU General Pub-1271
lic License version 2 or later on GitHub at https:1272
//github.com/nest/ode-toolbox/ and we1273
hope that the code can serve both as a useful1274
tool for neuroscientists today, and as a basis for a1275
future community effort in developing a simulator-1276
independent system for the analysis of neuronal1277
model equations. 1278
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