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Abstract: Rough set theory and neutrosophic set theory are mathematical models to deal with
incomplete and vague information. These two theories can be combined into a framework for
modeling and processing incomplete information in information systems. Thus, the neutrosophic
rough set hybrid model gives more precision, flexibility and compatibility to the system as compared
to the classic and fuzzy models. In this research study, we develop neutrosophic rough digraphs based
on the neutrosophic rough hybrid model. Moreover, we discuss regular neutrosophic rough digraphs,
and we solve decision-making problems by using our proposed hybrid model. Finally, we give
a comparison analysis of two hybrid models, namely, neutrosophic rough digraphs and rough
neutrosophic digraphs.

Keywords: neutrosophic rough hybrid model; regular neutrosophic rough digraphs;
decision-making method

1. Introduction

The concept of a neutrosophic set, which generalizes fuzzy sets [1] and intuitionistic fuzzy
sets [2], was proposed by Smarandache [3] in 1998, and it is defined as a set about the degree
of truth, indeterminacy, and falsity. A neutrosophic set A in a universal set X is characterized
independently by a truth-membership function (TA(x)), an indeterminacy-membership function
(IA(x)), and a falsity-membership function (FA(x)). To apply neutrosophic sets in real-life problems
more conveniently, Smarandache [3] and Wang et al., [4] defined single-valued neutrosophic sets
which take the value from the subset of [0, 1].

Rough set theory was proposed by Pawlak [5] in 1982. Rough set theory is useful to study
the intelligence systems containing incomplete, uncertain or inexact information. The lower and
upper approximation operators of rough sets are used for managing hidden information in a system.
Therefore, many hybrid models have been built such as soft rough sets, rough fuzzy sets, fuzzy rough
sets, soft fuzzy rough sets, neutrosophic rough sets and rough neutrosophic sets for handling
uncertainty and incomplete information effectively. Dubois and Prade [6] introduced the notions
of rough fuzzy sets and fuzzy rough sets. Liu and Chen [7] have studied different decision-making
methods. Mordeson and Peng [8] presented operations on fuzzy graphs. Akram et al., [9–12]
considered several new concepts of neutrosophic graphs with applications. Rough fuzzy digraphs
with applications are presented in [13,14]. To get the extended notion of neutrosophic sets and
rough sets, many attempts have been made. Broumi et al., [15] introduced the concept of rough
neutrosophic sets. Yang et al., [16] proposed single valued neutrosophic rough sets by combining
single valued neutrosophic sets and rough sets, and established an algorithm for the decision-making
problem based on single valued neutrosophic rough sets on two universes. Nabeela et al., [17]
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and Sayed et al., [18] introduced rough neutrosophic digraphs, in which they have approximated
neutrosophic set under the influence of a crisp equivalence relation. In this research article, we apply
another hybrid set model, neutrosophic rough, to graph theory. We deal with regular neutrosophic
rough digraphs and then solve the decision-making problem by using our proposed hybrid model.

Our paper is organized as follows: Firstly, we develop the notion of neutrosophic rough digraphs
and present some numerical examples. Secondly, we explore basic properties of neutrosophic rough
digraphs. In particular, we investigate the regularity of neutrosophic rough digraphs. We describe
novel applications of our proposed hybrid decision-making method. To compare the two notions,
rough neutrosophic digraphs and neutrosophic rough digraphs, we give a comparison analysis.
Finally, we end the paper by concluding remarks.

2. Neutrosophic Rough Information

Definition 1. [4] Let Z be a nonempty universe. A neutrosophic set N on Z is defined as follows:

N = {< x : TN(x), IN(x), FN(x) >: x ∈ Z},

where the functions T, I, F:Z→ [0, 1] represent the degree of membership, the degree of indeterminacy and the
degree of falsity.

Definition 2. [5] Let Z be a nonempty universe and R an equivalence relation on Z. A pair (Z, R) is called
an approximation space. Let N∗ be a subset of Z and the lower and upper approximations of N∗ in the
approximation space (Z, R) denoted by RN∗ and RN∗ are defined as follows:

RN∗ = {x ∈ Z|[x]R ⊆ N∗},
RN∗ = {x ∈ Z|[x]R ∩ N∗ 6= φ},

where [x]R denotes the equivalence class of R containing x. A pair (RN∗, RN∗) is called a rough set.

For other notations and applications, readers are referred to [19–32].

Definition 3. [16] Let X∗ be a nonempty universe and R a neutrosophic relation on X∗. Let X be a neutrosophic
set on X∗, defined as

X = {< x, TX(x), IX(x), FX(x) >: x ∈ X∗}.

Then the lower and upper approximations of X represented by RX and RX, respectively, are characterized
as neutrosophic sets in X∗ such that, ∀x ∈ X∗

RX = {< x, TR(X)(x), IR(X)(x), FR(X)(x) >: y ∈ X∗},
RX = {< x, TR(X)(x), IR(X)(x), FR(X)(x) >: y ∈ X∗},

where

TRX(x) =
∧

y∈X

(
FR(x, y) ∨ TX(y)

)
,

IRX(x) =
∨

y∈X

(
1− IR(x, y) ∧ IX(y)

)
,

FRX(x) =
∨

y∈X

(
TR(x, y) ∧ FX(y)

)
,
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and

TRX(x) =
∨

y∈X

(
TR(x, y) ∧ TX(y)

)
,

IRX(x) =
∧

y∈X

(
IR(x, y) ∨ IX(y)

)
,

FRX(x) =
∧

y∈X

(
FR(x, y) ∨ FX(y)

)
.

A pair (RX, RX) ia called a neutrosophic rough set.

Definition 4. Let X∗ be a nonempty set and R a neutrosophic tolerance relation on X∗. Let X be a neutrosophic
set on X∗ defined as:

X = {< x, TX(x), IX(x), FX(x) >: x ∈ X∗}.
Then the lower and upper approximations of X represented by RX and RX, respectively, are characterized

as neutrosophic sets in X∗ such that, ∀ x ∈ X∗

RX = {< x, TRX(x), IRX(x), FRX(x) >: y ∈ X∗},
RX = {< x, TRX(x), IRX(x), FRX(x) >: y ∈ X∗},

where

TRX(x) =
∧

y∈X∗

(
FR(x, y) ∨ TX(y)

)
,

IRX(x) =
∧

y∈X∗

(
1− IR(x, y) ∨ IX(y)

)
,

FRX(x) =
∨

y∈X∗

(
TR(x, y) ∧ FX(y)

)
,

and

TRX(x) =
∨

y∈X∗

(
TR(x, y) ∧ TX(y)

)
,

IRX(x) =
∨

y∈X∗

(
IR(x, y) ∧ IX(y)

)
,

FRX(x) =
∧

y∈X∗

(
FR(x, y) ∨ FX(y)

)
.

Let Y∗ ⊆ X∗ × X∗ and S a neutrosophic tolerance relation on Y∗ such that

TS((x1, x2)(y1, y2)) =min{TR(x1, y1), TR(x2, y2)},
IS((x1, x2)(y1, y2) =min{IR(x1, y1), IR(x2, y2)},

FS((x1, x2)(y1, y2)) =max{FR(x1, y1), FR(x2, y2)}.

Let Y be a neutrosophic set on Y∗ defined as:

Y = {< xy, TY(xy), IY(xy), FY(xy) >: xy ∈ Y∗},
such that

TY(xy) ≤min{TRX(x), TRX(y)},
IY(xy) ≤min{IRX(x), IRX(y)},
FY(xy) ≤max{FRX(x), FRX(y)} ∀ x, y ∈ X∗.
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Then the lower and the upper approximations of Y represented by SY and SY, are defined as follows:

SY = {< xy, TSY(xy), ISY(xy), FSY(xy) >: xy ∈ Y∗},
SY = {< xy, TSY(xy), ISY(xy), FSY(xy) >: xy ∈ Y∗},

where

TSY(xy) =
∧

wz∈Y∗

(
FS((xy), (wz)) ∨ TY(wz)

)
,

ISY(xy) =
∧

wz∈Y∗

(
(1− IS((xy), (wz))) ∨ IY(wz)

)
,

FSY(xy) =
∨

wz∈Y∗

(
TS((xy), (wz)) ∧ FY(wz)

)
,

and

TSY(xy) =
∨

wz∈Y∗

(
TS((xy), (wz)) ∧ TY(wz)

)
,

ISY(xy) =
∨

wz∈Y∗

(
IS((xy), (wz)) ∧ IY(wz)

)
,

FSY(xy) =
∧

wz∈Y∗

(
FS((xy), (wz)) ∨ FY(wz)

)
.

A pair SY = (SY, SY) is called neutrosophic rough relation.

Definition 5. A neutrosophic rough digraph on a nonempty set X∗ is a 4-ordered tuple G = (R, RX, S, SY)
such that

(a) R is a neutrosophic tolerance relation on X∗,
(b) S is a neutrosophic tolerance relation on Y∗ ⊆ X∗ × X∗,
(c) RX = (RX, RX) is a neutrosophic rough set on X∗,
(d) SY = (SY, SY) is a neutrosophic rough relation on X∗,
(e) (RX, SY) is a neutrosophic rough digraph where G = (RX, SY) and G = (RX, SY) are lower and upper

approximate neutrosophic digraphs of G such that

TSY(xy) ≤ min{TRX(x), TRX(y)},
ISY(xy) ≤ min{IRX(x), IRX(y)},
FSY(xy) ≤ max{FRX(x), FRX(y)},

TSY(xy) ≤ min{TRX(x), TRX(y)},
ISY(xy) ≤ min{IRX(x), IRX(y)},
FSY(xy) ≤ max{FRX(x), FRX(y)} ∀ x, y ∈ X∗.

Example 1. Let X∗ = {p, q, r, s, t} be a nonempty set and R a neutrosophic tolerance relation on X∗ is given as:
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R p q r s t
p (1,1,0) (0.5,0.2,0.3) (0.1,0.9,0.4) (0.6,0.5,0.2) (0.2,0.1,0.8)
q (0.5,0.2,0.3) (1,1,0) (0.3,0.7,0.5) (0.1,0.9,0.6) (0.6,0.5,0.1)
r (0.1,0.9,0.4) (0.3,0.7,0.5) (1,1,0) (0.2,0.8,0.7) (0.1,0.9,0.6)
s (0.6,0.5,0.2) (0.1,0.9,0.6) (0.2,0.8,0.7) (1,1,0) (0.2,0.3,0.1)
t (0.2,0.1,0.8) (0.6,0.5,0.1) (0.1,0.9,0.6) (0.2,0.3,0.1) (1,1,0)

Let X1 = {(p, 0.2, 0.1, 0.7), (q, 0.4, 0.5, 0.6), (r, 0.7, 0.8, 0.9), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.4)} be
a neutrosophic set on X∗. The lower and upper approximations of X1 are given as:

RX1 = {(p, 0.2, 0.1, 0.7), (q, 0.3, 0.5, 0.6), (r, 0.4, 0.1, 0.9), (s, 0.2, 0.5, 0.6), (t, 0.2, 0.5, 0.6)},
RX1 = {(p, 0.4, 0.2, 0.8), (q, 0.6, 0.9, 0.4), (r, 0.7, 0.8, 0.6), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.1)}.

Let Y∗ = {pr, qs, rt, sp, tq} ⊆ X∗ × X∗ and S a neutrosophic tolerance relation which is given as:

S pr qs rt sp tq
pr (1,1,0) (0.2,0.2,0.7) (0.1,0.9,0.6) (0.1,0.5,0.4) (0.2,0.1,0.8)
qs (0.2,0.2,0.7) (1,1,0) (0.2,0.3,0.5) (0.1,0.5,0.6) (0.1,0.5,0.6)
rt (0.1,0.9,0.6) (0.2,0.3,0.5) (1,1,0) (0.2,0.1,0.8) (0.1,0.5,0.6)
sp (0.1,0.5,0.4) (0.1,0.5,0.6) (0.2,0.1,0.8) (1,1,0) (0.2,0.2,0.3)
tq (0.2,0.1,0.8) (0.1,0.5,0.6) (0.1,0.5,0.6) (0.2,0.2,0.3) (1,1,0)

Let Y1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (rt, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)} be
a neutrosophic set on Y∗. The lower and upper approximations of Y1 are given as:

SY1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (rt, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)},
SY1 = {(pr, 0.2, 0.2, 0.4), (qs, 0.2, 0.4, 0.3), (rt, 0.2, 0.4, 0.4), (sp, 0.2, 0.3, 0.2), (tq, 0.2, 0.4, 0.3)}.

Thus, G = (RX1, SY1) and G = (RX1, SY1) are neutrosophic digraphs as shown in Figure 1.

R p q r s t
p (1,1,0) (0.5,0.2,0.3) (0.1,0.9,0.4) (0.6,0.5,0.2) (0.2,0.1,0.8)
q (0.5,0.2,0.3) (1,1,0) (0.3,0.7,0.5) (0.1,0.9,0.6) (0.6,0.5,0.1)
r (0.1,0.9,0.4) (0.3,0.7,0.5) (1,1,0) (0.2,0.8,0.7) (0.1,0.9,0.6)
s (0.6,0.5,0.2) (0.1,0.9,0.6) (0.2,0.8,0.7) (1,1,0) (0.2,0.3,0.1)
t (0.2,0.1,0.8) (0.6,0.5,0.1) (0.1,0.9,0.6) (0.2,0.3,0.1) (1,1,0)

Let X1 = {(p, 0.2, 0.1, 0.7), (q, 0.4, 0.5, 0.6), (r, 0.7, 0.8, 0.9), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.4)} be a neutrosophic set
on X∗. The lower and upper approximations of X1 are given as:

RX1 = {(p, 0.2, 0.1, 0.7), (q, 0.3, 0.5, 0.6), (r, 0.4, 0.1, 0.9), (s, 0.2, 0.5, 0.6), (t, 0.2, 0.5, 0.6)},
RX1 = {(p, 0.4, 0.2, 0.8), (q, 0.6, 0.9, 0.4), (r, 0.7, 0.8, 0.6), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.1)}.

Let Y ∗ = {pr, qs, rt, sp, tq} ⊆ X∗ ×X∗ and S a neutrosophic tolerance relation which is given as:

S pr qs rt sp tq
pr (1,1,0) (0.2,0.2,0.7) (0.1,0.9,0.6) (0.1,0.5,0.4) (0.2,0.1,0.8)
qs (0.2,0.2,0.7) (1,1,0) (0.2,0.3,0.5) (0.1,0.5,0.6) (0.1,0.5,0.6)
rt (0.1,0.9,0.6) (0.2,0.3,0.5) (1,1,0) (0.2,0.1,0.8) (0.1,0.5,0.6)
sp (0.1,0.5,0.4) (0.1,0.5,0.6) (0.2,0.1,0.8) (1,1,0) (0.2,0.2,0.3)
tq (0.2,0.1,0.8) (0.1,0.5,0.6) (0.1,0.5,0.6) (0.2,0.2,0.3) (1,1,0)

Let Y1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (rt, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)} be a neutro-
sophic set on Y ∗. The lower and upper approximations of Y1 are given as:

SY1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (rt, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)},
SY1 = {(pr, 0.2, 0.2, 0.4), (qs, 0.2, 0.4, 0.3), (rt, 0.2, 0.4, 0.4), (sp, 0.2, 0.3, 0.2), (tq, 0.2, 0.4, 0.3)}.

Thus, G = (RX1, SY1) and G = (RX1, SY1) are neutrosophic digraphs as shown in Fig. 1.
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5

Figure 1. Neutrosophic rough digraph G1 = (G1, G1).

Example 2. Let X∗ = {u, v, w, x, y, z} be a crisp set and R a neutrosophic tolerance relation on X∗ given by

R u v w x y z
u (1,1,0) (0.2,0.3,0.5) (0.5,0.6,0.9) (0.3,0.8,0.3) (0.3,0.2,0.1) (0.1,0.1,0.5)
v (0.2,0.3,0.5) (1,1,0) (0.9,0.5,0.6) (0.1,0.5,0.7) (0.8,0.9,0.1) (0.8,0.9,0.1)
w (0.5,0.6,0.9) (0.9,0.5,0.6) (1,1,0) (0.3,0.6,0.8) (0.2,0.3,0.6) (0.7,0.6,0.6)
x (0.3,0.8,0.3) (0.1,0.5,0.7) (0.3,0.6,0.8) (1,1,0) (0.5,0.1,0.9) (0.8,0.7,0.2)
y (0.3,0.2,0.1) (0.8,0.9,0.1) (0.2,0.3,0.6) (0.5,0.1,0.9) (1,1,0) (0.6,0.5,0.9)
z (0.1,0.1,0.5) (0.8,0.9,0.1) (0.7,0.6,0.6) (0.8,0.7,0.2) (0.6,0.5,0.9) (1,1,0)
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Let X = {(u, 0.9, 0.3, 0.1), (v, 0.5, 0.6, 0.2), (w, 0.8, 0.5, 0.3), (x, 0.7, 0.6, 0.9), (y, 0.5, 0.2, 0.1),
(z, 0.9, 0.7, 0.3)} be a neutrosophic set on X∗. Then the lower and upper approximations of X are given as follows:

RX = {(u, 0.5, 0.3, 0.3), (v, 0.5, 0.2, 0.3), (w, 0.6, 0.4, 0.3), (x, 0.7, 0.3, 0.9), (y, 0.5, 0.2, 0.5), (z, 0.5, 0.5, 0.8)},
RX = {(u, 0.9, 0.6, 0.1), (v, 0.8, 0.7, 0.1), (w, 0.8, 0.6, 0.3), (x, 0.8, 0.7, 0.3), (y, 0.6, 0.6, 0.1), (z, 0.9, 0.7, 0.2)}.

Let Y∗ = {uv, vw, wx, xy, yz, zu, zw, vy} ⊆ X∗ × X∗ and S a neutrosophic tolerance relation on Y∗

given as

S uv vw wx xy yz zu zw vy
uv (1,1,0) (0.2,0.3,0.6) (0.1,0.5,0.9) (0.3,0.8,0.3) (0.3,0.2,0.1) (0.1,0.1,0.5) (0.1,0.1,0.6) (o.2,0.3,0.5)
vw (0.2,0.3,0.6) (1,1,0) (0.3,0.5,0.8) (0.1,0.3,0.7) (0.7,0.6,0.6) (0.5,0.6,0.9) (0.8,0.9,0.1) (0.2,0.3,0.6)
wx (0.1,0.5,0.9) (0.3,0.5,0.8) (1,1,0) (0.3,0.1,0.9) (0.2,0.3,0.6) (0.3,0.6,0.6) (0.3,0.6,0.8) (0.5,0.1,0.9)
xy (0.3,0.8,0.3) (0.1,0.3,0.7) (0.3,0.1,0.9) (1,1,0) (0.5,0.1,0.9) (0.3,0.2,0.2) (0.2,0.3,0.6) (0.1,0.5,0.7)
yz (0.3,0.2,0.1) (0.7,0.6,0.6) (0.2,0.3,0.6) (0.5,0.1,0.9) (1,1,0) (0.1,0.1,0.9) (0.6,0.5,0.9) (0.6,0.5,0.9)
zu (0.1,0.1,0.5) (0.5,0.6,0.9) (0.3,0.6,0.6) (0.3,0.2,0.2) (0.1,0.1,0.9) (1,1,0) (0.5,0.6,0.9) (0.3,0.3,0.1)
zw (0.1,0.1,0.6) (0.8,0.9,0.1) (0.3,0.6,0.8) (0.2,0.3,0.6) (0,6,0.5,0.9) (0.5,0.6,0.9) (1,1,0) (0.2,0.3,0.6)
vy (0.2,0.3,0.5) (0.2,0.3,0.6) (0.5,0.1,0.9) (0.1,0.5,0.7) (0.6,0.5,0.9) (0.3,0.2,0.1) (0.2,0.3,0.6) (1,1,0)

Let Y be a neutrosophic set on Y∗ defined as Y = {(uv, 0.5, 0.2, 0.1), (vw, 0.5, 0.2, 0.3), (wx, 0.5, 0.3, 0.3),
(xy, 0.5, 0.2, 0.3), (yz, 0.5, 0.2, 0.2), (zu, 0.5, 0.3, 0.2), (zw, 0.5, 0.4, 0.3), (vy, 0.5, 0.2, 0.1)}. Then the lower
and upper approximations of Y are given as

SY = {(uv, 0.5, 0.2, 0.3), (vw, 0.5, 0.2, 0.3), (wx, 0.5, 0.3, 0.3), (xy, 0.5, 0.2, 0.3), (yz, 0.5, 0.2, 0.3),

(zu, 0.5, 0.3, 0.3), (zw, 0.5, 0.2, 0.3), (vy, 0.5, 0.2, 0.3)},
SY = {(uv, 0.5, 0.3, 0.1), (vw, 0.5, 0.4, 0.3), (wx, 0.5, 0.4, 0.3), (xy, 0.5, 0.3, 0.3), (yz, 0.5, 0.4, 0.1),

(zu, 0.5, 0.4, 0.1), (zw, 0.5, 0.4, 0.3), (vy, 0.5, 0.3, 0.1)}.

Thus, G = (RX, SY) and G = (RX, SY) are the neutrosophic digraphs as shown in Figure 2.

R u v w x y z
u (1,1,0) (0.2,0.3,0.5) (0.5,0.6,0.9) (0.3,0.8,0.3) (0.3,0.2,0.1) (0.1,0.1,0.5)
v (0.2,0.3,0.5) (1,1,0) (0.9,0.5,0.6) (0.1,0.5,0.7) (0.8,0.9,0.1) (0.8,0.9,0.1)
w (0.5,0.6,0.9) (0.9,0.5,0.6) (1,1,0) (0.3,0.6,0.8) (0.2,0.3,0.6) (0.7,0.6,0.6)
x (0.3,0.8,0.3) (0.1,0.5,0.7) (0.3,0.6,0.8) (1,1,0) (0.5,0.1,0.9) (0.8,0.7,0.2)
y (0.3,0.2,0.1) (0.8,0.9,0.1) (0.2,0.3,0.6) (0.5,0.1,0.9) (1,1,0) (0.6,0.5,0.9)
z (0.1,0.1,0.5) (0.8,0.9,0.1) (0.7,0.6,0.6) (0.8,0.7,0.2) (0.6,0.5,0.9) (1,1,0)

.

Let X = {(u, 0.9, 0.3, 0.1), (v, 0.5, 0.6, 0.2), (w, 0.8, 0.5, 0.3), (x, 0.7, 0.6, 0.9), (y, 0.5, 0.2, 0.1),
(z, 0.9, 0.7, 0.3)} be a neutrosophic set on X∗. Then the lower and upper approximations of X are given as
follows:

RX = {(u, 0.5, 0.3, 0.3), (v, 0.5, 0.2, 0.3), (w, 0.6, 0.4, 0.3), (x, 0.7, 0.3, 0.9), (y, 0.5, 0.2, 0.5), (z, 0.5, 0.5, 0.8)},
RX = {(u, 0.9, 0.6, 0.1), (v, 0.8, 0.7, 0.1), (w, 0.8, 0.6, 0.3), (x, 0.8, 0.7, 0.3), (y, 0.6, 0.6, 0.1), (z, 0.9, 0.7, 0.2)}.

Let Y ∗ = {uv, vw,wx, xy, yz, zu, zw, vy} ⊆ X∗ ×X∗ and S a neutrosophic tolerance relation on Y ∗ given as

S uv vw wx xy yz zu zw vy
uv (1,1,0) (0.2,0.3,0.6) (0.1,0.5,0.9) (0.3,0.8,0.3) (0.3,0.2,0.1) (0.1,0.1,0.5) (0.1,0.1,0.6) (o.2,0.3,0.5)
vw (0.2,0.3,0.6) (1,1,0) (0.3,0.5,0.8) (0.1,0.3,0.7) (0.7,0.6,0.6) (0.5,0.6,0.9) (0.8,0.9,0.1) (0.2,0.3,0.6)
wx (0.1,0.5,0.9) (0.3,0.5,0.8) (1,1,0) (0.3,0.1,0.9) (0.2,0.3,0.6) (0.3,0.6,0.6) (0.3,0.6,0.8) (0.5,0.1,0.9)
xy (0.3,0.8,0.3) (0.1,0.3,0.7) (0.3,0.1,0.9) (1,1,0) (0.5,0.1,0.9) (0.3,0.2,0.2) (0.2,0.3,0.6) (0.1,0.5,0.7)
yz (0.3,0.2,0.1) (0.7,0.6,0.6) (0.2,0.3,0.6) (0.5,0.1,0.9) (1,1,0) (0.1,0.1,0.9) (0.6,0.5,0.9) (0.6,0.5,0.9)
zu (0.1,0.1,0.5) (0.5,0.6,0.9) (0.3,0.6,0.6) (0.3,0.2,0.2) (0.1,0.1,0.9) (1,1,0) (0.5,0.6,0.9) (0.3,0.3,0.1)
zw (0.1,0.1,0.6) (0.8,0.9,0.1) (0.3,0.6,0.8) (0.2,0.3,0.6) (0,6,0.5,0.9) (0.5,0.6,0.9) (1,1,0) (0.2,0.3,0.6)
vy (0.2,0.3,0.5) (0.2,0.3,0.6) (0.5,0.1,0.9) (0.1,0.5,0.7) (0.6,0.5,0.9) (0.3,0.2,0.1) (0.2,0.3,0.6) (1,1,0)

Let Y be a neutrosophic set on Y ∗ defined as Y = {(uv, 0.5, 0.2, 0.1), (vw, 0.5, 0.2, 0.3), (wx, 0.5, 0.3, 0.3),
(xy, 0.5, 0.2, 0.3), (yz, 0.5, 0.2, 0.2), (zu, 0.5, 0.3, 0.2), (zw, 0.5, 0.4, 0.3), (vy, 0.5, 0.2, 0.1)}. Then the lower and up-
per approximations of Y are given as

SY = {(uv, 0.5, 0.2, 0.3), (vw, 0.5, 0.2, 0.3), (wx, 0.5, 0.3, 0.3), (xy, 0.5, 0.2, 0.3), (yz, 0.5, 0.2, 0.3),
(zu, 0.5, 0.3, 0.3), (zw, 0.5, 0.2, 0.3), (vy, 0.5, 0.2, 0.3)},

SY = {(uv, 0.5, 0.3, 0.1), (vw, 0.5, 0.4, 0.3), (wx, 0.5, 0.4, 0.3), (xy, 0.5, 0.3, 0.3), (yz, 0.5, 0.4, 0.1),
(zu, 0.5, 0.4, 0.1), (zw, 0.5, 0.4, 0.3), (vy, 0.5, 0.3, 0.1)}.

Thus, G = (RX,SY ) and G = (RX,SY ) are the neutrosophic digraphs as shown in Fig. 2.
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Figure 2: Neutrosophic Rough Digraph G = (G,G)

6

Figure 2. Neutrosophic rough digraph G = (G, G).

Now we discuss regular neutrosophic rough digraphs.

Definition 6. Let G = (G, G) be a neutrosophic rough digraph on a nonempty set X∗. The indegree of a vertex
x ∈ G is the sum of membership degree, indeterminacy and falsity of all edges towards x from other vertices in
G and G, respectively, represented by idG(x) and defined by

idG(x) = idG(x) + idG(x),
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where

idG(x) = ( ∑
x,y∈SY

TG(yx), ∑
x,y∈SY

IG(yx), ∑
x,y∈SY

FG(yx)),

idG(x) = ( ∑
x,y∈SY

TG(yx), ∑
x,y∈SY

IG(yx), ∑
x,y∈SY

FG(yx)).

The outdegree of a vertex x ∈ G is the sum of membership degree, indeterminacy and falsity of all edges
outward from x to other vertices in G and G, respectively, represented by odG(x) and defined by

odG(x) = odG(x) + odG(x),

where

odG(x) = ( ∑
x,y∈SY

TG(xy), ∑
x,y∈SY

IG(xy), ∑
x,y∈SY

FG(xy)),

odG(x) = ( ∑
x,y∈SY

TG(xy), ∑
x,y∈SY

IG(xy), ∑
x,y∈SY

FG(xy)).

dG(x) = idG(x) + odG(x) is called degree of vertex x.

Definition 7. A neutrosophic rough digraph is called a regular neutrosophic rough digraph of degree
(m1, m2, m3) if

dG(x) = (m1, m2, m3) ,∀x ∈ X.

Example 3. Let X∗ = {p, q, r, s} be a nonempty set and R a neutrosophic tolerance relation on X∗ is given as:

R p q r s
p (1,1,0) (0.1,0.9,0.8) (0.7,0.5,0.8) (0.1,0.9,0.8)
q (0.9,0.8,0.1) (1,1,0) (0.1,0.9,0.8) (0.4,0.3,0.9)
r (0.7,0.5,0.8) (0.1,0.9,0.8) (1,1,0) (0.1,0.9,0.8)
s (0.1,0.9,0.8) (0.4,0.3,0.9) (0.1,0.9,0.8) (1,1,0)

Let X1 = {(p, 0.1, 0.4, 0.8), (q, 0.2, 0.3, 0.9), (r, 0.1, 0.6, 0.8), (s, 0.9, 0.6, 0.3)} be a neutrosophic set on X∗.
The lower and upper approximations of X1 are given as:

RX1 = {(p, 0.1, 0.3, 0.8), (q, 0.2, 0.3, 0.9), (r, 0.1, 0.3, 0.8), (s, 0.8, 0.4, 0.4)},
RX1 = {(p, 0.1, 0.6, 0.8), (q, 0.4, 0.6, 0.8), (r, 0.1, 0.6, 0.8), (s, 0.9, 0.6, 0.3)}.

Let Y∗ = {pq, qr, rs, sp} ⊆ X∗ × X∗ and S a neutrosophic tolerance relation on Y∗ which is given as:

S pq qr rs sp
pq (1,1,0) (0.1,0.9,0.8) (0.4,0.3,0.9) (0.1,0.9,0.8)
qr (0.1,0.9,0.8) (1,1,0) (0.1,0.9,0.8) (0.4,0.3,0.9)
rs (0.4,0.3,0.9) (0.1,0.9,0.8) (1,1,0) (0.1,0.9,0.8)
sp (0.1,0.9,0.8) (0.4,0.3,0.9) (0.1,0.9,0.8) (1,1,0)

Let Y1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)} be a neutrosophic set
on Y∗. The lower and upper approximations of Y1 are given as:

SY1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)},
SY1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)}.

Thus, G1 = (G1, G1) is a regular neutrosophic rough digraph as shown in Figure 3.
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Figure 3: Regular Neutrosophic Rough Digraph G1 = (G1, G1)

SY1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)},
SY1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)}.

Thus, G1 = (G1, G1) is a regular neutrosophic rough digraph as shown in Fig. 3.

Definition 2.8. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs. Then the
direct sum of G1 and G2 is a neutrosophic rough digraph G = G1 ⊕ G2 = (G1 ⊕ G2, G1 ⊕ G2), where
G1 ⊕G2 = (RX1 ⊕RX2, SY1 ⊕ SY2) and G1 ⊕G2 = (RX1 ⊕RX2, SY1 ⊕ SY2) are neutrosophic digraphs.

(1)

TRX1⊕RX2(x) =





TRX1(x), if x ∈ RX1 −RX2

TRX2(x), if x ∈ RX2 −RX1

max(TRX1(x), TRX2(x)), if x ∈ RX1 ∩RX2

IRX1⊕RX2(x) =





IRX1(x), if x ∈ RX1 −RX2

IRX2(x), if x ∈ RX2 −RX1

max(IRX1(x), IRX2(x)), if x ∈ RX1 ∩RX2

FRX1⊕RX2(x) =





FRX1(x), if x ∈ RX1 −RX2

FRX2(x), if x ∈ RX2 −RX1

min(FRX1(x), FRX2(x)), if x ∈ RX1 ∩RX2

TSY1⊕SY2(x, y) =

{
TSY1(x, y), if (x, y) ∈ SY1

TSY2(x, y), if (x, y) ∈ SY2

ISY1⊕SY2(x, y) =

{
ISY1(x, y), if (x, y) ∈ SY1

ISY2(x, y), if (x, y) ∈ SY2

FSY1⊕SY2(x, y) =

{
FSY1(x, y), if (x, y) ∈ SY1

FSY2(x, y), if (x, y) ∈ SY2

8

Figure 3. Regular neutrosophic rough digraph G1 = (G1, G1).

Definition 8. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs. Then the
direct sum of G1 and G2 is a neutrosophic rough digraph G = G1 ⊕ G2 = (G1 ⊕ G2, G1 ⊕ G2),
where G1 ⊕ G2 = (RX1 ⊕ RX2, SY1 ⊕ SY2) and G1 ⊕ G2 = (RX1 ⊕ RX2, SY1 ⊕ SY2) are
neutrosophic digraphs.

(1)

TRX1⊕RX2(x) =





TRX1(x), if x ∈ RX1 − RX2

TRX2(x), if x ∈ RX2 − RX1

max(TRX1(x), TRX2(x)), if x ∈ RX1 ∩ RX2

IRX1⊕RX2(x) =





IRX1(x), if x ∈ RX1 − RX2

IRX2(x), if x ∈ RX2 − RX1

max(IRX1(x), IRX2(x)), if x ∈ RX1 ∩ RX2

FRX1⊕RX2(x) =





FRX1(x), if x ∈ RX1 − RX2

FRX2(x), if x ∈ RX2 − RX1

min(FRX1(x), FRX2(x)), if x ∈ RX1 ∩ RX2

TSY1⊕SY2(x, y) =

{
TSY1(x, y), if (x, y) ∈ SY1

TSY2(x, y), if (x, y) ∈ SY2

ISY1⊕SY2(x, y) =

{
ISY1(x, y), if (x, y) ∈ SY1

ISY2(x, y), if (x, y) ∈ SY2

FSY1⊕SY2(x, y) =

{
FSY1(x, y), if (x, y) ∈ SY1

FSY2(x, y), if (x, y) ∈ SY2
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(2)

TRX1⊕RX2
(x) =





TRX1
(x), if x ∈ RX1 − RX2

TRX2
(x), if x ∈ RX2 − RX1

max(TRX1
(x), TRX2

(x)), if x ∈ RX1 ∩ RX2

IRX1⊕RX2
(x) =





IRX1
(x), if x ∈ RX1 − RX2

IRX2
(x), if x ∈ RX2 − RX1

max(IRX1
(x), IRX2

(x)), if x ∈ RX1 ∩ RX2

FRX1⊕RX2
(x) =





FRX1
(x), if x ∈ RX1 − RX2

FRX2
(x), if x ∈ RX2 − RX1

min(FRX1
(x), FRX2

(x)), if x ∈ RX1 ∩ RX2

TSY1⊕SY2
(x, y) =

{
TSY1

(x, y), if (x, y) ∈ SY1

TSY2
(x, y), if (x, y) ∈ SY2

ISY1⊕SY2
(x, y) =

{
ISY1

(x, y), if (x, y) ∈ SY1

ISY2
(x, y), if (x, y) ∈ SY2

FSY1⊕SY2
(x, y) =

{
FSY1

(x, y), if (x, y) ∈ SY1

FSY2
(x, y), if (x, y) ∈ SY2

Example 4. Let X∗ = {p, q, r, s, t} be a set. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic
rough digraphs on X∗ as shown in Figures 1 and 4. The direct sum of G1 and G2 is G = (G1 ⊕ G2, G1 ⊕ G2),
where G1 ⊕ G2 = (RX1 ⊕ RX2, SY1 ⊕ SY2) and G1 ⊕ G2 = (RX1 ⊕ RX2, SY1 ⊕ SY2) are neutrosophic
digraphs as shown in Figure 5.

(2)

TRX1⊕RX2
(x) =





TRX1
(x), if x ∈ RX1 −RX2

TRX2
(x), if x ∈ RX2 −RX1

max(TRX1
(x), TRX2

(x)), if x ∈ RX1 ∩RX2

IRX1⊕RX2
(x) =





IRX1
(x), if x ∈ RX1 −RX2

IRX2
(x), if x ∈ RX2 −RX1

max(IRX1
(x), IRX2

(x)), if x ∈ RX1 ∩RX2

FRX1⊕RX2
(x) =





FRX1
(x), if x ∈ RX1 −RX2

FRX2
(x), if x ∈ RX2 −RX1

min(FRX1
(x), FRX2

(x)), if x ∈ RX1 ∩RX2

TSY1⊕SY2
(x, y) =

{
TSY1

(x, y), if (x, y) ∈ SY1

TSY2
(x, y), if (x, y) ∈ SY2

ISY1⊕SY2
(x, y) =

{
ISY1

(x, y), if (x, y) ∈ SY1

ISY2
(x, y), if (x, y) ∈ SY2

FSY1⊕SY2
(x, y) =

{
FSY1

(x, y), if (x, y) ∈ SY1

FSY2
(x, y), if (x, y) ∈ SY2

Example 2.4. Let X∗ = {p, q, r, s, t} be a set. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic
rough digraphs on X∗ as shown in Fig.1 and Fig.4. The direct sum of G1 and G2 is G = (G1 ⊕G2, G1 ⊕G2),
where G1 ⊕G2 = (RX1 ⊕RX2, SY1 ⊕SY2) and G1 ⊕G2 = (RX1 ⊕RX2, SY1 ⊕SY2) are neutrosophic digraphs
as shown in Fig.5.
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Figure 4: Neutrosophic Rough Digraph G = (G2, G2)

Remark 2.1. The direct sum of two regular neutrosophic rough digraphs may not be regular neutrosophic rough
digraph as it can be seen in the following example.

Example 2.5. Consider the two regular neutrosophic rough digraphs G1 = (G1, G1) and G2 = (G2, G2) as
shown in Fig.3 and Fig.6, respectively, then the direct sum G = (G1 ⊕G2, G1 ⊕G2) of G1 and G2 as shown in
Fig.7 is not a regular neutrosophic rough digraph.

Remark 2.2. If G1 = (G1, G1) and G2 = (G2, G2) are two regular neutrosophic rough digraphs with degree
(m1,m2,m3) and (n1, n2, n3) on X∗

1 , X∗
2 , respectively, and X∗

1 ∩X∗
2 = φ, then G1⊕G2 is a regular neutrosophic

rough digraph if and only if (m1,m2,m3) = (n1, n2, n3).

9

Figure 4. Neutrosophic rough digraph G = (G2, G2).
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Figure 6: Regular Neutrosophic Rough Digraph G2 = (G2, G2)

Definition 2.9. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on crisp sets X∗
1

and X∗
2 respectively. The residue product of G1 and G2 is a neutrosophic rough digraph G = G1 ∗ G2 =

(G1 ∗ G2, G1 ∗ G2), where G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) are
neutrosophic digraphs, respectively, such that

(1)

TRX1∗RX2(x1, x2) = max{TRX1(x1), TRX2(x2)},
IRX1∗RX2(x1, x2) = max{IRX1(x1), IRX2(x2)},
FRX1∗RX2(x1, x2) = min{FRX1(x1), FRX2(x2)}, ∀(x1, x2) ∈ RX1 ×RX2
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Figure 5. Neutrosophic rough digraph G = (G1 ⊕ G2, G1 ⊕ G2).

Remark 1. The direct sum of two regular neutrosophic rough digraphs may not be regular neutrosophic rough
digraph, as shown in the following example.

Example 5. Consider the two regular neutrosophic rough digraphs G1 = (G1, G1) and G2 = (G2, G2) as
shown in Figures 3 and 6, respectively, then the direct sum G = (G1 ⊕ G2, G1 ⊕ G2) of G1 and G2 as shown in
Figure 7 is not a regular neutrosophic rough digraph.
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Figure 6: Regular Neutrosophic Rough Digraph G2 = (G2, G2)

Definition 2.9. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on crisp sets X∗
1

and X∗
2 respectively. The residue product of G1 and G2 is a neutrosophic rough digraph G = G1 ∗ G2 =

(G1 ∗ G2, G1 ∗ G2), where G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) are
neutrosophic digraphs, respectively, such that

(1)

TRX1∗RX2(x1, x2) = max{TRX1(x1), TRX2(x2)},
IRX1∗RX2(x1, x2) = max{IRX1(x1), IRX2(x2)},
FRX1∗RX2(x1, x2) = min{FRX1(x1), FRX2(x2)}, ∀(x1, x2) ∈ RX1 ×RX2
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Figure 6. Regular neutrosophic rough digraph G2 = (G2, G2).
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Figure 7: Neutrosophic Rough Digraph G = (G1 ⊕G2, G1 ⊕G2)

TSY1∗SY2(x1, x2)(y1, y2) = TSY1(x1, y1),

ISY1∗SY2(x1, x2)(y1, y2) = ISY1(x1, y1),

FSY1∗SY2(x1, x2)(y1, y2) = FSY1(x1, y1), ∀(x1, y1) ∈ SY1, x1 6= y2

(2)

TRX1∗RX2
(x1, x2) = max{TRX1

(x1), TRX2
(x2)},

IRX1∗RX2
(x1, x2) = max{IRX1

(x1), IRX2
(x2)},

FRX1∗RX2
(x1, x2) = min{FRX1

(x1), FRX2
(x2)}, ∀(x1, x2) ∈ RX1 ×RX2

TSY1∗SY2
(x1, x2)(y1, y2) = TSY1

(x1, y1),

ISY1∗SY2
(x1, x2)(y1, y2) = ISY1

(x1, y1),

FSY1∗SY2
(x1, x2)(y1, y2) = FSY1

(x1, y1), ∀(x1, y1) ∈ SY1, x1 6= y2

Example 2.6. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on the two crisp sets
X∗

1 = {p, q} and X∗
2 = {u, v, w, x} as shown in Fig. 8 and Fig.9. Then the residue product of G1 and G2 is a

neutrosophic rough digraph G = G1 ∗G2 = (G1 ∗G2, G1 ∗ G2) where G1 ∗G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and
G1 ∗G2 = (RX1 ∗RX2, SY1 ∗ SY2) and the respective figures are shown in Fig.10.

Theorem 2.1. If G1 = (G1, G1) and G2 = (G2, G2) are two neutrosophic rough digraph such that |X∗
2 | > 1,

then their residue product is regular if and only if G1 is regular.

Proof. Let G1 ∗G2 be a regular neutrosophic rough digraph.
Then, for any two vertices (x1, x2) and (y1, y2) in X∗

1 ×X∗
2 ,

dG1∗G2(x1, x2) = dG1∗G2(y1, y2)
⇒ dG1(x1) = dG1(y1)

This is true for all vertices in X∗
1 . Hence G1 is a regular neutrosophic rough digraph.
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Figure 7. Neutrosophic rough digraph G = (G1 ⊕ G2, G1 ⊕ G2).

Remark 2. If G1 = (G1, G1) and G2 = (G2, G2) are two regular neutrosophic rough digraphs with degree
(m1, m2, m3) and (n1, n2, n3) on X∗1 , X∗2 , respectively, and X∗1 ∩ X∗2 = φ, then G1 ⊕ G2 is a regular
neutrosophic rough digraph if and only if (m1, m2, m3) = (n1, n2, n3).

Definition 9. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on
crisp sets X∗1 and X∗2 respectively. The residue product of G1 and G2 is a neutrosophic rough
digraph G = G1 ∗ G2 = (G1 ∗ G2, G1 ∗ G2), where G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and
G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) are neutrosophic digraphs, respectively, such that

(1)

TRX1∗RX2(x1, x2) = max{TRX1(x1), TRX2(x2)},
IRX1∗RX2(x1, x2) = max{IRX1(x1), IRX2(x2)},
FRX1∗RX2(x1, x2) = min{FRX1(x1), FRX2(x2)}, ∀(x1, x2) ∈ RX1 × RX2

TSY1∗SY2(x1, x2)(y1, y2) = TSY1(x1, y1),

ISY1∗SY2(x1, x2)(y1, y2) = ISY1(x1, y1),

FSY1∗SY2(x1, x2)(y1, y2) = FSY1(x1, y1), ∀(x1, y1) ∈ SY1, x1 6= y2

(2)

TRX1∗RX2
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(x1, y1), ∀(x1, y1) ∈ SY1, x1 6= y2
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Example 6. Let G1 = (G1, G1) and G2 = (G2, G2) be two neutrosophic rough digraphs on the two crisp sets
X∗1 = {p, q} and X∗2 = {u, v, w, x} as shown in Figures 8 and 9. Then the residue product of G1 and G2 is
a neutrosophic rough digraph G = G1 ∗ G2 = (G1 ∗ G2, G1 ∗ G2) where G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2)

and G1 ∗ G2 = (RX1 ∗ RX2, SY1 ∗ SY2) and the respective figures are shown in Figure 10.
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Figure 9: Neutrosophic Rough Digraph G2 = (G2, G2).
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Figure 10: Neutrosophic Rough Digraph G = (G1 ∗G2, G1 ∗G2).
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Figure 8. Neutrosophic rough digraph G1 = (G1, G1).
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Figure 9: Neutrosophic Rough Digraph G2 = (G2, G2).
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Figure 10. Neutrosophic rough digraph G = (G1 ∗ G2, G1 ∗ G2).
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Theorem 1. If G1 = (G1, G1) and G2 = (G2, G2) are two neutrosophic rough digraph such that |X∗2 | > 1,
then their residue product is regular if and only if G1 is regular.

Proof. Let G1 ∗ G2 be a regular neutrosophic rough digraph.
Then, for any two vertices (x1, x2) and (y1, y2) in X∗1 × X∗2 ,

dG1∗G2(x1, x2) = dG1∗G2(y1, y2)

⇒ dG1(x1) = dG1(y1).
This is true for all vertices in X∗1 . Hence G1 is a regular neutrosophic rough digraph.

Conversely, suppose that G1 = (G1, G1) is a (m1, m2, m3)-regular neutrosophic rough digraph and
G2 = (G2, G2) is any neutrosophic rough digraph with |X∗2 | > 1. If |X∗2 | > 1, then dG1∗G2(x1, x2) =

dG1(x1) = (m1, m2, m3). This is a constant ordered-triplet for all vertices in X∗1 × X∗2 . Hence G1 ∗ G2 is
a regular neutrosophic rough digraph.

3. Applications to Decision-Making

In this section, we present some real life applications of neutrosophic rough digraphs in decision
making. In decision-making, the selection is facilitated by evaluating each choice on the set of criteria.
The criteria must be measurable and their outcomes must be measured for every decision alternative.

3.1. Online Reviews and Ratings

Customer reviews are increasingly available online for a wide range of products and services.
As customers search online for product information and to evaluate product alternatives, they often
have access to dozens or hundreds of product reviews from other customers. These reviews are very
helpful in product selection. However, only considering the good reviews about a product is not very
helpful in decision-making. The customer should keep in mind bad and neutral reviews as well. We
use percentages of good reviews, bad reviews and neutral reviews of a product as truth membership,
false membership and indeterminacy respectively.

Mrs. Sadia wants to purchase a refrigerator. For this purpose she visits web sites of different
refrigerator companies. The refrigerator companies and their ratings by other customers are shown
in Table 1.

Table 1. Companies and their ratings.

X∗ Good Reviews Neutral Bad Reviews

PEL 45% 29% 37%
Dawlance 52% 25% 49%

Haier 51% 43% 45%
Waves 47% 41% 38%
Orient 51% 35% 48%

Here X∗ = {Pel(P),Dawlance(D),Haier(H),Waves(W),Orient(O)} and the neutrosophic set on X∗

according to the reviews will be X = {(P, 0.45, 0.29, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.45),
(W, 0.47, 0.41, 0.38)(O, 0.51, 0.35, 0.48)}. The neutrosophic tolerance relation on X∗ is given below

R P D H W O
P (1,1,0) (0.5,0.6,0.9) (0.2,0.3,0.6) (0.1,0.2,0.3) (0.4,0.6,0.8)
D (0.5,0.6,0.9) (1,1,0) (0.1,0.6,0.9) (0.4,0.5,0.9) (0.9,0.8,0.2)
H (0.2,0.3,0.6) (0.1,0.6,0.9) (1,1,0) (0.2,0.9,0.6) (0.1,0.9,0.7)
W (0.1,0.2,0.3) (0.4,0.5,0.9) (0.2,0.9,0.6) (1,1,0) (0.2,0.5,0.9)
O (0.4,0.6,0.8) (0.9,0.8,0.2) (0.1,0.9,0.7) (0.2,0.5,0.9) (1,1,0)
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The lower and upper approximations of X are as follows:

RX = {(P, 0.45, 0.29, 0.49), (D, 0.51, 0.25, 0.49), (H, 0.51, 0.35, 0.45),

(W, 0.45, 0.41, 0.40), (O, 0.51, , 0.25, 0.49)},
RX = {(P, 0.50, 0.35, 0.37), (D, 0.52, 0.43, 0.48), (H, 0.51, 0.43, 0.45),

(W, 0.47, 0.43, 0.37), (O, 0.52, 0.43, 0.48)}.

Let Y∗ = {(P, D), (P, H), (D, H), (D, W), (H, W), (H, O), (W, P), (W, O), (O, P), (O, D)} be the
subset of X∗ × X∗ and the tolerance relation S on Y∗ is given as follows:

S (P,D) (P,H) (D,H) (D,W) (H,W)
(P,D) (1,1,0) (0.1,0.6,0.9) (0.1,0.6,0.9) (0.4,0.5,0.9) (0.2,0.3,0.9)
(P,H) (0.1,0.6,0.9) (1,1,0) (0.5,0.6,0.9) (0.2,0.6,0.9) (0.2,0.3,0.6)
(D,H) (0.1,0.6,0.9) (0.5,0.6,0.9) (1,1,0) (0.2,0.9,0.6) (0.1,0.6,0.9)
(D,W) (0.4,.5,.9) (0.2,0.6,0.9) (0.2,0.6,0.9) (1,1,0) (0.1,0.6,0.9)
(H,W) (0.2,0.3,0.9) (0.2,0.3,0.6) (0.1,0.6,0.9) (0.1,0.6,.9) (1,1,0)
(H,O) (0.2,0.3,0.6) (0.1,0.3,0.7) (0.1,0.6,0.9) (0.1,0.5,0.9) (0.2,0.5,0.9)
(W,P) (0.1,0.2,0.9) (0.1,0.2,0.6) (0.2,0.3,0.9) (0.1,0.2,0.9) (0.1,0.2,0.6)
(W,O) (0.1,0.2,0.3) (0.1,0.2,0.7) (0.1,0.5,0.9) (0.2,0.5,0.9) (0.2,0.5,0.9)
(O,P) (0.4,0.6,0.9) (0.2,0.3,0.8) (0.2,0.3,0.6) (0.1,0.2,0.3) (0.1,0.2,0.7)
(O,D) (0.4,0.6,0.8) (0.1,0.6,0.9) (0.1,0.6,0.9) (0.4,0.5,0.9) (0.1,0.5,0.9)

S (H,O) (W,P) (W,O) (O,P) (O,D)
(P,D) (0.2,0.3,0.6) (0.1,0.2,0.9) (0.1,0.2,0.3) (0.4,0.6,0.9) (0.4,0.6,0.8)
(P,H) (0.1,0.3,0.7) (0.1,0.2,0.6) (0.1,0.2,0.7) (0.2,0.3,0.8) (0.1,0.6,0.9)
(D,H) (0.2,0.3,0.9) (0.1,0.5,0.9) (0.2,0.3,0.6) (0.1,0.6,0.9) (0.1,0.6,0.9)
(D,W) (0.1,0.2,0.9) (0.2,0.5,0.9) (0.1,0.2,0.3) (0.4,0.5,0.9) (0.1,0.5,0.9)
(H,W) (0.1,0.2,0.6) (0.2,0.5,0.9) (0.1,0.2,0.7) (0.1,0.5,0.9) (0.2,0.5,0.9)
(H,O) (1,1,0) (0.2,0.6,0.8) (0.2,0.9,0.6) (0.1,0.6,0.8) (0.1,0.8,0.7)
(W,P) (0.2,0.6,0.8) (1,1,0) (0.4,0.6,0.8) (0.2,0.5,0.9) (0.2,0.5,0.9)
(W,O) (0.2,0.9,0.6) (0.4,0.6,0.8) (1,1,0) (0.2,0.5,0.9) (0.2,0.5,0.9)
(O,P) (0.1,0.6,0.8) (0.2,0.5,0.9) (0.2,0.5,0.9) (1,1,0) (0.5,0.6,0.9)
(O,D) (0.1,0.8,0.7) (0.2,0.5,0.9) (0.2,0.5,0.9) (0.5,0.6,0.9) (1,1,0)

Thus, the lower and upper approximations of Y are calculated as follows:

SY = {((P, D), 0.42, 0.23, 0.47), ((P, H), 0.45, 0.28, 0.45), ((D, H), 0.50, 0.21, 0.45),

((D, W), 0.43, 0.22, 0.45), ((H, W), 0.41, 0.30, 0.44), ((H, O), 0.51, 0.22, 0.46),

((W, P), 0.42, 0.26, 0.40), ((W, O), 0.42, 0.23, 0.44), ((O, P), 0.43, 0.25, 0.48),

((O, D), 0.50, 0.22, 0.48)}
SY = {((P, D), 0.42, 0.30, 0.44), ((P, H), 0.50, 0.30, 0.41), ((D, H), 0.50, 0.30, 0.45),

((D, W), 0.43, 0.30, 0.45), ((H, W), 0.41, 0.30, 0.44), ((H, O), 0.51, 0.30, 0.46),

((W, P), 0.42, 0.26, 0.37), ((W, O), 0.45, 0.30, 0.44), ((O, P), 0.50, 0.28, 0.45),

((O, D), 0.50, 0.30, 0.47)}.

Thus, G = (RX, SY) and G = (RX, SY) are the neutrosophic digraphs as shown in Figure 11.
To find the best company, we use the following formula:

S(vi) = ∑
vi∈X∗

(TRX(vi)×TRX(vi))+(IRX(vi)×IRX(vi))−(FRX(vi)×FRX(vi))

1−{T(vivj)+I(vivj)−F(vivj)}

where
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T(vivj) = max
vj∈X∗

TSY(vivj)× max
vj∈X∗

TSY(vivj),

I(vivj) = max
vj∈X∗

ISY(vivj)× max
vj∈X∗

ISY(vivj),

F(vivj) = min
vj∈X∗

FSY(vivj)× min
vj∈X∗

FSY(vivj).

By direct calculations we have

S(P) = 0.167, S(D) = 0.156, S(H) = 0.268, S(W) = 0.272, S(O) = 0.155.

From the above calculations it is clear that Waves is the best company for refrigerator.

b

b b

b b

P (0.45, 0.29, 0.49)

D
(0.51, 0.25, 0.49)

H(0.
51,

0.3
5, 0

.45
)W (0.45, 0.41, 0.40)

O
(0
.5
1,
0.
25
, 0
.4
9)

b

b b

b b

P (0.50, 0.35, 0.37)

D
(0.52, 0.43, 0.48)

H(0.
51,

0.4
3, 0

.45
)W (0.47, 0.43, 0.37)

O
(0
.5
2,
0.
43
, 0
.4
8)

(0.42, 0.23, 0.47)

(0.45, 0.28, 0.45)

(0
.5
0
, 0

.2
1
, 0

.4
5
)

(0.
43

, 0
.22

, 0
.45

)

(0.41
, 0.30

, 0.44
)

(0.51, 0.22, 0.46)

(0
.4
2
,
0
.2
6
,
0
.4
0
)

(0.42, 0.23, 0.44)

(0
.4
3,
0.
25
, 0
.4
8)

(0.50,
0.22, 0

.48)

(0.42, 0.30, 0.44)

(0.50, 0.30, 0.41)

(0
.5
0
,
0
.3
0
,
0
.4
5
)

(0.4
1, 0.

30, 0
.44)

(0
.43

, 0
.30

, 0
.45

)

(0.51, 0.30, 0.46)

(0
.4
2
,
0
.2
6
,
0
.3
7
)

(0.45, 0.30, 0.44)

(0
.5
0,
0.
28
, 0
.4
5)

(0.50
, 0.30

, 0.47
)

G = (RX,SY ) G = (RX,SY )

Figure 11: G = (G,G)

T (vivj) = max
vj∈X∗

TSY (vivj)× max
vj∈X∗

TSY (vivj),

I(vivj) = max
vj∈X∗

ISY (vivj)× max
vj∈X∗

ISY (vivj),

F (vivj) = min
vj∈X∗

FSY (vivj)× min
vj∈X∗

FSY (vivj).

By direct calculations we have

S(P ) = 0.167, S(D) = 0.156, S(H) = 0.268, S(W ) = 0.272, S(O) = 0.155.

From above calculations it is clear that Waves is the best company for refrigerator.

3.2 Context of Recruitment

Choosing the right candidate for the position available is not something that should be left to chance or guess-
work.
How to choose the right candidate.
In any recruitment process the ability of the candidate is weighed up against the suitability of the candidate.
Pakistan Telecommunication Company Limited(PTCL) wants to recruit a person for the post of administrator.
To keep the procedure simple the company wants to appoint their employee on the basis of education(Edu) and
experience(Exp). Let X∗ = {(C1, Edu), (C1, Exp), (C2, Edu), (C2, Exp), (C3, Edu), (C3, Exp)} be the set of
candidates who applied for the post and their corresponding attributes. Let R be a neutrosophic tolerance on
X∗ given as follows:

R (C1,Edu) (C1,Exp) (C2,Edu) (C2,Exp) (C3,Edu) (C3,Exp)
(C1,Edu) (1,1,0) (0.3,0.6,0.1) (0.6,0.7,0.2) (0.6,0.5,0.8) (0.3,0.2,0.1) (0.9,0.1,0.1)
(C1,Exp) (0.3,0.6,0.1) (1,1,0) (0.9,0.9,0.3) (0.8,0.7,0.6) (0.4,0.5,0.9) (0.3,0.1,0.1)
(C2,Edu) (0.6,0.7,0.2) (0.9,0.9,0.3) (1,1,0) (0.6,0.5,0.1) (0.3,0.2,0.1) (0.4,0.8,0.7)
(C2,Exp) (0.6,0.5,0.8) (0.8,0.7,0.6) (0.6,0.5,0.1) (1,1,0) (0.1,0.1,0.2) (0.5,0.6,0.7)
(C3,Edu) (0.3,0.2,0.1) (0.4,0.5,0.9) (0.3,0.2,0.1) (0.1,0.1,0.2) (1,1,0) (0.2,0.1,0.2)
(C3,Exp) (0.9,0.1,0.1) (0.3,0.1,0.1) (0.4,0.8,0.7) (0.5,0.6,0.7) (0.2,0.1,0.2) (1,1,0)

.

Let X = {((C1, Edu), 0.9, 0.1, 0.5), ((C1, Exp), 0.2, 0.6, 0.5), ((C2, Edu), 0.7, 0.2, 0.3), ((C2, Exp),
0.1, 0.3, 0.9), ((C3, Edu), 0.4, 0.6, 0.8), ((C3, Exp), 0.8, 0.1, 0.2)} be a neutrosophic set define on X∗. Then the
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3.2. Context of Recruitment

Choosing the right candidate for the position available is not something that should be left to
chance or guesswork.

How to choose the right candidate?

In any recruitment process the ability of the candidate is weighed against the suitability
of the candidate. Pakistan Telecommunication Company Limited (PTCL) wants to recruit
a person for the post of administrator. To keep the procedure simple, the company
wants to appoint their employee on the basis of education (Edu) and experience (Exp).
Let X∗ = {(C1, Edu), (C1, Exp), (C2, Edu), (C2, Exp), (C3, Edu), (C3, Exp)} be the set of candidates
who applied for the post and their corresponding attributes. Let R be a neutrosophic tolerance on X∗

given as follows:

R (C1,Edu) (C1,Exp) (C2,Edu) (C2,Exp) (C3,Edu) (C3,Exp)
(C1,Edu) (1,1,0) (0.3,0.6,0.1) (0.6,0.7,0.2) (0.6,0.5,0.8) (0.3,0.2,0.1) (0.9,0.1,0.1)
(C1,Exp) (0.3,0.6,0.1) (1,1,0) (0.9,0.9,0.3) (0.8,0.7,0.6) (0.4,0.5,0.9) (0.3,0.1,0.1)
(C2,Edu) (0.6,0.7,0.2) (0.9,0.9,0.3) (1,1,0) (0.6,0.5,0.1) (0.3,0.2,0.1) (0.4,0.8,0.7)
(C2,Exp) (0.6,0.5,0.8) (0.8,0.7,0.6) (0.6,0.5,0.1) (1,1,0) (0.1,0.1,0.2) (0.5,0.6,0.7)
(C3,Edu) (0.3,0.2,0.1) (0.4,0.5,0.9) (0.3,0.2,0.1) (0.1,0.1,0.2) (1,1,0) (0.2,0.1,0.2)
(C3,Exp) (0.9,0.1,0.1) (0.3,0.1,0.1) (0.4,0.8,0.7) (0.5,0.6,0.7) (0.2,0.1,0.2) (1,1,0)
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Let X = {((C1, Edu), 0.9, 0.1, 0.5), ((C1, Exp), 0.2, 0.6, 0.5), ((C2, Edu), 0.7, 0.2, 0.3), ((C2, Exp), 0.1,
0.3, 0.9), ((C3, Edu), 0.4, 0.6, 0.8), ((C3, Exp), 0.8, 0.1, 0.2)} be a neutrosophic set define on X∗. Then the
lower and upper approximations of X are given as:

RX = {((C1, Edu), 0.2, 0.1, 0.6), ((C1, Exp), 0.2, 0.2, 0.8), ((C2, Edu), 0.1, 0.2, 0.6),

((C2, Exp), 0.1, 0.3, 0.9), ((C3, Edu), 0.2, 0.6, 0.8), ((C3, Exp), 0.2, 0.1, 0.5)},
RX = {((C1, Edu), 0.9, 0.6, 0.2), ((C1, Exp), 0.7, 0.6, 0.2), ((C2, Edu), 0.7, 0.6, 0.3),

((C2, Exp), 0.6, 0.6, 0.3), ((C3, Edu), 0.4, 0.6, 0.2), ((C3, Exp, 0.9, 0.3, 0.2)}.

Let Y∗ = {(C1, Edu)(C1, Exp), (C1, Exp)(C2, Edu), (C1, Edu)(C3, Exp), (C3, Exp)(C1, Exp),
(C1, Exp)(C2, Exp), (C2, Exp)(C2, Edu), (C3, Exp)(C3, Edu), (C3, Edu)(C2, Exp),
(C3, Exp)(C2, Exp)} ⊆ X∗ × X∗ and S be a neutrosophic tolerance relation on Y∗ given as follows:

S (C1,Edu)(C1,Exp) (C1,Exp)(C2,Edu) (C1,Edu)(C3,Exp) (C3,Exp)(C1,Exp) (C1,Exp)(C2,Exp)
(C1,Edu)(C1,Exp) (1,1,0) (0.3,0.6,0.3) (0.3,0.1,0.1) (0.9,0.1,0.1) (0.3,0.6,0.6)
(C1,Exp)(C2,Edu) (0.3,0.6,0.3) (1,1,0) (0.3,0.6,0.7) (0.3,0.1,0.3) (0.6,0.5,0.1)
(C1,Edu)(C3,Exp) (0.3,0.1,0.1) (0.3,0.6,0.7) (1,1,0) (0.3,0.1,0.1) (0.3,0.6,0.7)
(C3,Exp)(C1,Exp) (0.9,0.1,0.1) (0.3,0.1,0.3) (0.3,0.1,0.1) (1,1,0) (0.3,0.1,0.6)
(C1,Exp)(C2,Exp) (0.3,0.6,0.6) (0.6,0.5,0.1) (0.3,0.6,0.7) (0.3,0.1,0.6) (1,1,0)
(C2,Exp)(C2,Edu) (0.6,0.5,0.8) (0.8,0.7,0.6) (0.4,0.5,0.8) (0.5,0.6,0.7) (0.6,0.5,0.6)
(C3,Exp)(C2,Exp) (0.8,0.1,0.6) (0.3,0.1,0.1) (0.5,0.1,.7) (0.8,0.7,0.6) (0.3,0.1,0.1)
(C3,Exp)(C3,Edu) (0.4,0.1,0.9) (0.3,0.1,0.1) (0.2,0.1,.2) (0.4,0.5,0.9) (0.1,0.1,0.2)
(C3,Edu)(C2,Exp) (0.3,0.2,0.6) (0.4,0.5,0.9) (0.3,.2,.7) (0.2,0.1,0.6) (0.4,0.5,0.9)

S (C2,Exp)(C2,Edu) (C3,Exp)(C2,Exp) (C3,Exp)(C3,Edu) (C3,Edu)(C2,Exp)
(C1,Edu)(C1,Exp) (0.6,0.5,0.8) (0.8,0.1,0.6) (0.4,0.1,0.9) (0.3,0.2,0.6)
(C1,Exp)(C2,Edu) (0.8,0.7,0.6) (0.3,0.1,0.1) (0.3,0.1,0.1) (0.4,0.5,0.9)
(C1,Edu)(C3,Exp) (0.4,0.5,0.8) (0.5,0.1,0.7) (0.2,0.1,0.2) (0.3,0.2,0.7)
(C3,Exp)(C1,Exp) (0.5,0.6,0.7) (0.8,0.7,0.6) (0.4,0.5,0.9) (0.2,0.1,0.6)
(C1,Exp)(C2,Exp) (0.6,0.5,0.6) (0.3,0.1,0.1) (0.1,0.1,0.2) (0.4,0.5,0.9)
(C2,Exp)(C2,Edu) ( 1,1,0) (0.5,0.5,0.7) (0.3,0.2,0.7) (0.1,0.1,0.2)
(C3,Exp)(C2,Exp) (0.5,0.5,0.7) (1,1,0) (0.1,0.1,0.2) (0.2,0.1,0.2)
(C3,Exp)(C3,Edu) (0.3,0.2,0.7) (0.1,0.1,0.2) ( 1,1,0) (0.1,0.1,0.2)
(C3,Edu)(C2,Exp) (0.1,0.1,0.2) (0.2,0.1,0.2) (0.1,0.1,0.2) (1,1,0)

Let Y = {((C1, Edu)(C1, Exp), 0.2, 0.1, 0.1), ((C1, Exp)(C2, Edu), 0.1, 0.1, 0.3), ((C1, Edu)(C3, Exp),
0.2, 0.1, 0.2), ((C3, Exp)(C1, Exp), 0.2, 0.1, 0.2), ((C1, Exp)(C2, Exp), 0.1, 0.2, 0.3), ((C2, Exp)(C2, Edu),
0.1, 0.2, 0.3)), ((C3, Exp)(C2, Exp), 0.1, 0.1, 0.3), ((C3, Exp)(C3, Edu), 0.2, 0.1, 0.2), ((C3, Edu)(C2, Exp),
0.1, 0.3, 0.3)} be neutrosophic rough set on Y∗. Then the lower and upper approximations of Y are
given as follows:

SY = {((C1, Edu)(C1, Exp), 0.2, 0.1, 0.3), ((C1, Exp)(C2, Edu), 0.1, 0.1, 0.3),

((C1, Edu)(C3, Exp), 0.2, 0.1, 0.3), ((C3, Exp)(C1, Exp), 0.2, 0.1, 0.3),

((C1, Exp)(C2, Exp), 0.1, 0.2, 0.3), ((C2, Exp)(C2, Edu, 0.1, 0.2, 0.3)),

((C3, Exp)(C2, Exp), 0.1, 0.1, 0.3), ((C3, Exp)(C3, Edu), 0.1, 0.1, 0.3),

((C3, Edu)(C2, Exp), 0.1, 0.3, 0.3)},
SY = {((C1, Edu)(C1, Exp), 0.2, 0.2, 0.1), ((C1, Exp)(C2, Edu), 0.2, 0.3, 0.2),

((C1, Edu)(C3, Exp), 0.2, 0.2, 0.1), ((C3, Exp)(C1, Exp), 0.2, 0.2, 0.1),

((C1, Exp)(C2, Exp), 0.2, 0.2, 0.1), ((C2, Exp)(C2, Edu, 0.2, 0.2, 0.3)),

((C3, Exp)(C2, Exp), 0.2, 0.2, 0.2), ((C3, Exp)(C3, Edu), 0.2, 0.2, 0.2),

((C3, Edu)(C2, Exp), 0.2, 0.3, 0.2)}
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Thus, G = (RX, SY) and G = (RX, SY) are the neutrosophic digraphs as shown in
Figures 12 and 13.

b b b

bb

b

(C
1,
E
du
),
0.
2,
0.
1,
0.
6)

((C1, Exp), 0.2, 0.2, 0.8)

((C
2, E

du), 0.1, 0.2, 0.6)

((
C
2,
E
xp
),
0.
1,
0.
3,
0.
9)

((C3, Edu), 0.2, 0.6, 0.8)

((C
3, E

xp), 0.2, 0.1, 0.5)

(0.2, 0.1, 0.3) (0.1, 0.1, 0.3)

(0.2, 0.1, 0.3)

(0
.2
, 0
.1
, 0
.3
) (0.1, 0.2, 0.3) (0

.1
, 0
.2
, 0
.3
)

(0.1, 0.1, 0.3)

(0.1, 0.1, 0.3)

(0
.1
, 0
.3
, 0
.3
)

Figure 12: Neutrosophic Digraph G = (RX,SY )

b b b

bb

b

(C
1,
E
du
),
0.
9,
0.
6,
0.
2)

((C1, Exp), 0.7, 0.6, 0.2)

((C
2, E

du), 0.7, 0.6, 0.3)

((
C
2,
E
xp
),
0.
6,
0.
6,
0.
3)

((C3, Edu), 0.4, 0.6, 0.2)

((C
3, E

xp), 0.9, 0.3, 0.2)

(0.2, 0.2, 0.1) (0.2, 0.3, 0.2)
(0.2, 0.2, 0.1)

(0
.2
, 0
.2
, 0
.1
) (0.2, 0.3, 0.2) (0

.2
, 0
.2
, 0
.3
)

(0.2, 0.2, 0.2)

(0.2, 0.2, 0.2) (0
.2
, 0
.3
, 0
.2
)

G = (RX,SY )

Figure 13: Neutrosophic Digraph G = (RX,SY )

max{IRY (C1), IRY (C2), IRY (C3)} = max{0.8, 0.65, 0.65}= 0.8

Thus, C1 is best employee for the post under consideration. So PTCL can hire C1 for the post of administrator.

17

Figure 12. Neutrosophic Digraph G = (RX, SY)

b b b

bb

b

(C
1,
E
du
),
0.
2,
0.
1,
0.
6)

((C1, Exp), 0.2, 0.2, 0.8)

((C
2, E

du), 0.1, 0.2, 0.6)

((
C
2,
E
xp
),
0.
1,
0.
3,
0.
9)

((C3, Edu), 0.2, 0.6, 0.8)

((C
3, E

xp), 0.2, 0.1, 0.5)

(0.2, 0.1, 0.3) (0.1, 0.1, 0.3)

(0.2, 0.1, 0.3)

(0
.2
, 0
.1
, 0
.3
) (0.1, 0.2, 0.3) (0

.1
, 0
.2
, 0
.3
)

(0.1, 0.1, 0.3)

(0.1, 0.1, 0.3)

(0
.1
, 0
.3
, 0
.3
)

Figure 12: Neutrosophic Digraph G = (RX,SY )

b b b

bb

b

(C
1,
E
du
),
0.
9,
0.
6,
0.
2)

((C1, Exp), 0.7, 0.6, 0.2)

((C
2, E

du), 0.7, 0.6, 0.3)

((
C
2,
E
xp
),
0.
6,
0.
6,
0.
3)

((C3, Edu), 0.4, 0.6, 0.2)

((C
3, E

xp), 0.9, 0.3, 0.2)

(0.2, 0.2, 0.1) (0.2, 0.3, 0.2)
(0.2, 0.2, 0.1)

(0
.2
, 0
.2
, 0
.1
) (0.2, 0.3, 0.2) (0

.2
, 0
.2
, 0
.3
)

(0.2, 0.2, 0.2)

(0.2, 0.2, 0.2) (0
.2
, 0
.3
, 0
.2
)

G = (RX,SY )

Figure 13: Neutrosophic Digraph G = (RX,SY )

max{IRY (C1), IRY (C2), IRY (C3)} = max{0.8, 0.65, 0.65}= 0.8

Thus, C1 is best employee for the post under consideration. So PTCL can hire C1 for the post of administrator.

17

Figure 13. Neutrosophic Digraph G = (RX, SY)

To find the best employee using the following calculations, we have

IRY(C1) = IRY(C1,Edu)+IRY(C1,Exp)
2 = 0.9+0.7

2 = 0.8

IRY(C2) = IRY(C2,Edu)+IRY(C2,Exp)
2 = 0.7+0.6

2 = 0.65

IRY(C3) = IRY(C3,Edu)+IRY(C3,Exp)
2 = 0.4+0.9

2 = 0.65

max{IRY(C1), IRY(C2), IRY(C3)} = max{0.8, 0.65, 0.65} = 0.8

Thus, C1 is the best employee for the post under consideration. So, PTCL can hire C1 for the post
of administrator.

4. Comparative Analysis of Rough Neutrosophic Digraphs and Neutrosophic Rough Digraphs

Rough neutrosophic digraphs and neutrosophic rough digraphs are two different notions on
the basis of their construction and approach. In rough neutrosophic digraphs, the relation defined
on the universe of discourse is a crisp equivalence relation that only classifies the elements which
are related. On the other hand, in neutrosophic rough digraphs the relation defined on the set is
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neutrosophic tolerance relation. The neutrosophic tolerance relation not only classifies the elements of
the set which are related but also expresses their relation in terms of three components, namely truth
membership (T), Indeterminacy (I) and falsity (F). This approach leaves room for indeterminacy and
incompleteness. Below, we apply the method of rough neutrosophic digraphs to the above presented
application (online reviews and ratings).

Here X∗ = {Pel(P), Dawlance(D), Haier(H), Waves(W), Orient(O)} and the neutrosophic set
on X∗ according to the reviews will be X = {(P, 0.45, 0.29, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.45),
(W, 0.47, 0.41, 0.38), (O, 0.51, 0.35, 0.48)}. The equivalence relation on X∗ is given below

R P D H W O
P 1 0 1 0 1
D 0 1 0 0 0
H 1 0 1 0 1
W 0 0 0 1 0
O 1 0 1 0 1

The lower and upper approximations of X are as follows:

RX = {(P, 0.45, 0.29, 0.48), (D, 0.52, 0.25, 0.49), (H, 0.45, 0.29, 0.48),

(W, 0.47, 0.41, 0.38), (O, 0.45, , 0.29, 0.48)},
RX = {(P, 0.51, 0.43, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.37),

(W, 0.47, 0.41, 0.38), (O, 0.51, 0.43, 0.37)}.

Let Y∗ = {(P, D), (P, H), (D, H), (D, W), (H, W), (H, O), (W, P), (W, O), (O, P), (O, D)} be the
subset of X∗ × X∗ and the equivalence relation S on Y∗ is given as follows:

S (P,D) (P,H) (D,H) (D,W) (H,W) (H,O) (W,P) (W,O) (O,P) (O,D)
(P,D) 1 0 0 0 0 0 0 0 0 0
(P,H) 0 1 0 0 0 1 0 0 1 1
(D,H) 0 0 1 0 0 0 0 0 0 0
(D,W) 0 0 0 1 0 0 0 0 0 0
(H,W) 0 0 0 0 1 0 0 0 0 0
(H,O) 0 1 0 0 0 1 0 0 1 1
(W,P) 0 0 0 0 0 0 1 1 0 0
(W,O) 0 0 0 0 0 0 1 1 0 0
(O,P) 0 1 0 0 0 1 0 0 1 1
(O,D) 0 1 0 0 0 1 0 0 1 1

Thus, the lower and upper approximations of Y are calculated as follows:

SY = {((P, D), 0.45, 0.25, 0.48), ((P, H), 0.42, 0.24, 0.37), ((D, H), 0.45, 0.25, 0.47),

((D, W), 0.45, 0.24, 0.48), ((H, W), 0.45, 0.29, 0.38), ((H, O), 0.42, 0.24, 0.37),

((W, P), 0.42, 0.22, 0.37), ((W, O), 0.42, 0.22, 0.37), ((O, P), 0.42, 0.24, 0.37),

((O, D), 0.42, 0.24, 0.37)}
SY = {((P, D), 0.45, 0.25, 0.48), ((P, H), 0.45, 0.29, 0.37), ((D, H), 0.45, 0.25, 0.47),

((D, W), 0.45, 0.24, 0.48), ((H, W), 0.45, 0.29, 0.38), ((H, O), 0.45, 0.29, 0.37),

((W, P), 0.45, 0.29, 0.35), ((W, O), 0.45, 0.29, 0.35), ((O, P), 0.45, 0.29, 0.37),

((O, D), 0.45, 0.29, 0.37)}.
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To find the best company ratings, we use the following formula:

S(vi) = ∑
vi∈X∗

(TRX(vi)×TRX(vi))+(IRX(vi)×IRX(vi))−(FRX(vi)×FRX(vi))

1−{T(vivj)+I(vivj)−F(vivj)}

where

T(vivj) = max
vj∈X∗

TSY(vivj)× max
vj∈X∗

TSY(vivj),

I(vivj) = max
vj∈X∗

ISY(vivj)× max
vj∈X∗

ISY(vivj),

F(vivj) = min
vj∈X∗

FSY(vivj)× min
vj∈X∗

FSY(vivj).

By direct calculations, we have

S(P) = 0.20, S(D) = 0.0971, S(H) = 0.2077, S(W) = 0.2790, S(O) = 0.2011.

From the above calculations, we have Waves as the best choice and Dawlance as the least choice
for refrigerator. This is because the relation applied in this method is crisp equivalence relation which
does not consider the uncertainty between the companies of the same equivalence class. Whereas
in our proposed method, least choice for refrigerator is different. So, the results may vary when we
apply the method of rough neutrosophic digraphs and neutrosophic rough digraphs on the same
application. This means that rough neutrosophic digraphs and neutrosophic rough digraphs have
a different approach.

5. Conclusions

Neutrosophic set and rough set are two different theories to deal with uncertainty and imprecise
and incomplete information. Due to the limitation of human knowledge to understand the complex
problems, it is very difficult to apply only a single type of uncertainty method to deal with such
problems. Therefore, it is necessary to develop hybrid models by incorporating the advantages of
many other different mathematical models dealing with uncertainty. Thus, by combining these two
mathematical tools, we have presented a new hybrid model, namely, neutrosophic rough digraphs.
We have escribed regular neutrosophic rough digraphs and we have presented novel applications
of our proposed hybrid in decision-making. We have given a comparison of both models, rough
neutrosophic digraphs and neutrosophic rough digraphs. We plan to extend our research work to
(1) Neutrosophic rough hypergraphs; (2) Bipolar neutrosophic rough hypergraphs; (3) Soft rough
neutrosophic graphs; (4) Decision support systems based on neutrosophic rough information.
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