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Introduction 

Core	reactor	
	
	
	
	
	

Monitoring	nuclear	reactors	
working	at	nominal	conditions	is	
fundamental	for	safety	purposes.	
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Induced	perturbations	in	the	
reactor	core	cause	fluctuations	of	
the	neutron	flux.	
	



Monitoring	nuclear	reactors	
working	at	nominal	conditions	is	
fundamental	for	safety	purposes.	
	
Induced	perturbations	in	the	
reactor	core	cause	fluctuations	of	
the	neutron	flux.	
	
Anomalies	in	nuclear	reactors	can	
be	detected	by	analysing	neutron	
flux	data.	
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Signal	analysis	techniques	are	insufficient	for	back-tracking	the	nature	and	spatial	
distribution	of	possible		anomalies	

Ø  Need	to	be	able	to	invert	the	reactor	transfer	function	
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fuel	assembly	
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A	deep-learning	approach	
to	unfold	neutron	flux	
signals,	and	localise	

perturbations	within	12	
and	48	regions	inside	the	

core	reactor.	

A	k-means	and	k-means	
based			coarse-to-fine	
approach	to	better	
localise	perturbation	

sources.		
Starting	from	12	and	48	
core	regions,	the	signal	is	
unfold	up	to	the	core	

reactor	spatial	resolution.	

A	denoising	autoencoder	
to	reconstruct	part	of	
missing	signals	and	to	

filter	noise	out.	

Our Contributions 



•  Data	simulated	by	Chalmers	University	using	CORE	SIM	tool.	

•  Pressurised	Water	Reactor	(PWR)	with:	

	Radial	core	15×15	fuel	assemblies.		
	Volumetric	mesh	of	dimension	32×32×26.		
	Dirac’s	like	perturbation	generated	at	0.1	Hz,	1	Hz	and	10	Hz.	
	Green’s	function	as	the	reactor	transfer	function.	

•  CORE	SIM	output:	

	Fast	and	Thermal	neutron	response	to	the	applied	perturbation.		
	The	signal	is	complex	and	it	is	distributed	in	a	three-dimensional	array	of	size	
	32×32×26.	

	
.		
	

Demazière,	C.	(2011).	CORE	SIM:	A	multi-purpose	neutronic	tool	for	research	and	education.	Annals	of	Nuclear	Energy,	38	(12),	2698-2718	

Analysed data 

Core	reactor	
	
	



Data pre-processing 

The	3-D	information	(both	amplitude	
and	phase	of	the	thermal	and	fast	
group	responses)	was	unrolled	into	
two	dimensional	forms,	and	the	values	
rescaled	between	0	and	255.	

1st	ch:	Amplitudes	of	the	groups	
2nd	ch:	Amplitudes	of	the	groups	
3rd	ch:	Phase	of	the	groups.	

Amplitude	

Phase	



Recap: Convolutional Neural Networks 

•  State-of-the-art	in	many	Computer	Vision	tasks	

	i.e.	classification,	object	detection,	segmentation	etc.	

•  Made	up	of	stacks	of	Convolutional	and	Pooling	layers	

	
	



Recap: Inception Architecture 

Szegedy,	Christian,	et	al.	"Rethinking	the	inception	architecture	for	computer	vision."	Proceedings	of	the	IEEE	CVPR	2016	



Recap: Inception Module 

Szegedy,	C.,	et	al.	“Going	deeper	with	convolutions”.	Proceedings	of	the	IEEE	CVPR	2016	

1x1	convolutions	reduce	number	of	parameters	and	add	non-linearity	(ReLU)	to	learn	more	
complex	functions		

	
	



Recap: Inception Transfer Learning 

Codelabs.developers.google.com.	(n.d.).	Image	Classification	Transfer	Learning	with	Inception	v3.		



The proposed approach: Deep Convolutional Neural networks (CNN) 

Softmax	for	Multiclass:	



1st Experiment - Unfolding to 12 - 48 source locations 

CNN	was	used	to	localise	the	source	of	the	applied	noise	within	12and	48	volumetric	
subsections	of	the	original.		

	
The	initial	3D	array	of	size	32	x	32	x	26	was	compartmentalised	into	12	and	48	subsections,	by	a	
factor	2	x	2	x	3	and	4	x	4	x	3	respectively.	
	
	
	
	
	
	



Two	sets	of	experiments	were	conducted:	
•  with	pretrained	ImageNet	weights	and	partly	re-trained.	
•  with	weights	re-trained	from	scratch.		

Additionally,	to	make	the	problem	more	difficult,	the	signal	was	corrupted	by:	
•  	Adding	White	Gaussian	Noise	at	signal-to-noise-ratio	(SNR)	equal	to	1	or	3.	
•  	Obscuring	part	of	the	signal	(maintaining	25-50-75%	of	the	sensors’	information).	
•  Using	different	train	-	development	-	test	data	splits,	such	as:			
			75-10-15%,	50-20-30%	or	25-10-65%.	
	

1st Experiment - Unfolding to 12 - 48 source locations 
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1st Experiment - Unfolding to 12 - 48 source locations - RESULTS 



A	k-means	clustering	approach	was	devised	to	cluster	the	activations	from	the	last	fully-
connected	layer	of	the	trained	CNN.		

2nd Experiment - Unfolding from 12  to 48 source locations  - RESULTS 



A	k-means	clustering	approach	was	devised	to	cluster	the	activations	from	the	last	fully-
connected	layer	of	the	trained	CNN.		

t-Stochastic	Neighbour	Embedding	(t-
SNE)	representation	of	k-means	(k=4)	of	
the	seventh	block.		
	
a-b:	training	set	clusters.		
c-d:	test	set	predictions.	
	
Each	point	is	a	lower	dimensional	
projection	of	2048	dimensional	vector	
representations	of	signal.		
Each	colour	indicates	a	different	cluster.		

2nd Experiment - Unfolding from 12  to 48 source locations  - RESULTS 



3rd Experiment - Unfolding up to Signal’s Original Resolution   



For	various	values	of	k-,	
starting	from	a	resolution	of	
twelve	blocks	it	is	possible	to	
estimate	the	source	location	
at	the	original	signal’s	
resolution	of	32x32x26.		
	
The	resulting	accuracy	error	
was	slightly	greater	than	one	
point	in	the	reactor.		

3rd Experiment - Unfolding up to Signal’s Original Resolution - RESULTS   



•  A	denoising	autoencoder	was	trained	to	reconstruct	and	filter	the	partially	obscured	-	
using	25−50−75%	of	the	sensors	-	and	noisy	-	at	SNR=1	and	SNR=3	-	signals.	

4th Experiment - Signal denoising and reconstruction 

Mean	Squared	Error	for	
noise	filtering:	



4th Experiment - Signal denoising and reconstruction - RESULTS 

	
	
	The	reconstruction	was	measured	
by	the	normalised	cross	
correlation	(ncc)	metric.	
	
	
	
This	allows	a	quantitative	
comparison	of	the	similarity	
among	two	images;	ncc	ranges	
between	-1	(completely	differing)	
and	+1	(perfectly	matching).	

MAX	 MIN	

	 	Sensors’	information	
	25%	 				50%					 					75% 											25% 											50%											75%	



Conclusion and Future developments 

We	have	proposed:	
•  A	Deep	Neural-Network	approach	to	unfold	the	induced	neutron	noise	-	to	12	and	48	
subvolumes	source	location.	

•  A	combination	of	CNN	and	its	internal	representation	clustering	to	unfold	the	signal	up	
to	the	original	signal	resolution	32	x	32	x	26.	

•  A	Denoising	Autoencoder	able	to	denoise	and	reconstruct	noisy	signals	-	up	to	SNR	=1	-	
and	obscured	signals	-	using	up	to	25%	of	the	sensors’	information.	The	reconstructed	
signals	were	very	close	approximations	to	the	original	ones	and	were,	thereafter	used	
for	the	unfolding	of	the	noisy	and	obscured	data.	

•  The	experimental	study	will	be	extended	to	other	types	of	perturbations	and	simulated	
signals	generated	in	either	the	frequency	or	the	time	domain.		
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