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Abstract: Rings and fields are significant algebraic structures in algebra and both of them are based
on the group structure. In this paper, we attempt to extend the notion of a neutrosophic triplet group
to a neutrosophic triplet ring and a neutrosophic triplet field. We introduce a neutrosophic triplet
ring and study some of its basic properties. Further, we define the zero divisor, neutrosophic triplet
subring, neutrosophic triplet ideal, nilpotent integral neutrosophic triplet domain, and neutrosophic
triplet ring homomorphism. Finally, we introduce a neutrosophic triplet field.

Keywords: ring; field; neutrosophic triplet; neutrosophic triplet group; neutrosophic triplet ring;
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1. Introduction

The concept of a ring first arose from attempts to prove Fermat’s last theorem [1], starting with Richard
Dedekind in the 1880s. After contributions from other fields, mainly number theory, the notion of a ring
was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull [2] Modern
ring theory, a very active mathematical discipline, studies rings in their own right. To explore rings,
mathematicians have devised various notions to break rings into smaller, more understandable pieces,
such as ideals, quotient rings, and simple rings. In addition to these abstract properties, ring theorists
also make various distinctions between the theories of commutative rings and noncommutative rings,
the former belonging to algebraic number theory and algebraic geometry. A particularly rich theory
has been developed for a certain special class of commutative rings, known as fields, which lies
within the realm of field theory. Likewise, the corresponding theory for noncommutative rings,
that of noncommutative division rings, constitutes an active research interest for noncommutative
ring theorists. Since the discovery of a mysterious connection between noncommutative ring theory
and geometry during the 1980s by Alain Connes [3–5], noncommutative geometry has become a
particularly active discipline in ring theory.

The foundation of the subject (i.e., the mapping from subfields to subgroups and vice versa) is set
up in the context of an absolutely general pair of fields. In addition to the clarification that normally
accompanies such a generalization, there are useful applications to infinite algebraic extensions and
to the Galois Theory of differential equations [6]. There is also a logical simplicity to the procedure:
everything hinges on a pair of estimates of field degrees and subgroup indices. One might describe it
as a further step in the Dedekind–Artin linearization [7].

An early contributor to the theory of noncommutative rings was the Scottish mathematician
Wedderburn who, in 1905, proved “Wedderburn’s Theorem”, namely that every finite division ring is
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commutative and so is a field [8]. It was only around the 1930s that the theories of commutative and
noncommutative rings came together and that their ideas began to influence each other.

Neutrosophy is a new branch of philosophy which studies the nature, origin, and scope of neutralities
as well as their interaction with ideational spectra. The concept of neutrosophic logic and a neutrosophic
set was first introduced by Florentin Smarandache [9] in 1995, where each proposition in neutrosophic logic
is approximated to have the percentage of truth in a subset T, the percentage of indeterminacy in a subset
I, and the percentage of falsity in a subset F such that this neutrosophic logic is called an extension of fuzzy
logic, especially to intuitionistic fuzzy logic [10]. The generalization of classical sets [9], fuzzy sets [11],
and intuitionistic fuzzy sets [10], etc., is in fact the neutrosophic set. This mathematical tool is used to
handle problems consisting of uncertainty, imprecision, indeterminacy, inconsistency, incompleteness,
and falsity. By utilizing the idea of neutrosophic theory, Vasantha Kandasamy and Florentin Smarandache
studied neutrosophic algebraic structures [12–14] by inserting a literal indeterminate element “I”,
where I2 = I, in the algebraic structure and then combining “I” with each element of the structure
with respect to the corresponding binary operation, denoted *. They call it the neutrosophic
element, and the generated algebraic structure is then termed as a neutrosophic algebraic structure.
Some other neutrosophic algebraic structures can be seen as neutrosophic fields [15], neutrosophic vector
spaces [16], neutrosophic groups [17], neutrosophic bigroups [17], neutrosophic N-groups [15],
neutrosophic semigroups [12], neutrosophic bisemigroups [12], neutrosophic N-semigroups [12],
neutrosophic loops [12], neutrosophic biloops [12], neutrosophic N-loop [12], neutrosophic groupoids [12]
and neutrosophic bigroupoids [12] and so on.

In this paper, we introduce the neutrosophic triplet ring. Further, we define the neutrosophic
triplet zero divisor, neutrosophic triplet subring, neutrosophic triplet ideal, nilpotent neutrosophic
triplet, integral neutrosophic triplet domain, and neutrosophic triplet ring homomorphism.
Finally, we introduce a neutrosophic triplet field. The rest of the paper is organized as follows.
After the literature review in Section 1 and basic concepts in Section 2, we introduce the neutrosophic
triplet ring in Section 3. Section 4 is about the introduction of the integral neutrosophic triplet domain
with some of its interesting properties, and is also where we develop the neutrosophic triplet ring
homomorphism. In Section 5, we study neutrosophic triplet fields. Conclusions are given in Section 6.

2. Basic Concepts

In this section, all definitions and examples have been taken from [18] to provide some basic
concepts about neutrosophic triplets and neutrosophic triplet groups.

Definition 1. Let N be a set together with a binary operation ∗. Then N is called a neutrosophic triplet set if
for any a ∈ N, there exists a neutral of “a” called neut(a), different from the classical algebraic unitary element,
and an opposite of “a” called anti(a), with neut(a) and anti(a) belonging to N, such that

a ∗ neut(a) = neut(a) ∗ a = a

and
a ∗ anti(a) = anti(a) ∗ a = neut(a).

The element a, neut(a), and anti(a) are collectively called a neutrosophic triplet and we denote it by
(a, neut(a), anti(a)). By neut(a), we mean the neutral of a, and a is just the first coordinate of a neutrosophic
triplet and not a neutrosophic triplet [18].

For the same element “a” in N, there may be more than one neutral neut(a) and more than one opposite
anti(a).

Definition 2. The element b in (N, ∗) is the second component, denoted by neut(·), of a neutrosophic triplet,
if there exist other elements a and c in N such that a ∗ b = b ∗ a = a and a ∗ c = c ∗ a = b. The formed
neutrosophic triplet is (a, b, c) [12].
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Definition 3. The element c in (N, ∗) is the third component, denoted by anti(·) of a neutrosophic triplet,
if there exist other elements a and b in N such that a ∗ b = b ∗ a = a and a ∗ c = c ∗ a = b. The formed
neutrosophic triplet is (a, b, c) [12].

Example 1. Consider Z6 under multiplication modulo 6, where

Z6 = {0, 1, 2, 3, 4, 5}.

Then the element 2 gives rise to a neutrosophic triplet because neut(2) = 4 6= 1, as 2× 4 = 4× 2 = 8 ≡
2(mod6). Also, anti(2) = 2 because 2× 2 = 4. Thus (2, 4, 2) is a neutrosophic triplet. Similarly 4 gives rise
to a neutrosophic triplet because neut(4) = anti(4) = 4 So (4, 4, 4) is a neutrosophic triplet. However, 3 does
not give rise to a neutrosophic triplet as neut(3) = 5 but anti(3) does not exist in Z6, and lastly, 0 gives
rise to a trivial neutrosophic triplet as neut(0) = anti(0) = 0. The trivial neutrosophic triplet is denoted by
(0, 0, 0) [12].

Definition 4. Let (N, ∗) be a neutrosophic triplet set. Then N is called a neutrosophic triplet group if the
following conditions are satisfied [12].

1. If (N, ∗) is well defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
2. If (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.

The neutrosophic triplet group, in general, is not a group in the classical algebraic sense.
We consider the neutrosophic neutrals as replacing the classical unitary element, and the neutrosophic
opposites as replacing the classical inverse elements.

Example 2. Consider (Z10, #), where # is defined as a#b = 3ab(mod10). Then (Z10, #) is a neutrosophic
triplet group under the binary operation #, as shown in Table 1 [18].

Table 1. Cayley table of neutrosophic triplet group (Z10, #).

# 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 3 6 9 2 5 8 1 4 7
2 0 6 2 8 4 0 6 2 8 4
3 0 9 8 7 6 5 4 3 2 1
4 0 2 4 6 8 0 2 4 6 8
5 0 5 0 5 0 5 0 5 0 5
6 0 8 6 4 2 0 8 6 4 2
7 0 1 2 3 4 5 6 7 8 9
8 0 4 8 2 6 0 4 8 2 6
9 0 7 4 1 8 5 2 9 6 3

It is also associative, i.e.,
(a#b)#c = a#(b#c).

Now we take the LHS to prove the RHS.

(a#b)#c = (3ab)#c

= 3(3ab)c = 9abc

= 3a(3bc) = 3a(b#c)

= a#(b#c)
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For each a ∈ Z10, we have neut(a) in Z10.
That is, neut(0) = 0, neut(1) = 7, neut(2) = 2, neut(3) = 7, neut(4) = 2, and so on.
Similarly, for each a ∈ Z10, we have anti(a) in Z10.
That is, anti(0) = 0, anti(1) = 9, anti(2) = 2, anti(3) = 3, anti(4) = 1, and so on. Thus (Z10, #) is a

neutrosophic triplet group with respect to # [12].

3. Neutrosophic Triplet Rings

In this section, we introduce neutrosophic triplet rings and study some of their basic properties
and notions.

Notations 1. Since the neutrosophic triplet ring and the neutrosophic triplet field are algebraic structures
endowed with two internal laws * and #, in order to avoid any confusion, we use the following notation:
neut ∗ (x) and anti ∗ (x) for the neutrals and anti’s, respectively, of the element x with respect to the law * and
neu#(x) and ant#(x) for the neutrals and anti’s, respectively, of the element x with respect to the law #.

Definition 5. Let (NTR, ∗, #) be a set together with two binary operations ∗ and #. Then NTR is called a
neutrosophic triplet ring if the following conditions hold:

1. (NTR, ∗) is a commutative neutrosophic triplet group with respect to ∗;
2. (NTR, #) is well defined and associative;
3. a#(b ∗ c) = (a#b) ∗ (a#c) and (b ∗ c)#a = (b#a) ∗ (c#a) for all a, b, c ∈ NTR.

Remark 1. An NTR in general is not a classical ring.

Definition 6. Let (NTR, ∗, #) be a neutrosophic triplet ring and let a ∈ NTR. We call the structure a unitary
neutrosophic triplet ring (UNTR) if each element a has a neut#(a).

Definition 7. Let (NTR, ∗, #) be a neutrosophic triplet ring. We call the structure a commutative unitary
neutrosophic triplet ring if it is a UNTR and # is commutative.

Definition 8. Let (NTR, ∗, #) be a neutrosophic triplet ring and let 0 6= a ∈ NTR. If there exists a nonzero
element b ∈ NTR such that b#a = 0, then b is called a left zero divisor of a. Similarly, an element b ∈ NTR is
called a right zero divisor of a if a#b = 0.

A zero divisor of an element is one which is both a left zero divisor and a right zero divisor of
that element.

Theorem 1. Let NTR be a commutative neutrosophic triplet ring and a, b ∈ NTR such that a, b, neut#(a),
neut#(b), neut(a#b), and anti#(a#b) are cancellable and that neut#(a), neut#(b) and anti#(a), anti#(b) do
exist in NTR. Then

1. neut#(a)#neut#(b) = neut#(a#b); and
2. anti#(a)#anti#(b) = anti#(a#b).

Proof.

(1) Consider the left-hand side, with neut#(a)#neut#(b). Multiply by a to the left and by b to the
right; then we have

a#neut#(a)#neut#(b)#b = (a#neut#(a))#(neut#(b)#b) = a#b,
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since # is associativeNow we consider the right-hand side; we have neut#(a#b). Multiplying by a to
the left and by b to the right, we have

a#neut#(a#b)#b = (a#b)#neut#(a#b) = a#b,

since # is associative and commutative,
Thus, LHS = a#b = a#b = RHS.

(2) Considering the left-hand side, we have anti#(a)#anti#(b).

Multiplying by a to the left and by b to the right, we have

a#anti#(a(#anti#(b)#b = (a#anti#(a))#(anti#(b)#b) = a#b.

Now consider the right-hand side, where we have anti#(a#b).
Multiplying by a to the left and by b to the right, we have a#anti#(a#b)#b = (a#b)#anti#(a#b) = a#b,

since # is associative and commutative,

Definition 9. Let (NTR, ∗, #) be a neutrosophic triplet ring and let S be a subset of NTR. Then S is called a
neutrosophic triplet subring of NTR if (S, ∗, #) is a neutrosphic triplet ring.

Definition 10. Let (NTR, ∗, #) be a neutrosophic triplet ring and I be a subset of NTR. Then I is called a
neutrosophic triplet ideal of NTR if the following conditions are satisfied.

1. (I, ∗) is a neutrosophic triplet subgroup of (NTR, ∗); and
2. For all x ∈ I and r ∈ NTR, x#r ∈ I and r#x ∈ I.

Theorem 2. Every neutrosophic triplet ideal is trivially a neutrosophic triplet subring, but the converse is not
true in general.

Remark 2. Let (NTR, ∗, #) be a neutrosophic triplet ring and let a ∈ NTR. Then the following are true.

1. neut*(a) and anti*(a) in general are not unique in NTR.
2. neut#(a) and anti#(a) (if they exist for some element a) in general are not unique in NTR.

Definition 11. Let NTR be a neutrosophic triplet ring and let a ∈ NTR. Then a is called a nilpotent element if
an = 0, for some positive integer n > 1.

Theorem 3. Let NTR be a commutative neutrosophic triplet ring and let a ∈ NTR. If a is a nilpotent,
the following are true.

1. (neut ∗ (a))n = neut ∗ (0); and
2. (anti ∗ (a))n = anti ∗ (0).

Proof.

(1) Suppose that a is a nilpotent in a neutrosophic triplet ring NTR. Then, by definition, an = 0
for some positive integer n > 1.

We prove by mathematical induction.
We can show that neut ∗ (a) ∗ neut ∗ (a) = neut ∗ (a ∗ b) and anti ∗ (a) ∗ anti ∗ (a) = anti ∗ (a ∗ b)

in the same way as we did in Theorem 1 above by just replacing the law * by #.
Now we make a = b, so we get neut ∗ (a)2 = neut ∗ (a) ∗ neut ∗ (a) = neut(a2).
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We assume, by mathematical induction, that our equality is true for any positive integer up to n− 1,
and we need to prove it for n.

Now we consider left-hand side of 1:

(neut ∗ (a))n = (neut ∗ (a)) ∗ (neut ∗ (a))n−1 = neut ∗ (a ∗ an−1) = neut ∗ (an) = neut ∗ (0).

This completes the proof.
The proof of (2) is similar to that of (1)

4. Integral Neutrosophic Triplet Domain and Neutrosophic Triplet Ring Homomorphism

Section 4 is about the introduction of the integral neutrosophic triplet domain and some of its
interesting properties. Moreover, in this section, we develop a neutrosophic triplet ring homomorphism.

Definition 12. Let (NTR, ∗, #) be a neutrosophic triplet ring. Then NTR is called a commutative neutrosophic
triplet ring if a#b = b#a for all a, b ∈ NTR.

Definition 13. A commutative neutrosophic triplet ring NTR is called an integral neutrosophic triplet domain
if for all a, b ∈ NTR, a#b = 0 implies a = 0 or b = 0.

Theorem 4. Let NTR be an integral neutrosophic triplet domain. Then the following are true for all a, b ∈ NTR.

1. If neut#(a) and neut#(b) do exist, then neut#(a)#neut#(b) = 0 implies neut#(a) = 0 or neut#(b) = 0;
2. If anti#(a) and anti#(b) do exist, then anti#(a)#anti#(b) = 0 implies anti#(a) = 0 or anti#(b) = 0.

Proof.

(1) Obvious, since NTR is an integral neutrosophic triplet domain, and neut#(a) and neut#(b)
belong to NTR.

(2) Obvious, since NTR is an integral neutrosophic triplet domain, and anti#(a) and anti#(b)
belong to NTR.

Proposition 1. A commutative neutrosophic triplet ring NTR is an integral neutrosophic triplet domain if,
and only if, whenever a, b, c ∈ NTR such that a#b = a#c and a 6= 0, then b = c.

Proof. Suppose that NTR is an integral neutrosophic triplet domain and let a, b, c ∈ NTR. Since a 6= 0
and a ∈ NTR, a is not a zero divisor, so a is cancellable, i.e.,

a#b = a#c⇒ b = c.

Reciprocally, let a ∈ NTR, such that a 6= 0; then, by hypothesis, a is cancellable, so a is not a zero
divisor. NTR is an integral neutrosophic triplet domain.

Definition 14. Let (NTR1, ∗, #) and (NTR2,⊕,⊗) be two neutrosophic triplet rings. Let f : NTR1 → NTR2

be a mapping. Then f is called a neutrosophic triplet ring homomorphism if the following conditions are true.

1. f (a ∗ b) = f (a)⊕ f (b), for all a, b ∈ NTR1.
2. f (a#b) = f (a)⊗ f (b), for all a, b ∈ NTR1.
3. f (neut ∗ (a)) = neut⊕( f (a)), f oralla ∈ NTR1.
4. f (anti ∗ (a)) = anti⊕( f (a)), f oralla ∈ NTR1.
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5. Neutrosophic Triplet Fields

In this section, we study neutrosophic triplet fields and some of their interesting properties.

Definition 15. Let (NTR, ∗, #) be a neutrosophic triplet set together with two binary operations ∗ and #.
Then (NTR, ∗, #) is called a neutrosophic triplet field if the following conditions hold.

1. (NTR, ∗) is a commutative neutrosophic triplet group with respect to *.
2. (NTR, #) is a neutrosophic triplet group with respect to #.
3. a#(b ∗ c) = (a#b) ∗ (a#c) and (b ∗ c)#a = (b#a) ∗ (c#a) for all a, b, c ∈ NTF.

Example 3. Let X be a set and let P(X) be the power set of X. Then (P(X),∪,∩) is a neutrosophic triplet field
since neut(A) = A and anti(A) = A for all A ∈ P(X) with respect to both ∪ and ∩.

Proposition 2. A neutrosophic triplet field NTF always has an anti(a) for every a ∈ NTF with respect to both
laws * and #.

Proof. The proof is straightforward.

Theorem 5. A neutrosophic triplet ring is not in general a neutrosophic triplet field.

Counterexample:
NTR = ({1, 2}, ∗, #)

* 1 2

1 2 1
2 1 2

Neutrosophic triplets: (1, 2, 1), (2, 2, 2), ({1, 2}, ∗) is a commutative NTG.

# 1 2
1 1 1

2 1 1

({1, 2}, #) is well defined, associative, and commutative.
For the element 2 there is no neut#(2) and, consequently, no anti#(2).
Therefore, NTR = ({1,2},#) is a neutrosophic triplet commutative semigroup, but not a neutrosophic

triplet group.
In conclusion, NTR = ([1], *, #) is a neutrosophic triplet commutative ring, but it is not a

neutrosophic triplet field.

Theorem 6. A neutrosophic triplet field NTF is not in general an integral neutrosophic triplet domain NTD.

Proof. Consider the NTF N = ({0, 5}, ∗, #), where 0 ∗ 0 = 0, 0 ∗ 5 = 5 ∗ 0 = 5, 5 ∗ 5 = 5. The neutrosophic
triplets with respect to * are (0, 0, 0) and (5, 0, 5). Hence, we get 5 ∗ 5 = 0.

Also 0#0 = 0#5 = 5#0 = 5 and 5#5 = 0. The neutrosophic triplets with respect to # are (0, 5, 0)
and (5, 0, 5).

As we can see, 5#5 = 0.
Therefore, this is a NTF which is not an integral neutrosophic triplet domain.

Theorem 7. Assume that f : NTR1 → NTR2 is a neutrosophic triplet ring homomorphism. The following
then hold.
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1. If S is a neutrosophic triplet subring NTR1(∗, #), then f (S) is a neutrosophic triplet subring of
NTR2(⊕,⊗).

2. If U is a neutrosophic triplet subring of NTR2, then f−1(U) is a neutrosophic triplet subring of NTR1.
3. If I is a neutrosophic triplet ideal of NTR2, then f−1(I) is a neutrosophic triplet ideal of NTR1.
4. If f is onto, and J is an ideal of NTR1, then f (j) is an ideal of NTR2.

Proof.

(1) If S is a neutrosophic triplet subring NTR1(∗, #), then f (S) is a neutrosophic triplet subring of
NTR2(⊕,⊗).

Let a, b ∈ S, then a ∗ b ∈ S, neut ∗ (a) ∈ S, anti ∗ (a) ∈ S.
Then f (a), f (b) ∈ f (S) and f (a ∗ b) ∈ f (S), but f (a ∗ b) = f (a)⊕ f (b), since f is a homomorphism.

Thus, we have proved that if f (a), f (b) ∈ f (S), then f (a)⊕ f (b) ∈ f (S).
Since neut*(a) and anti*(a) ∈ S, f (neut(a)) and f (anti(a)) ∈ f (S) since f is a homomorphism.
But f (neut*(a)) = neut⊕f (a), and f (anti*(a)) = anti⊕f (a).
Therefore, if f (a) ∈ f (S), then neut⊕ f (a) = f (neut ∗ (a)) ∈ f (S) and, similarly,

anti⊕ f (a) = f (anti ∗ (a)) ∈ f (S).

Now, if a, b ∈ S, then a#b ∈ S. Since a#b ∈ S, f (a#b) ∈ f (S).
But f (a#b) = f (a)⊗ f (b).
Therefore, if f (a), f (b) ∈ S, then f (a)⊗ f (b) = f (a#b) = f (S).

(2) Let c, d ∈ U. Then f−1(c), f−1(d) ∈ f−1(U). Also c⊕ d ∈ U, hence

f−1(c⊕ d) ∈ f−1(U),

f−1(c) ∗ f−1(d) ∈ f−1(U).

But
f−1(c) ∗ f−1(d) = f−1(c⊕ d),

because if we apply f on both sides we get

f
(

f−1(c) ∗ f−1(d)
)
= f

(
f−1(c⊕ d)

)
,

or
f
(

f−1(c)
)
⊕ f

(
f−1(d)

)
= c⊕ d

or
c⊕ d = c⊕ d.

Similarly,
f−1(c)# f−1(d) ∈ f−1(U).

But
f−1(c)# f−1(d) = f−1(c⊗ d),

because if we apply f on both sides, we get

f
(

f−1(c)# f−1(d)
)
= f ( f−1(c⊗ d)),

or f
(

f−1(c)
)
⊗ f

(
f−1(d)

)
= c⊗ d,

c⊗ d = c⊗ d.
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Since c ∈ U, we have neut⊕(c) and anti⊕(c) ∈ U, f−1(neut⊕(c)) = neut*
(

f−1(c)
)

and f−1(anti⊕(c)) =
anti*

(
f−1(c)

)
.

We prove them by applying f on both sides for each equality.

f(f−1(neut⊕(c))) = f(neut*(f−1((c))),

or neut⊕(c) = neut⊕
(

f
(

f−1(c)
))

,

or neut⊕(c) = neut⊕(c).

Similarly,
f(f−1(anti⊕(c))) = f(anti*(f−1((c))),

or
anti⊕(c) = anti⊕

(
f
(

f−1(c)
))

or
anti⊕(c) = anti⊕(c)

(3) Let i ∈ I and r ∈ NTR2. Then, i⊕ r ∈ I, and therefore, f−1(i⊕ r) ∈ f−1(I).

f−1(i) ∈ f−1(I) and f−1(r) ∈ NTR1.

We prove that
f−1(i) ∗ f−1(r) = f−1(i⊕ r).

Applying f to both sides, we get

f ( f−1(i) ∗ f−1(r) = f
(

f−1(i⊕ r)
)

;

f ( f−1(i))⊕ f
(

f−1(r)
)
= i⊕ r;

i⊕ r = i + r.

Therefore, if i ∈ I, r ∈ NTR2, then i⊕ r ∈ f−1(I).
(4) Let j ∈ f (J) and r ∈ NTR2. Since f is onto, then ∃h ∈ J ⊂ NTR1 such that f (h) = j and

∃ s ∈ NTR1 such that f (s) = r. We need to prove that j⊕ r ∈ f (J).
Applying f−1 to both sides, we get

f−1 (j⊕ r) ∈ f−1( f (J)),

or
f−1(j) ∗ f−1(r) ∈ J

or
h ∗ s ∈ J

which is true, since h ∈ J, which is an ideal in NTR1, while s ∈ NTR1.

6. Conclusions

In this paper, we presented the neutrosophic triplet ring. Further, we presented the zero divisor,
neutrosophic triplet subring, neutrosophic triplet ideal, nilpotent, integral neutrosophic triplet domain,
and neutrosophic triplet ring homomorphism. Finally, we presented the neutrosophic triplet field. In the
future, we can develop neutrosophic triplet vector spaces, neutrosophic modules, and neutrosophic
triplet near rings, and so on.
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