
Using Self-Organizing Maps to Learn Hybrid
Timed Automata in Absence of Discrete Events

Alexander von Birgelen
Institute Industrial IT

Ostwestfalen-Lippe of Applied Sciences
Lemgo, Germany

Email: alexander.birgelen@hs-owl.de

Oliver Niggemann,
Institute Industrial IT

Ostwestfalen-Lippe of Applied Sciences
Lemgo, Germany

Email: oliver.niggemann@hs-owl.de

Abstract—Modern industrial plants become more complex and
consequently monitoring them often exceeds the capabilities of
human operators. Model-based diagnosis is a commonly used
approach to identify anomalies and root causes within a system
through the use of models, which are often times manually
created by experts. However, manual modelling takes a lot of
effort and is not suitable for today’s fast-changing systems. Today,
the large amount of sensor data provided by modern plants
enables data-driven solutions and models can be learned from
data, significantly reducing the manual modelling efforts. These
data-driven solutions enable tasks such as condition monitoring:
anomalies can be detected automatically, giving operators the
chance to restore the plant to a working state before production
losses occur. The choice of the model depends on a couple
of factors, one of which is the type of the available signals.
Hybrid timed automata are one type of model which separate
the systems behaviour into different modes, e.g. ’valve open’ or
’motor is running’ through discrete events which are for example
created from binary signals of the plant or through real-valued
signal thresholds, defined by experts. The real-valued signals are
then separated into the corresponding modes to improve the
anomaly detection process in comparison to unseparated data.
The anomaly detection for hybrid timed automata combines the
detection of timing errors and sequence errors in the mode
changes and the detection of anomalies in the real-valued signals.

However, binary signals or expert knowledge to generate the
much needed discrete events are not always available from the
plant and automata can not be learned. The unsupervised, non-
parametric approach presented and evaluated in this paper uses
self-organizing maps and watershed transformations to allow the
use of hybrid timed automata on data where learning of automata
was not possible before.

I. INTRODUCTION

Increasing product variety, product complexity and pressure
for efficiency in a distributed and globalized production chain
cause production systems to evolve rapidly: they become
modular, can be parameterized and contain a growing set of
sensors [1].

In order to enable European SMEs to face these challenges
and to utilize new technical possibilities, the Horizon2020
project IMPROVE is aimed at developing user support func-
tions in terms of self-diagnosis (i.e. condition monitoring,
predictive-maintenance) and self-optimization (e.g. energy op-
timization, output optimization).

Models can be constructed manually by an expert, but this
is difficult, costly and time consuming in today’s complex

and evolving production plant [2]. Instead of only relying on
human expertise and additional engineering steps formalizing
the necessary knowledge, the tasks stated above will be
taken on in a data-driven way [3] where models are learned
automatically from the data. For anomaly detection, the live
data from the plant is compared to the predictions of the
learned model and deviations from the normal behaviour are
classified as anomalous.

The type of model depends on a variety of conditions such
as available signals, the task of the model and the overall na-
ture of the system. Modern cyber-physical production systems
(CPPS) usually are hybrid systems, meaning they comprise
both binary and real-valued signals. In general, these dynamic
systems are state based, for example the system’s state is
defined by its current and previous binary control signals, and
the actions taken out are time dependent [4].

One approach to perform anomaly detection in hybrid
systems is to use hybrid timed automata [5] as a normal
behaviour model which utilize discrete events to learn the
system’s normal behaviour. These events often cause so called
mode or state changes in industrial plants, e.g. conveyor is
running or valve open. Hybrid timed automata are well suited
to learn the normal behaviour in terms of the modes/states,
transitions and corresponding timings from data in an unsu-
pervised manner. The real-valued signals are processed within
the states using other types of models. Such models can for
example be regression models or models which also reduce the
dimensionality of the real-valued data. An example for this is
the nearest-neighbor principal component analysis (NNPCA)
[6] which is used for the experiments in section IV. The
NNPCA was chosen because it is used frequently in a variety
of research projects in our institute.

Changes in the binary control and sensor signal values of the
system can be utilized as discrete events directly. Another way
to get discrete events is to set thresholds on continuous signals
but this requires additional expert knowledge. Unfortunately,
expert knowledge is almost never available and binary sensor
signals are also not always available or not meaningful. This
occurs for example when data is recorded using internal trace
functionalities from drive controllers, which offer very high
sampling rates but lack knowledge of variables from the
programmable logic controller (PLC).

In this paper we present an unsupervised, non parametric
approach to learn hybrid timed automata in absence of dis-
crete events. The approach uses self-organizing maps (SOM)
and watershed transformations to extract modes and generate
discrete events in an unsupervised manner using only real-
valued signals. The generated events can then used to capture
the normal behaviour of the system by learning hybrid timed
automata on data where they were not applicable before. The
learned hybrid automaton is then used for anomaly detection
in the real-valued signal values and in the time domain by
analysing the transitions between the automaton’s states.

The contents of this paper are structured as follows: Section
II introduces the existing modelling formalisms which are
then combined in section III to generate discrete events from
real-valued signals in an unsupervised manner. Experimental
results from three different data sets, one artificial and two
real world ones, are given in section IV. Finally, the paper is
concluded in section V.

II. METHODOLOGIES

A. Hybrid Timed Automata

Hybrid timed automata have proven to be a great tool to
learn the normal behaviour of a system and detect deviations
from it. Discrete events are required to learn an automaton.
These events often cause mode changes in the system and the
timing of these events is an important indicator for the health
of the system. Hybrid timed automata are used to separate
these modes, learn the transitions and timing between them
and model the behaviour of the real-valued signals for each
of the modes or states in the automaton.

An easy approach to obtain discrete events can be directly
extracted from changes in the binary control and sensor signals
of the system. It is also possible to obtain discrete events
through thresholds for continuous signals such as temperature
<19◦C [7]. However, setting the thresholds and combinations
of conditions for the continuous signals requires expert knowl-
edge which is usually not available for real world automation
systems. For unsupervised learning of these automata only
binary control signals are used to obtain the discrete events.
Algorithms such as the online timed automaton learning
algorithm (OTALA) [8] and its hybrid extension can work in
an online, unsupervised manner, and do not require additional
expert knowledge.

A hybrid automaton generated by the aforementioned algo-
rithm can be defined as described in Definition 1.

Definition 1: a hybrid timed, probabilistic automaton is a
tuple A = (S, s0,Σ, T, δ, P, θ), where
• S is a finite set of states where s ∈ S.
• s0 is the initial state which can be given by the systems

state at the start of the training.
• Σ is the set of discrete events. Events a ∈ Σ is linked to

the transitions of the automaton.
• T is the set of transitions with t ∈ T and t = (s, a, s′)),
s, s′ ∈ S are source and destination state, a ∈ Σ is the
trigger event of the transition.

• The timing constraint δ : T → I assigns a time interval
to a transition t ∈ T , where I is a set of time intervals.
The time here usually refers to the elapsed time since the
last event occurred.

• P is a set of probabilities: for each transition t ∈ T
probability p ∈ P is calculated.

• θs∈S describes a model for each state s ∈ S which
captures the behaviour of the real valued signals. Real
valued signals are not captured by the discrete part of the
automaton. These state models θs∈S are learned for each
state of the automaton using other models such as linear
regression, decision trees and others, such as the nearest
neighbour principal component analysis (NNPCA) used
in section IV of this paper.

The learned automaton can then be used to detect a variety
of different classes of anomalies. This can for example be done
using the anomaly detection algorithm (ANODA) [9] which
can detect the following types of anomalies:
• Unknown event / Wrong event sequence: an event

occurred which was not observed in the current state.
• Timing error: a transition occurred outside of the learned

time bounds.
• State remaining error: when more time passed than for

the latest event and the state is not a final state, then we
have a state remaining error.

• Probability error: the probabilities of transitions for the
new data are calculated and compared to the previously
learned probabilities and an error is generated when
deviations are too large.

• Continuous error: for each state and additional anomaly
detection for the continuous signals can be performed
using the internal state models.

B. Self-Organizing Map

The self-organizing map (SOM), also referred to as self-
organizing feature map or kohonen network, is a neural
network that can be associated with vector quantization, vi-
sualization and clustering but it can be used as an approach
for non-linear, implicit dimensionality reduction [10]. The
reduction is performed in a qualitative, implicit way. A SOM
consists of a collection of neurons which are connected in a
topological arrangement which is usually a two dimensional
rectangular or hexagonal grid. The input data is mapped to
the neurons forming the SOM. Each neuron is essentially a
weight vector of original dimensionality.

Definition 2: the self-organizing map SOM = (M,G, d)
forms a topological mapping of an input space O ⊂ Rm,
m ∈ N and consist of
• a set of neurons M .
• each neuron n ∈M has a weight vector wn ∈ Rm,m ∈
N.

• G is usually a two-dimensional rectangular or hexagonal
lattice in which the neurons n ∈M are arranged. Toroidal
versions of these topologies are also common.

• d(x,y) is the distance measure to calculate the distance
between two vectors x and y which can for example be

(a) Colored 2D (b) 3D

Fig. 1: Different u-matrix visualizations of a 120x120 SOM.

weight vectors and/or vectors in the input space. Usually,
the euclidean distance is used but other measures, such
as the mahalanobis distance, can be used.

• an input sample oi ∈ Rm, i ∈ N is mapped to the SOM
through its best matching unit (BMU). The BMU is given
by bmu(oi) = argmink∈M d(oi,wk)

One way to learn a SOM from data is a random batch
training approach: The initial values of the neuron’s weight
vectors for the training can be randomly initialized or sampled
from the training data. All samples from the training data are
presented to the algorithm within one epoch. A best matching
unit (BMU) is calculated for each input sample from the train-
ing data by finding the neuron which has the smallest distance
to the sample. The BMU and all of its neighbouring neurons,
assigned through the topology and neighbourhood radius, are
shifted towards the input sample. Both the neighbourhood
radius and strength of the shift decrease over time. The training
stops after a chosen amount of epochs.

Each neuron of the SOM represents a part of the training
data. Areas in the training input space with few examples are
represented by few neurons of the SOM while dense areas in
the input space are represented by a larger number of neurons.

The unified distance matrix (u-matrix) [11] allows a three-
dimensional visual identification of clusters contained in the
self-organizing map. It calculates the average distance to
neighbouring neurons according to the SOM’s topology and
visualizes clusters contained in the, usually high dimensional,
training data. The X and Y coordinates of the neurons repre-
sent the first two dimensions. The third dimension is given by
the average distance to neighbouring neurons as in definition
3.

It can be visualized directly in 3D or in 2D using a color
gradient as shown in Figure 1.

Definition 3: for each neuron n ∈ M and its associ-
ated weight vector wn, the u-matrix height is given by
U(n) =

∑
k∈NN (n,G) d(wn,wk), where NN (n,G) is the set

of neighbouring neurons of n defined by grid G and d(x, y)
is the distance used in the SOM algorithm.

The u-matrix representation illustrates why SOM’s were
chosen: SOM’s tend to keep neurons with similar signal
weights closely together, which results in a topographic land-
scape with valleys, where weights of neighbours are similar,
and ridges, where weights of neighbours are not similar.
Valleys represent regions where the contained neurons weight

(a) 4 level, 16 cluster (b) 6 level, 197 cluster

Fig. 2: Watershed transformations of a u-matrix.

vectors are very similar. These valleys are separated by ridges
which mark transitions between the different feature spaces.

C. Watershed Transformation

Clustering algorithms from the image processing domain,
such as the watershed transformation [12], can be used on the
u-matrix representation of a SOM to identify the clusters in a
mathematical way.

This works analogous to rain falling on top of the u-matrix.
The water runs from higher regions to the lower regions
and consequently flooding the basins. When the water level
gets high enough so two basins merge, a ridge forms which
separates them.

The watershed transformation dissects the u-matrix into
different clusters, separated by the so-called watershed lines.
Watershed lines separate the different basins and do not belong
to any of the clusters. The basins can be interpreted as
stationary process phases while the watershed lines represent
transient process phases [13].

The implementation used here is the Vincent-Soille water-
shed algorithm which performs the watershed transformation
in a non-recursive manner [14]. The sensitivity of the algo-
rithm can be adjusted by setting a number of levels which in
turn influences the number of final clusters found. Figure 4
shows examples using different levels on the same u-matrix.

In the end, we receive a mapping for each neuron of the
map to its corresponding cluster:

Definition 4: the watershed transformation maps each neu-
ron n ∈ M to a cluster c, with C being a set of clusters and
c = [0, |C| − 1] ∈ N.

III. LEARNING HYBRID TIMED AUTOMATA WITHOUT
DISCRETE EVENTS

In order to learn hybrid timed automata, without binary con-
trol signals and without expert knowledge about thresholds for
continuous signals, it is necessary to derive the discrete events
using an alternative way. For complex systems, the events can
also be related to combinations of different continuous signal
values. Here, SOMs are used as a preprocessing step to extract
the different modes of the system in an unsupervised manner.

This section describes the generation of discrete events
using SOMs. Figure 3 shows the general steps of the presented
approach. A SOM is learned from the input data and the

transitions between emerging clusters are used to generate
discrete events. This is essentially a preprocessing procedure
which allows learning hybrid timed automata in case the
input data does not contain discrete events. After events are
generated an automaton can be learned and then used to detect
anomalies within the real-valued signal values and also in the
timing and probabilities of the events.

First, real-valued signals are recorded during normal op-
eration of the plant to generate dataset O which consists of
many obervations o ∈ O and represents the input space of the
model. Then, the SOM-Discretization algorithm (Algorithm
1) generates discrete events for the data to allow learning of
hybrid timed automata:

A SOM is trained on the recorded normal behaviour data
(step 3). The size of the SOM is automatically calculated ac-
cording to [15], where the the number of neurons |M | ≈ 5

√
N

with N being the number of observations. The ratio of the side
lengths is the ratio of the two largest eigenvalues of the data’s
covariance matrix. A normalization should generally be done
before the SOM training but this depends on the input space
and is therefore optional (step 2).

The SOM’s u-matrix is calculated (step 4) and then clustered
using the watershed transformation (step 5). The watershed
levels are adjusted so the final cluster count is close to
the shorter side length of the SOM. Each basin represents
a stationary process phase and gets a unique number i =
[0, |C| − 1], i ∈ N for identification. The watershed lines are
transient process phase all receive a negative identification
number to distinguish them from the stationary process phases.
Observations mapped to transient process phases, the borders
left after the watershed transformation, are assigned to the
same cluster as the previous observation and therefore receive
the same event vector as the previous observation (step 12).
The event vector for cluster c ∈ C in step 10 is created such
that:

v(c) =

(
v1, v2, ..., vi, ..., v|C|−1

∣∣∣∣vi =

{
1 if i=c
0 else

)
The event vector is then concatenated with the original signal
vector in step 14. The data now contain binary signals which
are then interpreted as discrete events by hybrid automaton
learning algorithms such as the hybrid OTALA used in this
paper.

The anomaly detection can be performed either offline
or online. Algorithm 2 shows the procedure for an online
anomaly detection, where each observation o is tested as soon
as it is received. When normalization was used for the training
each new observation must also be normalized based on the
normalization parameters calculated before (step 2). The best
matching unit is calculated and linked to its corresponding
cluster (steps 3, 4). When the observation falls onto a transient
process phase it is assumed to be in the same cluster as the
previous observation (step 8). When mapped to a stationary
process phase, the discrete event signal vector is generated and
appended to the observation in steps 6 and 10. The observation

Algorithm 1 Generation of discrete events

1: procedure SOM-DISCRETIZATION(O)
2: O ← NORMALISE(O)
3: SOM ← TRAINSOM(O)
4: U ← U-MATRIX(SOM)
5: C ← WATERSHED(U)
6: for all o ∈ O do
7: bmuo ← BMU(SOM, o)
8: co ← C(bmuo)
9: if co ≥ 0 then

10: vo ← V(co)
11: else
12: vo ← vo−1
13: end if
14: p← {vo, o}
15: end for
16: end procedure

is then given to the ANODA algorithm to perform the anomaly
detection using the learned automaton.

Algorithm 2 Preprocessing for online anomaly detection

1: procedure SOM-DISCRETIZATION-ONLINEAD(o)
2: o← NORMALISE(o)
3: bmuo ← BMU(SOM, o)
4: co ← C(bmu)
5: if co ≥ 0 then
6: vo ← V(co)
7: else
8: vo ← vo−1
9: end if

10: o← {vo, o}
11: return o
12: end procedure

IV. EXPERIMENTS

This section presents experimental results of the presented
approach using one artificial and two real world data sets.

A. Artificial test data

We created an artificial dataset through a simple PLC
application. The PLC moves a virtual, linear SoftMotion [16]
axis back and force between two target positions. The drive
uses trapezoid ramps with limited speed and accelerations. The
drive related data from the software PLC are acquired through
OPC-UA subscriptions in a 100ms publishing interval.

The data contains three real-valued signals: target position,
actual velocity and actual speed. The training set contains 15
cycles, while the evaluation set contains five normal and five
anomalous cycles. Maximum acceleration and deceleration are
decreased during the anomalous cycles. An excerpt of the
data is shown in Figure 4. The anomalies are labelled, to
later evaluate the score for the anomaly detection. All of the

Data

S1
S2

S3

SOM

S1
S2

S3

e1

e2

Events

S3

S2

S1
e1

e2

Automaton

S3

S2

S1
e1

e2

Anomaly
Detection

Fig. 3: General steps of the presented algorithm.

Normal & Anomalous Cycle

900 1000 1100 1200
Observations

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Si
gn

al
 v

al
ue

Programs.PLC_PRG.Drive1Control.Position GlobalVars.IoConfig_Globals.Drive1.fActPosition GlobalVars.IoConfig_Globals.Drive1.fActVelocity

Fig. 4: One normal (827-991) and one anomalous (992-1251)
cycle, scaled to range [0,1].

machine learning methods here work unsupervised and have
no knowledge about the labels.

The nearest-neighbor PCA (NNPCA) [6] was first used on
the full training data and then second as state-model for the
hybrid automaton.

The data was reduced to two dimensions and then used
for the anomaly detection. The training observations provide
the reference to calculate the distance for each evaluation
observation. When the distance exceeds a certain threshold,
the observation is considered anomalous. The threshold is
calculated using a mexican-hat wavelet, so the distance is
given as an error probability.

Setting the threshold is not trivial and highly depends on the
input data. A 100% threshold is good against false positives but
also might be not sensitive enough to find the true positives.
Lowering the threshold usually increases the true positive rate
but at the risk of more false positives.

Figure 5 shows a plot of two-dimensional NNPCA learned
from the normal behaviour used as training data. The anoma-
lies from the evaluation data are unknown to the model and
are shown here to visualize the separation between normal
and anomalous behaviour. A threshold of 25% was selected,
so every observations which gets a probability greater or equal
to 25% of being anomalous is marked anomalous. Even with
this low threshold, not a single anomaly is found by the

PCA

Normal Anomalous
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

PC1

-0.4

-0.2

 0

 0.2

 0.4

P
C

2

Fig. 5: Plot of the full dataset in the two-dimensional PCA
space. Only normal behaviour is known to the learned model.
Anomalies plotted to show the separation between normal and
anomalous.

Fig. 6: Clusters on the SOM. Grey areas mark transient process
phases.

NNPCA on the full dataset as the separation between normal
and anomalous behaviour is not large enough to be found with
the given threshold. Furthermore, the NNPCA model does not
include time in an explicit way and detection of anomalies in
the time domain difficult or often not possible.

Now, algorithm 1 is used to generate discrete events so the
data can be separated by a hybrid automaton. The automatic
selection of parameters results in a SOM with 24x10 neurons
and 11 clusters as shown in Figure 6.

With this, a hybrid automaton is trained using the hybrid
OTALA algorithm and the NNPCA as a state model with the
exact same parameters as before. The resulting automaton is

1

2

3

4
5

6

7

8

9
10

11

12

Fig. 7: The learned automaton with 12 states. State 1 is an
initial state. Each cluster is mapped to one state.

PCA

Normal Anomalous
 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

PC1

 0.23

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

P
C

2

(a) State 3

PCA

Normal Anomalous
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

PC1

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

P
C

2

(b) State 7

Fig. 8: Two state models from the automaton in Figure 7
showing the normal and mapped anomalous behaviour.

shown in Figure 7. Behind each state stands the state model
from which two are shown in Figures 8a and 8b showing the
separation of the normal and anomalous behaviour.

The presented approach for the event generation in prepa-
ration for automaton learning calculates the necessary param-
eters from the training data as described in section III. The
settings for the NNPCA within the states were kept identical
and the hybrid automaton achieves F1 measure of 92.68%,
compared to the 0% F1 achieved by the NNPCA on the full
dataset.

Table I shows some more details about the scores. The
automaton offers another advantage: deviations in the timing
and sequence of the system’s behaviour can now be detected,
which is not possible with the NNPCA alone.

B. High Rack Storage System

The High Rack Storage System or HRSS is a demonstrator
from the SmartFactoryOWL which transports wares between
its different shelves. The data from the system’s drives includes
position, power and voltage signals to a total of 17 real-
valued signals, after removal of signals with zero-variance.
The training data contains 107 cycles of the same transport
operation. Evaluation data contains 113 cycles and was gen-
erated by modifying the training cycles in different ways such
as increasing or decreasing one or multiple signals by dif-
ferent amounts (e.g. 20%), shortening of cycles and inserting

1

2

3

4

8

9

11

14

16

17

18

19

21

23

24

5

6

7

20

10

22

12

13

15

Fig. 9: The learned automaton for the storage system.

constant sequences. This artificially generated anomalies are
labelled and are used to calculate the scores of the anomaly
detection.

The NNPCA reduces the data to 15 dimensions, keeping
a variance coverage of 99.93%. A 60% threshold for the
anomaly detection, successfully identifies 38 of the 7365
labelled anomalies resulting in an atrocious F1 score of 1%.
The event generation creates a 34x24 SOM resulting in 24
clusters which are then captured by the automaton (Figure 9).

The automaton with the 15-dimensional NNPCA inside
the states identifies 1516 true positives and reaches an F1
measure of 30.76% which is a drastic increase to the full-
dataset NNPCA. It is to be noted that the anomalies were
generated without respect to the overall dataset, so a 20%
increase of a signal might not be a significantly different from
the overall training data and therefore the absolute scores on
this dataset might not be representative.

C. Film-Spool Unwinder

The third dataset presented in this paper was recorded from
the cutting unit of a Vega shrink-wrap packer by OCME [17].
The machine groups loose bottles or cans into set package
sizes, wraps them in plastic film and then heat-shrinks the
plastic film to combine them into a package.

The drive controllers within the film cutting unit recorded
chunks of data which each contain 2048 observations using
their built-in scope functionality at a 4ms resolution. Here,
we only consider two signals from the film unwinder drive:
actual speed and lag error. 40 chunks were used for training
and another 32 chunks were used as evaluation data. The film
spool depleted during the last cycles, so every observation in
the last 12 cycles was labelled anomalous. A dimensionality
reduction is not necessary for two dimensions, but the NNPCA
was still used to keep the model consistent for the experiments
presented here. Again, the NNPCA failed to detect any anoma-

1

2

3

4

5

6

7

8
9

11

12

13

10

23

20

14

21

15

16

17

18

19

22

24

Fig. 10: Unwinder Automaton

lies on the full dataset. The automatically calculated size of
the SOM is 64x22 neurons resulting in the automaton shown
in Figure 10. The NNPCA on the full data and a selection of
the 24 state models is shown in Figure 11.

The absolute scores for this dataset have to be taken
with a grain of salt because the anomalies are not labelled
observation-perfect but a generous range of observations was
marked as anomalous. The F1 score for the anomaly detection
with the automaton reaches 40.38%, resulting in an increase
of over 21% (Table I) compared to the NNPCA on the full
dataset.

V. CONCLUSION

This paper presented an unsupervised, non-parametric ap-
proach which allows application of hybrid timed automata on
data which do not allow their use due to a lack of knowledge
about discrete events which are needed to learn and use
hybrid timed automata. Hybrid automata are used for anomaly
detection in the real-valued signal values as well as in the time
domain by analysing the transitions between the states of the
automaton.

The presented approach separates the data into different
stationary and transient process phases using self-organizing
maps and watershed transformations. Also, all necessary pa-
rameters for the SOM and watershed transformation are auto-
matically estimated from data. The discrete events generated
from the transitions between the extracted process phases are
used to learn a hybrid timed automaton which in turn is used
for anomaly detection. The presented algorithms work offline
during the learning phase and can later be used online with
live data from the plant. Further, the presented algorithms are
not linked to a specific automaton learning algorithm and can
be used as a preprocessing step prior to automaton learning.

The anomaly detection for real-valued signals through a
model within the states of the learned hybrid automaton
increases the performance of the anomaly detection in com-
parison to the same model working with the same parameters
on the full dataset. The experiments in section IV show results
from three different datasets, two of which come from real-
world machines. For all tested datasets, the separation of
modes through the automaton improves the scores for the
anomaly detection of the real-valued signals, without any
additional tuning of parameters for the anomaly detection.

ACKNOWLEDGEMENT

This project has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No. 678867.

REFERENCES

[1] Factories of the Future: MultiAnnual Roadmap for the
contractual PPP under HORIZON 2020. Luxembourg:
European Union, 2013.

[2] B. Vogel-Heuser, C. Diedrich, A. Fay, S. Jeschke,
M. Kowalewski S.and Wollschlaeger, and P. Goehner,
“Challenges for software engineering in automation,”
Journal of Software Engineering and Applications, vol.
7, no. 5, 2014.

[3] O. Niggemann, A. Maier, A. Vodencarevic, and B.
Jantscher, “Fighting the modeling bottleneck - learn-
ing models for production plants,” Workshop ”Modell-
basierte Entwicklung Eingebetteter Systeme” (MBEES),
Jul. 2011.

[4] O. Niggemann, A. Maier, R. Just, and M. Jäger,
“Anomaly detection in production plants using timed
automata : Automated learning of models from ob-
servations,” in Proceedings of the 8th International
Conference on Informatics in Control, Automation and
Robotics, 2013, pp. 363 –369.

[5] A. Maier and O. Niggemann, “On the learning of
timing behavior for anomaly detection in cyber-physical
production systems,” in International Workshop on the
Principles of Diagnosis (DX), Paris, France, 2015.

[6] J. Eickmeyer, T. Krueger, A. Frischkorn, T. Hoppe,
P. Li, F. Pethig, S. Schriegel, and O. Niggemann, “In-
telligente zustandsberwachung von windenergieanlagen
als cloud-service,” in Automation 2015, Baden-Baden,
2015.

[7] T. A. Henzinger, “The theory of hybrid automata,” in
Proceedings 11th Annual IEEE Symposium on Logic in
Computer Science, 1996, pp. 278–292.

[8] A. Maier, “Online passive learning of timed automata
for cyber-physical production systems,” in 2014 12th
IEEE International Conference on Industrial Informat-
ics (INDIN), 2014, pp. 60–66.

[9] ——, “Identification of timed behavior models for di-
agnosis in production systems,” PhD thesis, Paderborn,
Univ., 2015.

PCA

Normal Anomalous
-0.6 -0.4 -0.2 0 0.2 0.4

PC1

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

P
C

2

(a) PCA space of full data set

PCA

Normal Anomalous
 0.12 0.14 0.16 0.18 0.2

PC1

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

P
C

2

(b) State 5

PCA

Normal Anomalous
-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1

PC1

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

P
C

2

(c) State 13

PCA

Normal Anomalous
-0.1 -0.05 0 0.05 0.1 0.15 0.2

PC1

-0.4

-0.38

-0.36

-0.34

-0.32

-0.3

-0.28

P
C

2

(d) State 16

Fig. 11: PCA of the unwinder data (11a) and examples from the automaton states (11b, 11c, 11d).

TABLE I: Scores for different datasets and methods. Explanations can be found in the corresponding sections.

Dataset Method TP TN FP FN ACC F1
IV-A: Artificial test data NNPCA 0 991 0 1692 36.94% 0%
IV-A: Artificial test data Automaton, NNPCA only 1443 983 8 249 90.42% 91.82%
IV-A: Artificial test data Automaton, all errors 1481 968 23 211 90.42% 92.68%
IV-B: High Rack Storage System NNPCA 38 17990 0 7327 71.10% 1.03%
IV-B: High Rack Storage System Automaton, NNPCA only 1430 17055 935 5935 72.90% 29.39%
IV-B: High Rack Storage System Automaton, all errors 1516 17013 977 5849 73.08% 30.76%
IV-C: Film-Spool Unwinder NNPCA 2528 40926 34 22048 66.31% 18.63%
IV-C: Film-Spool Unwinder Automaton, NNPCA only 6688 37637 3323 17888 67.63% 38.67%
IV-C: Film-Spool Unwinder Automaton, all errors 7082 37538 3422 17494 68.08% 40.38%

[10] H. Yin, “The self-organizing maps: Background, the-
ories, extensions and applications,” in Computational
Intelligence: A Compendium, J. Fulcher and L. C. Jain,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 715–762, ISBN: 978-3-540-78293-3.

[11] A. Ultsch and H. P. Siemon, “Kohonen’s self-organizing
feature maps for exploratory data analysis,” in Proceed-
ings of the International Neural Network Conference
(INNC’90, 1990.

[12] F. Meyer, “Topographic distance and watershed lines,”
Signal Processing, vol. 38, no. 1, pp. 113–125, 1994.

[13] C. Frey, “Monitoring of complex industrial processes
based on self-organizing maps and watershed transfor-
mations,” in Industrial Technology (ICIT), 2012 IEEE
International Conference on, 2012.

[14] L. Vincent and P. Soille, “Watersheds in digital spaces:
An efficient algorithm based on immersion simulations,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 13, no. 6, pp. 583–598, 1991.

[15] J. Tian, M. H. Azarian, and M. Pecht, “Anomaly
detection using self-organizing maps-based k-nearest
neighbor algorithm,” Second European Conference of
the Prognostics and Health Management Society 2014,
2014.

[16] 3S-Smart Software Solutions GmbH. (2017). Codesys
softmotion: Integrierte bewegungssteuerung in einem
iec 61131-3 programmiersystem, [Online]. Available:
https : / / de . codesys . com / produkte / codesys - motion -
cnc/softmotion.html (visited on 03/28/2017).

[17] OCME. (2017). Shrink-wrap packers vega, [Online].
Available: http : / / www. ocme . com / en / our - solutions /
secondary-packaging/vega (visited on 03/27/2017).

