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Abstract 

 

In this work, a Fe-0.25C-3.0Mn-1.5Si-0.023Al-0.015Cr (wt. %) steel was 

subjected to the Q&P treatment, and its mechanical behavior and microstructure 

evolution during drop weight impact testing and quasi-static punch testing were 

thoroughly analyzed. It is shown that the 1 mm thick Q&P steel sheet can withstand 

110 J impact energy without any (micro) cracking, which is well above the impact 

resistance of DP 1180 steel. The local true plastic strain can reach 53.4% in biaxial 

stretching showing excellent formability of the material. The microstructure 
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characterization shows that the volume fraction of retained austenite decreases 

exponentially with increasing plastic strain under dynamic biaxial stretching. 

Scanning electron microscopy analysis of cracks formed after drop weight impact 

testing with 120 J energy reveals a ductile fracture surface consisting of elongated 

dimples formed by MnS inclusions which are surrounded by fine chisel-point type 

dimples. The potential of Q&P treated steels for application in the automotive 

industry is discussed. 
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resistance; microstructure, retained austenite 

 

 

1. Introduction 

 

Motivated by the requirements of decreasing car body weight and improving 

passenger’s safety and fuel efficiency, automobile manufacturers keep paying 

attention to newly developed materials, especially advanced high strength steels 

(AHSS) [1]. In the past decades, several innovative AHSS such as dual phase (DP) 

steels [2], transformation induced plasticity (TRIP) steels [3], twinning induced 

plasticity (TWIP) steels [4], and quenched and partitioned (Q&P) steels [5] have been 

explored, and some of them have already been commercialized for fabrication of 

vehicle components. Among these AHSSs, Q&P steels composed of a martensite 

matrix and retained austenite are one of the newest and most promising grades, which 

have attracted tremendous interest since they were first proposed in 2003 [5]. 

Although mechanical properties of Q&P steels under tension [6], compression [7] and 

fatigue [8] have already been investigated, other properties like impact resistance have 

never been reported. On the other hand, in case of car crash accidents, the car body 

parts should be capable of absorbing high impact energy to ensure safety of 

passengers. Consequently, it is of great importance to investigate the impact resistance 



of Q&P steels and the effect of microstructure on their crashworthiness. 

The Q&P concept for heat treatment of steels was proposed by Speer et al. in 

2003 [5]. In a Q&P cycle, the fully austenitized or intercritically annealed steel is first 

quenched to a temperature between Ms (martensite start) and Mf (martensite finish) to 

form a defined fraction of martensite. In the second step, the steel is either held at this 

temperature or heated to a somewhat higher partitioning temperature. Diffusion of 

carbon from the supersaturated martensite into untransformed austenite in the second 

step enables its stabilization during final quenching to room temperature. This 

treatment leads to the formation of a complex multiphase microstructure consisting of: 

1) tempered martensite (TM), formed during the first quenching and tempered in the 

partitioning step; 2) untempered martensite (UM), formed in the last quenching from 

inadequately carbon enriched austenite; and 3) metastable austenite retained in the last 

quenching. Additionally, ferrite is also present in the intercritically annealed steels. 

Size, volume fraction and morphology of all microconstituents are determined by 

chemistry and Q&P treatment parameters. A significant body of research on their 

effect on microstructure and mechanical properties exists in the current literature. A 

wide range of Fe-based alloys, including stainless steel [9], TRIP steel [10], 

martensite steel [11], etc., have been proven to be potential candidates for Q&P 

processing. Furthermore, the idea of Q&P has also been extended to the 

quenching-partitioning-tempering (Q-P-T) process [12], in which a tempering step has 

been added following the Q&P procedure to add precipitation strengthening. 

Manipulation of the complex microstructure of the Q&P steels can result in a very 

wide range of tensile strength and ductility. For example, ultimate tensile strengths in 

the range of 1267 – 1471 MPa and elongations to failure in the range of 21 – 29% 

have been reported for a 0.25C–1.5Si–3Mn–0.023Al steel, as a function of 

partitioning temperature and time [13]. Strain partitioning of Q&P steels strongly 

depends on their microstructure. Diego-Calderón et al. [14] performed in situ testing 

of Q&P steels combined with digital image correlation analysis of plastic strain 

distribution. A very inhomogeneous distribution of local plastic strain between phase 

microconstituents was demonstrated on the studied Q&P steels. A maximum plastic 



strain of ~8% was observed in the hard phases, while the soft phase accumulated up to 

33%, when the global strain reached 23%.  

For a steel grade targeted for automotive applications, its impact resistance and 

high strain rate behavior should be comprehensively understood. However, the 

amount of research reports on impact behavior of AHSSs is limited. In [15], 

Rodríguez-Martínez et al. studied the impact behavior of a TRIP 1000 steel 

employing drop weight testing with impact velocities of 2.5 ~ 4.5 m/s at temperatures 

of 213 K and 288 K. The results showed that the energy absorption increased with 

decreasing temperature, which was not related to the martensitic transformation but to 

the temperature sensitivity of the material. In [16], Rodríguez-Martínez et al. 

compared the impact resistance of AISI 304 and TRIP 1000 steels. They concluded 

that the superior performance of the AISI 304 steel at high speed loading stems from 

its high work hardening and ductility under dynamic conditions, and that this behavior 

was enhanced through martensitic transformation. Khan et al. [17] comparatively 

investigated the impact performance of various spot welded AHSSs and reported that 

the partial interfacial failure was the failure mode for welded TRIP 780 and high 

strength low alloy steel. No data on impact resistance of Q&P treated steels can be 

found in the current literature. The current knowledge is limited to impact toughness 

of the Q&P treated steels. Particularly, in [18] it was shown that Q&P treatment of a 

high-Si steel leads to better impact toughness compared to other traditional heat 

treatments. Similar results were demonstrated in [19].  

The main goal of this study is to examine the resistance, mechanical behavior 

and microstructure evolution of Q&P steels under impact loading via drop weight 

testing. Unlike the Charpy testing, drop weight testing is performed on un-notched 

samples and, therefore, it is more relevant for materials used in body in white of cars. 

 

2. Material and experimental procedures 

2.1. Material and thermo-mechanical processing 

The chemical composition of the steel is shown in Table 1. 0.25% carbon was 



added to gain sufficient austenite fraction and stability [20]. Moreover, the 3.0% 

manganese provides further stability and hardenability to austenite [21]. To suppress 

carbide precipitation during Q&P heat treatment, the steel was alloyed by 1.5% 

silicon [22]. Finally, a small amount of aluminum and chromium were added for 

carbide suppression and hardenability enhancement according to [23,24]. 

 

Table 1. Chemical composition (wt. %) of the steel. 

C Mn Si Al Cr 

0.25 3.0 1.5 0.023 0.015 

 

The steel was casted in a laboratory vacuum induction furnace. The steel slabs 

were hot rolled to a final thickness of 2.5 mm, followed by water jets cooling to 

600 °C. Then, they were transferred to a furnace for coiling simulation at 560 °C. At 

the last step, the steel sheets were pickled and cold rolled to a final thickness of 1 mm. 

The rolled steel was cut perpendicular to the rolling direction for heat treatment. The 

Q&P process was carried out in a reactive annealing process simulator following the 

thermal cycle presented in Fig. 1. First, the steel was heated to 850 °C and soaked for 

60 s for full austenitization and then quenched to 244 °C (quenching temperature, QT) 

with a cooling rate of 20 °C/s. Subsequently, the steel was reheated to 400 °C 

(partitioning temperature, PT) with the heating rate of 20 °C/s and kept for 500 s. 

Finally, after the partitioning step, the steel sheets were quenched to room temperature 

at 20 °C/s. The ultimate tensile strength and elongation to failure of the Q&P 

processed sheet are 1267 MPa and 27.5 %, respectively [13]. 



 

Fig. 1. Schematic illustration of the Q&P heat treatment cycle applied to the studied 

steel. The Ms = 320 oC and Mf = 200 oC were determined earlier by dilatometry 

measurements. 

 

2.2. Drop weight impact testing and quasi-static punch testing 

To investigate the impact resistance of the Q&P steel, a drop weight impact 

testing system (INSTRON CEAST 9350) was employed. For quasi-static punch 

testing in the same mode, a universal electromechanical testing machine (INSTRON 

3384) was used. The 50×50×1 mm samples were cut for both drop weight impact and 

quasi-static punch testing (Fig. 2(b)). The same hemispherical punch with a diameter 

of 16 mm was employed for both types of testing. The punch is made of hard alloy 

steel having a hardness of 60 HRC. During quasi-static punch testing, the sample was 

fixed effectively by a house-made holder with bolts (as shown in Fig. 2(a)), while in 

drop weight testing the specimen was clamped by a pneumatic system. The shape and 

size of the holder and fastening components used in both kinds of test were the same. 

A multipurpose lubricant (Super Lube, Syncolon®) was applied to the punch surface 

to minimize frictional dissipated energy. The purpose of limiting these foregoing 

conditions is to obtain biaxial stress mode (nearly) in the center area of the specimen 

in both cases. The drop weight varied in the range of 4.3 kg to 9.8 kg depending on 

the impact energy. The applied impact energy and drop speed were in the range of 30 

~ 120 J and 3 ~ 7 m/s, respectively, depending on the drop weight and height before 

test. To measure the adiabatic heating during drop weight impact, additional tests with 



a K-type thermocouple welded on the center of square shaped specimens were carried 

out, and the maximum temperature achieved during testing was recorded. It should be 

noted that to compare the energy absorption capability of the studied Q&P steel with 

other AHSS, 1 mm thickness commercial sheets of AISI 304 stainless steel 

(Fe-0.08C-18Cr-9.0Ni-2.0Mn-1.0Si in wt.%) and DP 1180 steel 

(Fe-0.23C-3.0Mn-0.6Si in wt.%) were also tested using this system drop weight 

impact system. 

Quasi-static punch testing of the Q&P steel with two punch speeds of 8.33×10-5 

and 8.33×10-7 m/s was performed until the formation of crack(s). The 

load-displacement curves were recorded during both types of testing. 

 

Fig. 2. (a) Schematic diagram of drop weight impact and quasi-static punch tests, 

sectioned by a quarter. (b) Geometry of specimen and punch used in both drop weight 

impact testing and quasi-static punch testing. 

 

Fig. 3 (a) schematically shows samples after drop weight impact and quasi-static 

punch testing. The true plastic strain induced into the sheet at the top of the 

hemi-sphere was estimated by measuring the thickness before and after testing, as 

shown in Fig. 3(a) from [25]: 

ε=ln  (1) 

where ε is the true strain, ho is the original thickness and hf is the thickness after 

A 
B 



testing, respectively. Typical hemi-spherical section profiles of deformed samples 

after drop weight impact and quasi-static punching are shown in Fig. 3(b) and (c). The 

radial strain distribution along over the dome was analyzed using equation (1). 

 

 

Fig. 3. (a) Schematic illustration of thickness measurements after testing and the 

position of area selected for EBSD characterization (marked by white square). (b) 

Typical section profile of sample after drop weight impact testing (90J, 4.06 m/s). (c) 

Typical section profile of specimen after quasi-static punch testing (8.33×10-5 m/s). 

 

2.3. Microstructural analysis 

After drop weight impact and quasi-static punch testing, the microstructures and 
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B 
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fracture surfaces (for cracked samples) were carefully examined. A field emission gun 

scanning electron microscopy (Helios NanoLab 600i, FEI) operating at a voltage of 

15 kV and a current of 0.69 nA was employed to characterize the fracture surfaces of 

cracked samples after both types of testing. To analyze the microstructure evolution 

during deformation, electron back-scatter diffraction (EBSD) analysis was carried out 

on the same microscope equipped with a NordlysNano detector controlled by the 

Aztec Oxford Instruments Nanoanalysis software (version 4.2®). For EBSD 

characterization, the top part of the hemi-sphere (corresponding to the area marked by 

the white square in Fig. 3(a)) was cut from the tested specimens, ground following a 

standard metallographic procedure and polished with OP-S for 10 minutes at the final 

step. EBSD analysis was performed on the RD-ND plane and mid-section of the 

tested sheet, where biaxial stretching mode prevails. Kikuchi patterns were collected 

at an accelerating voltage of 18 kV, a working distance of 8 mm and a step size of 50 

nm in square scan grid. The EBSD data were post-analyzed using HKL Channel 5 

software (version 5.1®). Kernel Average Misorientation (KAM) maps were calculated 

with respect to the third nearest neighbors using the HKL software for each specimen. 

This is an effective EBSD-based approach to analyze local micro-deformation by 

means of calculating the orientation difference between point clusters [26]. 

Histograms of statistical distribution of plastic microstrain in the analyzed 

microstructure were generated based on the KAM map for each specimen. 

Chemical analysis of inclusions was carried out using an Oxford Inca 350 

Energy Dispersive Spectrometer (EDS) embedded in the field emission gun scanning 

electron microscope at operating voltage of 15 kV and working distance of 5 mm. 

 

 

3. Results 

 

3.1. Mechanical behavior of the material during drop weight impact and quasi-static 

punch testing 



Typical views of samples after drop weight and static punch testing are presented 

in Fig. 4. Careful analysis using microscopy did not reveal the presence of any (micro) 

cracks on surface of specimens tested with impact energies of 30 - 110 J (Fig. 4(a)). 

Large crack along rolling direction was observed only in the specimens tested with 

120 J, and just in the center of the hemisphere shell. On the other hand, in quasi-static 

punch tests, cracks occurred on the side of the hemisphere shell (Fig, 4(b)), under 

shearing (incomplete biaxial) stress state. 

  

Fig. 4. Typical views of samples (a) uncracked after drop weight impact test (90 J 

impact energy) and (b) cracked on the side after quasi-static punch test (punch speed 

8.33×10-7 m/s). Arrows indicate the rolling direction. 

 

The force-displacement curves from drop weight impact and static punch testing 

are shown in Fig. 5(a). The punch speed has been unified to m/s for easier comparison. 

For drop weight impact tests (3 ~ 7 m/s), all the curves look similar, and the load 

increases with increasing displacement (i.e. central deflection) and rebounds back to 

zero after reaching the peak load. However, the curve corresponding to the sample 

impacted with the maximum energy of 120 J (with a drop speed of 6.74 m/s) shows a 

swing phenomenon in its descending part. This observation can be related to 

formation of crack(s), which was seen only in the samples impacted with 120 J. Thus, 

it can be concluded that the studied 1 mm thick Q&P steel sheet can withstand 110 J 

A B 



impact energy. 

The true plastic strain measured at the top of the hemi-spherical part of drop 

weight tested samples is shown in Fig. 5(b). The true plastic strain increases linearly 

with the impact energy. The true plastic strain in the sample impacted with 30 J was 

14.0 %, while for an impact energy of 110 J, the true plastic strain was 53.4 %. In the 

samples after punch testing with speeds of 8.33×10-5 and 8.33×10-7 m/s, the achieved 

values of true plastic strain were 41.4 % and 53.7 %, respectively. 

 

  

Fig. 5. (a) Force-displacement curves from drop weight impact and quasi-static punch 

testing; (b) Dependence of the true plastic strain with the impact energy in samples 

after drop weight testing. (For interpretation of the references to color in this figure 

legend, the reader is referred to the Web version of this article.) 

 

3.2. Microstructure evolution 

The microstructure of the as-received material is shown in Fig. 6(a), where 

retained austenite, tempered martensite and untempered (fresh) martensite can be 

identified. Two types of retained austenite are seen in the EBSD maps: large blocky 

retained austenite grains and the interlath lamellar-type one. The fraction of retained 

austenite in the Q&P treated steel measured by EBSD was 9.6 % which is less than 

the value measured by X-ray diffraction on the same material, 18 %, reported earlier 

by Diego- Calderón et al. in [13]. The difference between the volume fractions 

determined by XRD and EBSD is related to the presence of very thin film-type 

retained austenite having a thickness of 10-20 nm, which cannot be detected by EBSD 

[27,28]. The two types of martensite, tempered martensite and untempered martensite 



can be identified on EBSD maps due to their difference in band contrast. As seen in 

Fig. 6(a), untempered martensite is darker than tempered martensite due to higher 

density of lattice defects which decreases its Kikuchi pattern quality. A significant 

effect of impact testing on the microstructure of the material is clearly seen from Fig. 

6(a) to (d). The initially equiaxed grains are biaxially stretched in the RD-TD plane. 

The band contrast is reduced and grain boundaries become blurry (as shown in Fig. 

6(c) and (d)) due to increased dislocation density, which can be reflected indirectly 

from Kernel Average Mmisorientation (KAM) (see Fig. 9). 

 

 

  

  

  

Fig. 6. Band contrast map (with gray color) and retained austenite phase map (with 

green color) of the tested specimens as a function of true plastic strain in different 

conditions: (a) original non-deformed material; (b) 28.6 % (4.77 m/s, 60 J); (c) 42.2 % 
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(4.06 m/s, 90 J); (d) 53.4 % (6.40 m/s, 110 J); (e) 42.2 % (8.33×10-5 m/s, punch 

testing); (f) 53.7 % (8.33×10-7 m/s, punch). The horizontal plane is parallel to the RD. 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the Web version of this article.) 

 

The volume fraction of retained austenite in samples after drop weight testing 

tends to decrease with increasing true plastic strain, from the initial 9.6 % to a 

saturation value of ~0.7 % after reaching a true plastic strain of 42.2 % 

(corresponding to an impact energy of 90 J). The volume fraction of retained austenite 

as a function of true plastic strain follows an exponential function with a correlation 

coefficient of R2=0.99, and the fitting parameters presented in Fig. 7. Based on the 

fitting curve, it can be hypothesized that 0.58 % of retained austenite would remain 

untransformed with further increasing strain. 

The microstructure of the samples after punch testing (Fig. 6(e) and (f)) is similar 

to that of the sample after 110 J impact testing. The volume fraction of retained 

austenite in the specimens tested at 8.33×10-5 and 8.33×10-7 m/s was 0.44 % and 

0.35 %, respectively, which is close to that in the specimen after 110 J impact testing 

(Fig. 7). 

 

Fig. 7. Relationship between volume fraction of retained austenite and true plastic 

strain in the samples after drop weight impact and punch testing. 

 



KAM is an effective EBSD-based approach to analyze local micro-deformation. 

Typical KAM maps for the undeformed specimen and specimen after drop weight 

impact testing with 110 J energy (strain, 53.40%) are shown in Fig. 8(a) and Fig. 8(b), 

respectively. Histograms of distribution of misorientation in the martensite and 

austenite generated from the KAM maps of different specimens are compared in 

Figure 9. It is seen from Fig. 8a that in the underformed material, the interior of grains 

in tempered martensite matrix and retained austenite has near zero local 

misorientation, while higher local misorientations up to ~1.5 o are observed in the 

areas corresponding to untempered martensite and at grain boundaries due to local 

deformation induced by phase transformation. After drop weight testing with 

increasing plastic strain, the curves for both martensite and austenite are gradually 

shifted towards higher misorientations due to increasing density of defects. Local 

misorientations of 0.8-2.5 % prevail in the KAM map for tempered martensite in the 

110 J sample (Fig. 8(b)), which might be related to formation of a cell structure in the 

grain interior (Fig. 6(d)) due to the very high plastic strain induced into material, 

53.4 %. It should be noted that the latter sample presented slightly lower 

misorientations than those for the punch tested samples, despite all of them presented 

very similar values of true plastic strain (Fig. 9(a)). A similar phenomenon can be 

found in the KAM maps of retained austenite in Fig. 9(b) as well. It should be noted 

that the histograms of misorientation distribution in the martensite and retained 

austenite of specimens after quasi-static testing are similar to those in the specimens 

after drop weight testing to the same plastic strain (Figure 9). 

 

  

Fig. 8. Typical KAM maps of the Q&P steel at different conditions: (a) undeformed; 

A B 



(b) after drop weight impact testing with 110 J energy (strain, 53.40%). White pixels 

correspond to the points with low indexation reliability. (For interpretation of the 

references to color in this figure legend, the reader is referred to the Web version of 

this article.) 

 

  

Fig. 9. KAM statistical distribution of (a) martensite and (b) retained austenite for 

samples before and after testing with different parameters. (For interpretation of the 

references to color in this figure legend, the reader is referred to the Web version of 

this article). 

 

3.3. Cracking 

The fracture surfaces of cracked samples after drop weight and quasi-static punch 

testing were carefully examined by SEM. In Figs. 10(a-d) fracture surfaces of a 

sample after drop weight testing is presented. As can be seen from Fig. 10(a), they are 

characterized by the presence of dimples, thus indicating ductile failure of the 

material, and elongated microcracks having a length of several hundred micrometers. 

The long microcracks are parallel to the rolling direction. Block-like manganese 

sulfide (MnS) inclusions were detected by EDS inside the microcracks (Fig. 10(b)). It 

is well known that MnS inclusions serve as nucleation sites and propagation pathways 

for long microcracks in steels [29]. The morphology of the dimples on the fracture 

surface shown in Fig. 10(d) is typical for those formed during ductile fracture. The 

fractography of static punch tested specimens is shown in Fig. 10(e) to (h). Samples 

after quasi-static punch testing at both speeds show similar fracture surfaces 

composed of long microcracks formed by MnS inclusions and ‘dimples’. The 



morphology of the long microcracks is similar to that observed in the sample after 

drop weight impact tests. The morphology of the dimples is illustrated in Fig. 10(f) 

and (h), where two types of dimples can be identified. First type of dimples (marked 

by solid circle in Fig. 10(f)) is similar to that observed on the fracture surface of 

specimens after drop weight impact tests (Fig. 10(d)). The second type of dimples 

(marked by dashed circle in Fig. 10(f)) presents smooth cleavage-like facets 

indicating local shearing failure. This observation can be related to the crack 

formation on the side of the hemisphere shell, where a shearing component is present 

in the stress mode (see Section 4.3). 
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Fig. 10. SEM fracture surface of cracked specimens tested at different conditions: (a - 

d) after drop weight impact with 120 J; (e, f) after quasi-static punch test with speed 

of 8.33×10-5 m/s; (g, h) after quasi-static punch test with speed of 8.33×10-7 m/s. 

 

4. Discussion 

4.1. Effect of strain rate on energy absorption capability 

To compare the maximum energy absorption capability of the Q&P steel during 

drop weight impact and quasi-static punch testing, the areas under the 

load-displacement curves was calculated [30], since it determines the energy absorbed 

in these processes. The calculation outcomes along with the corresponding true plastic 

strain values are listed in Table 2. The sample tested at 6.46 m/s was not fractured at 

the end of the test, so the energy given in Table 2 gives an under limit for the energy 

absorption capacity of the sample. The average strain rate was estimated as a ratio of 

the measured plastic strain to time. It is seen that the energy consumed by the 1 mm 

sheet of the Q&P steel at fracture in both static and dynamic tests is above 110 J. In 

the meanwhile, the values of maximum energy withstood by AISI 304 and DP 1180 

steels are 130 J and 90 J, respectively. These experimental results will be published in 

a future article. It is clearly seen that the studied Q&P steel shows enhanced crush 

resistance above that of the DP 1180 steel, though it is lower compared to the AISI 

304 stainless steel. This capability should stem from the unique microstructure of the 

material. The high strength tempered martensite matrix is able to accumulate a high 

amount of plastic deformation without any (micro)cracking (Fig. 9(a)), while the 

retained austenite provides an extra ductility due to the TRIP effect (Fig. 8) as well as 

G H 



by bearing plastic deformation (Fig. 9(b)). 

Another interesting observation is that the energies absorbed in quasi-static 

punch tests for both strain rates (123 J and 131 J) are higher than that in the drop 

weight impact tests (114 J), despite the strain rate being five to seven orders of 

magnitude higher in the latter case (Table 2). Thus, the ability of the material to 

absorb energy is lower at high strain rates (i.e. impact). This observation can be 

rationalized based on adiabatic heating effect. The Q&P steel is locally weakened due 

to the softening effect of adiabatic heating on the martensitic matrix during drop 

weight impact test. It is clearly seen from the force-displacement curves in Fig. 4(a) 

that during quasi-static punch testing a higher force (i.e. stress) is required to achieve 

similar displacements, thus indicating a higher strength of the material. This is also 

confirmed by measurements of adiabatic temperature change. The maximum 

temperature recorded during 110 J impact testing was 187 °C, which should reduce 

the tensile strength of the material by 10-15 % without any increase of ductility 

[31,32]. In the meanwhile, the heat generated in quasi-static punch testing flows into 

the punch and fixing elements keeping the specimen temperature constant. 

 

Table 2. Test speed, calculated energy, true strain, strain rate and sample state for both 

drop weight impact and punch tests. 

Test speed (m/s) 
Average strain 

rate (s-1) 

Calculated 

energy (J) 

True strain 

(%) 
Sample state 

8.33×10-7 6.8×10-5 123 53.7 cracked 

8.33×10-5 5.3×10-3 131 42.3 cracked 

6.46 384 105 53.4 uncracked 

6.74 421 114 57.9* cracked 

*value obtained via extrapolation of the fitting function in Fig. 5(b). 

 

4.2. Evolution of retained austenite  

In the present work, an exponential decrease of the volume fraction of retained 

austenite with increasing plastic strain during drop weight testing (i.e. in biaxial 



stretching) has been found (Fig. 7). It is well known that the stress state has a 

significant effect on stability of retained austenite during plastic deformation [33–35]. 

Particularly, the biaxial stretching promotes austenite transformation compared to 

uniaxial testing [35]. Similar investigations on the evolution of retained austenite 

under uniaxial tensile deformation were already carried out. By employing XRD, Hao 

et al. [36] measured the fraction of retained austenite in a Q-P-T steel as a function of 

plastic deformation under quasi-static uniaxial tension. The content of retained 

austenite decreased rapidly from 10.8 % to less than 3.0 % with increasing plastic 

strain to 11 %, indicating that martensitic transformation occurred extensively at the 

early stages of deformation. De Knijf et al. [37] studied the behavior of retained 

austenite in a Q&P steel (with the same chemical composition and microstructure as 

the one in the current study) during quasi-static tensile testing. They also found an 

exponential decay of the volume fraction of retained austenite with increasing plastic 

strain. Therefore, the conclusion can be drawn that volume fraction of retained 

austenite decreases exponentially with plastic strain both under uniaxial and biaxial 

loading. 

 

4.3. Effect of strain rate on strain distribution in tested specimens 

The fracture surfaces of the specimens after impact and quasi-static punch testing 

show somewhat different morphologies. Long microcracks formed by MnS inclusions 

are present in both and chisel-point dimples dominating the fracture surface and 

indicating ductile failure. Generally, similar morphology of ductile fracture surface 

should indicate similar energy spent for its formation, according to the Stuwe model 

[38]. However, after integrating the force-displacement curves, we found that the 

studied Q&P steel absorbed a higher amount of energy in quasi-static punch tests, as 

shown in Table 2. The following explanation is proposed for this observation. The 

measurements of the radial strain distribution over the dome (as shown in Fig. 11), 

show their different character in samples after drop weight impact and quasi-static 

punch testing. For drop weight impact tested specimens, the strain peak appears in the 

top of the dome (red line in Fig. 11), while for quasi-static punched samples, the dome 



top has lower strain than its surrounding area. This difference can be ascribed to the 

variation of friction coefficient with rising strain rate (i.e. contact speed). As 

confirmed previously by pin-on-disk wear testing [39], the friction coefficient 

between the puncher and specimen decreases with increasing speed. On the other 

hand, the friction condition can influence the strain distribution significantly during 

punch tests, i.e. high frictional force retards deformation in the top of dome causing 

less deformation there and more deformation in the unsupported areas [40,41]. A 

similar effect is observed in the present study. Figure 11 illustrates plastic strain 

distribution over the dome of samples tested by both methods. It is clearly seen that 

the decreasing strain rate shifted the strain peak from the top (red line on Fig. 11) 

toward the edge of the hemispherical dome (green line on Fig. 11). Therefore, samples 

tested by quasi-static punch method cracked in the area which is displaced to the side 

of the dome, where the highest amount of plastic strain was accumulated (Fig. 4(b)). 

 

Fig. 11. Typical strain distribution over the dome of specimens after drop weight 

impact and quasi-static punch testing. (The curves of 8.33×10-5 m/s and 4.06 m/s are 

for punch and drop weight impact (90 J) testing, respectively) 

 

4.4. Feasibility of Q&P steels for automotive applications 

As shown above, the studied Q&P steel has a better impact resistance than the DP 

1180 steel due to their unique microstructure. Despite the AISI 304 stainless steel 

shows somewhat better impact resistance, it cannot compete with the Q&P steel due 

to its very high cost related to the expensive alloying elements and their high content. 



Furthermore, the studied Q&P steel can accumulate higher plastic strain during 

quasi-static punch testing and absorb a higher amount of energy than during impact, 

showing a remarkable biaxial stretching formability, which is advantageous for 

automotive stamping. The improved formability of the present steel is provided by the 

martensitic matrix being able to accumulate a higher amount of plastic deformation 

(Fig. 8b) and by the TRIP effect provided by the retained austenite grains (Fig. 7). The 

latter has been well known for decades [42] as the effect of dislocation absorption of 

retained austenite (DARA) [43] during deformation, moderates possible local stress 

concentrations and delays crack propagation. The results show excellent prospects in 

automotive industry for this Q&P steels. As it is well known, high strength combined 

with high formability is the main requirement for materials used for manufacturing of 

complex shape automotive parts such as B-pillar reinforcements and floor beams. 

There are already reports on these parts produced from high strength Q&P steels with 

the aim of reducing car weight [44,45] and relevant investigations about their 

industrial applications are on the way now [46–50]. This work demonstrates that 

another advantage of Q&P steels for application in automotive sector lays on their 

enhanced crashworthiness, which improves the passenger safety.  

 

5. Conclusions 

The mechanical behavior, microstructure evolution and failure behavior of a 

quenched and partitioned (Q&P) steel were investigated by employing drop weight 

impact testing and quasi-static punch testing. The following conclusions can be 

drawn: 

1. In drop weight impact testing, the Q&P steel (1 mm thick) can withstand at 

least an impact energy of 110 J without cracking, with the steel accumulating a true 

plastic strain of 54%. The Q&P steel showed a better impact resistance than DP 1180 

steel. 

2. The Q&P steel has a slightly better energy absorption capability during 

quasi-static punch testing than during drop weight impact testing. This is mainly 



related to the softening of the material induced by adiabatic heating during impact 

testing. 

3. The volume fraction of retained austenite decreases exponentially with 

increasing plastic strain during biaxial stretching, similarly to what has been reported 

before for uniaxial tensile deformation. 

4. In drop weight impact tests, the specimens cracked at the top of hemisphere, 

while the failure position of specimens tested by quasi-static punch method was 

displaced to the side of the dome. This observation is related to the higher friction 

coefficient during quasit-static punch testing, which retards plastic deformation on the 

top of the dome and shifts the peak strain to the side. 
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