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Abstract—The number of connected IoT devices is expected
to reach over 20 billion by 2020. These range from basic sensor
nodes that log and report the data for cloud processing, to the
ones on the edge, that are capable of processing and analyzing
the incoming information and taking an action accordingly.
Machine learning, and in particular deep learning, is the defacto
processing paradigm for intelligently processing these immense
volumes of data. However, the resource inhibited environment
of edge devices, owing to their limited energy budget, and
low compute capabilities, render them a challenging platform
for deployment of desired data analytics, particularly in real-
time applications. In this paper therefore, we argue that for
a wide range of emerging applications edge intelligence is a
necessary evolutionary need, and thus we provide a summary
of the challenges and opportunities that arise from this need.
We showcase through a case study regarding computer vision
for commercial drones, how these opportunities can be taken
advantage, and how some of the challenges can be potentially
addressed.

Index Terms—Edge Intelligence, Deep Learning, Machine
Learning, Convolutional Neural Networks, Embedded Systems

I. INTRODUCTION

Artificial intelligence is currently mostly facilitated using
machine learning algorithms, such as Deep Neural Networks
(DNNs), that is complex structures of hierarchical layers that
build powerful representations from raw data. There are dif-
ferent types of DNNs such as Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs). CNNs, for
example, have emerged as the leading architecture for com-
puter vision tasks, such as large scale image classification [1].
The key reason behind their success and widespread adaptation
is their ability to learn high level features directly from raw
sensory data without being explicitly programmed. This is
applicable across a wide spectrum of Artificial Intelligence
(AI) applications, with demonstrated remarkable results [2]
at the cost of high computational and memory requirements.
Due to the computational requirements of their learning, the
CNNs are typically trained on GPUs [3]. As such, cloud
computing has been used as a potential solution to mitigate
the computation from the device to a remote computing infras-
tructure that has the necessary processing power. However,
using the cloud as a centralized processing server increases
the frequency of communication between user devices and

the geographically distant data centers. This is limiting for
applications that require real-time response, and therefore need
computing resources and services very close to them, such as
autonomous cars, for which delay or latency in transmitting
vital information could be extremely dangerous. A connected
car creates tones of megabytes of data per second including
data regarding its mobility (such as routes), its operating
conditions, images from its cameras, and data that describe its
surrounding environment [4]. An autonomous car, will create
even more data, estimated to be about one gigabyte per second
[5]. Sending all the generated data to the cloud for processing
will require prohibitively high network bandwidth and will
increase response time.

Additionally, this is limiting for applications processing
private data, such as wearable biomedical devices, or wearable
cameras [6]. Processing private user data at the edge could
protect user privacy and avoid exposing the data to security
threats by sending them to the cloud. It is also worth men-
tioning that wearable devices do not guarantee connectivity,
due to the location and movement of the wearer, and also
require extremely low power operation emphasizing the need
for intelligent processing on the edge. Hence, there has been
a need for shifting/pushing the computation towards the edge
of the network - processing data physically close to where
the data is being produced, i.e., where the things and humans
are, in the field area, homes, and remote offices- referred to
as edge computing [7]. When the data is acquired, stored and
processed with machine learning algorithms at the network
edge (e.g embedded edge devices) we refer to this specifically
as edge intelligence [8].

We argue, therefore, that edge intelligence improves time-
to-action and reduces latency down to milliseconds while min-
imizing network bandwidth. Additionally, it can offer greater
privacy and security than cloud computing and allow for
greater control over data generated in foreign countries where
laws may limit the use or permit unwanted governmental
access to the data. Finally, edge intelligence lowers cost since
more sensor-derived data are used locally and less data are
transmitted remotely.

To better illustrate the difference between cloud- and edge-
based systems we illustrate the example application of license
plate recognition in Fig. 1. In the cloud paradigm the image
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Fig. 1: Edge Vs Cloud Computing: Example Scenario of
License Plate Recognition

captured by the camera needs to be transferred to the remote
infrastructure for processing to first recognize the license plate
is located in the image and then extract the number and store it
in a database along with additional information such as time-
stamp/location. In the edge paradigm all the aforementioned
processing is done on the camera itself which only transmits
the actual number and metadata information. Immediately,
it is evident that the bandwidth requirements are reduced
significantly and image data is not transmitted which alleviates
privacy issues. Of course the challenge is on doing the whole
processing efficiently on the camera.

We argue that edge intelligence is expected to arise in
the up coming years and expand its reach into almost every
domain. Therefore, in this paper, we attempt to identify and
provide an overview of the challenges and opportunities it
has to offer. We first identify several potential advantages
that stem from pushing the intelligence to the cloud and also
identify several challenges that need to be addressed such
as power and energy efficiency, performance under resource-
constrained scenarios, and storage. Further, we demonstrate
how we addressed the above challenges in the adaption of a
CNN detector, while maintaining the necessary performance
for the particular application and utilising the opportunities
edge intelligence has to offer.

II. MIGRATING INTELLIGENCE FROM CLOUD TO THE
EDGE

In many applications the use of cloud computing is pro-
hibitive due to various risks associated with the technical
requirements or due to the type and nature of the information
that is being processed. The nature of the risks of course,
varies in different scenarios, depending among other things,
on what type of cloud that is being employed whether that
is a powerful workstation or a datacenter. However, in many
cases these concerns are serious enough, that computation is
mandatory to be shifted from the datacenter (cloud) to near
the sensor (edge) [9]. In this section we discuss how important
challenges of cloud computing can be addressed by shifting
the acquiring, storing and processing of data at the edge.

A. Security/Privacy:

In any cloud computing paradigm, sensors which operate
on specific devices collect data such as measurements, photos,
videos, and location information. These data are transmitted
from the sensor to the dedicated computing infrastructure with
services that will perform the data analysis which can be
either private or public [10]. These services can either be
accessed through the internet or a dedicated communication
infrastructure and the computing can range from a powerful
workstation to thousands of servers.

Since the data leaves the device it can be exposed to various
vulnerabilities and attacks such as penetration attacks (e.g.,
man-in-the-middle attack) resulting to theft of information or
even Denial of Service attacks resulting to crashing servers or
networks. Additionally, an attacker can not only access and
intercept the sensor data, but also the application’s processing
outcome in transit to lead to a different action/scenario than
the intended one (i.e. tampering). Additionally, the locality on
the edge, as well as the potential proximity of system to end
users can enable it to help address certain security challenges.

B. Performance

Performance, and latency in particular, is vital for time-
critical applications where the signal roundtrip time can be
very noticeable, such as self-driving cars. In such applications,
the speed of decision making is of critical importance - even
a fractional delay in processing can trigger a disastrous event.
Therefore, migrating the computation to the edge provides a
lot of opportunities to customization and specialization of the
hardware of the device in order to reduce latency and power
demands. In contrast to the datacenter which needs to handle
a variety of workloads and the opportunities for customisation
are limited. It is not a coincidence that in the last few years
significant pushes have been made from both industry and
academia towards to include domain-specific CMOS acceler-
ators [11] for various machine learning algorithms in their
Systems-on-chip. [12], [13], [14]

C. Bandwidth

Perhaps another important factor as to how edge intelligence
can be beneficial is bandwidth savings. For instance, if you buy



one surveillance camera, you could probably stream all of its
footage to the cloud even at high resolutions. However, as the
number of cameras increases the feasibility of this approach is
questionable especially where the connectivity and bandwidth
are limited. Furthermore, the cost of computation (e.g., both
in renting and buying infrastructure) increases since the data
also increases in volume with the same demands for processing
time. On the other hand, if the cameras are able to process the
video frames locally, detect targets and flag events, they can
only save the important footage and discard the rest, leading
to significant reduction in bandwidth demands.

D. Data Integrity

One final advantage of migrating the computation to the
edge is that the data integrity is preserved due to its proximity
to the source. Hence, there is no need to compress or change
the data in any way which might have resulted in some
loss of information (e.g., image/video compression). Also,
any noise and signal degradation due to the communication
infrastructure are alleviated.

III. CHALLENGES AND OPPORTUNITIES FOR
EDGE-COMPUTING

A. Power and Energy Efficiency

State-of-the-art AI techniques such as neural networks have
shown remarkable promise in tackling a variety of different
problems with impressive accuracy. However, this usually
comes at the cost of high computational and memory re-
quirements. Hence, in typical application scenarios today these
neural networks run on powerful GPUs that dissipate a huge
amount of power. On the other hand, embedded processors
and DSPs offer an attractive low-power solution and benefit
from fixed-point operations [15]. For practical deployment of
neural networks on mobile devices, it is necessary to have low-
complexity CNN models that can run on embedded processors.
The algorithms need to leverage the fixed-point operations
without compromising the accuracy. In addition, there is a
significant need for improving not only the efficiency of the
underlying operations performed by neural networks but also
improve their structure and make them amicable for resource
efficient systems.

B. Performance

Machine learning algorithms are characterized by extensive
linear algebra operations as well as vector and matrix data
processing. Traditional Von Neumann architectures are not
optimized for such workloads and hence, specialized process-
ing flow and parallel architectures are necessary to meet the
low-latency requirements in safety-critical applications such as
self-driving vehicles and Unmanned Aerial Vehicles (UAVs).
Therefore, edge intelligence offers a clear opportunity for
developing customized and specialized hardware to support
the deployment of machine learning applications on the edge.

C. Memory Footprint

Edge intelligence devices have limited resources not only
in terms of computation but also in terms of memory for
storage and data access. Neural network and machine learning
algorithms in general often require storing and accessing a
number of parameters that describe the model architecture and
weight values that form the classification model. Recent neural
network architectures require accessing a vast amount of mem-
ory locations for every classification. Therefore, a significant
challenge for deploying a machine learning algorithm on a
resource constraint device is reducing the memory accesses
and keeping the data local as to avoid costly reads and writes
to the external memory modules (e.g. Data-reuse).

D. Current trends for Designing Neural Networks for Edge
Intelligence

Recent techniques for designing and optimizing DNNs for
edge intelligencce focus on reducing the computational and
storage requirements by reducing the bitwidth precision of the
network parameters and the processed data within the neural
network [16]. Some works have even proposed using only
binary values [17]. In an orthogonal approach to quantization
aiming at reducing the computations needed by a DNN, other
works propose to decompose the tensor operations of a neural
network through low-rank approximations [18] or through
separable filters [19], [20]. It is worth noting that the memory
demands of a neural network is not only determined by the
weight values and parameters but also by the working memory
needed to store the intermediate results and values produced by
the computations. Large networks may need hundreds of MBs
of working memory [15]. Hence, some works have proposed
to remove redundant information propagating through the
network layers to reduce the on-chip memory needed for
the produced results [21]. This can be beneficial for many
edge intelligence applications such as video surveillance from
static cameras where frame by frame changes are limited.
Distillation, is another technique that trains a much smaller
DNN to produce the outcomes of a resource hungry DNN to
simultaneously reduce the computational cost while achieving
the same classification accuracy [22]. Model compression is
another method to reduce the network demands for memory
and storage [23]. By using compression techniques such as
Huffman encoding combined with quantization and pruning,
it is possible to achieve significant reduction in the storage
demands making it possible to store a model in the on-
chip memory thus reducing the overhead of external memory
accesses. From the analysis in the literature it is evident
that the main benefactor towards more efficient operation of
machine learning and neural networks in particular is the
optimization of the model and structure. We show one such
example on how to optimize a CNN specialized for aerial
object detection that is suitable for on-board processing on a
UAV using different embedded devices.



IV. CASE STUDY

In this section we demonstrate how the edge intelligence
challenges have been addressed for implementing a CNN-
based object detector on an embedded edge device for Un-
manned Aerial Vehicle (UAV) applications. This is partic-
ularly useful to applications such as search and rescue,
emergency/disaster management, and intelligent transportation
systems where there is a need for rapid deployment, fast
response time, and in many cases limited connectivity and
available infrastructure.

CNN-based object detectors have emerged as the leading
architecture for many computer vision tasks [1], and there-
fore constitute a representative example for this case study.
Through the case study we demonstrate how to select the
best system architecture for given application constraints. The
methodology, presented in this case study, is based on our
previous work [24] which demonstrated that it is feasible to
design an optimized CNN for object detection that can perform
real-time on embedded devices and at the same time maintain
high accuracy.

A. Deep-Learning based object detection

State-of-the-art methods for object detection cast the prob-
lem into a combination of regression and classification where
they simultaneously predict the bounding box and class prob-
abilities of the objects in an image [25]. YOLO [26] is an
example of such a framework that was optimized for real-
time processing achieving 30 frames-per-second(FPS) on a
GPU such as Pascal Titan X. Existing detectors utilizing
frameworks such as YOLO, primarily target high accuracy
and run on power hungry devices, with large memories and
storage capacity [25]. The underlying neural network structure
of such detectors, consist of multiple layers and large number
of filters in each layer which imposes significant challenges
when using low-end embedded hardware. Thus, the feasibility
of edge intelligence seems extremely challenging under these
circumstances for resource-limited devices with power and
size requirements, such as UAVs.

B. DroNet

DroNet [24] was proposed as an efficient Convolutional
Neural Network(CNN) detector for real-time UAV Appli-
cations that provides real-time performance with minimal
storage requirements on low-end embedded hardware without
accuracy loss. The design of DroNet was based on Tiny-
YOLO detector: a smaller model of YOLO detection that was
optimized for fast inference on a GPU [27]. We explored the
impact of changing the structure of that network (number of
layers, filters, image size and the number of convolution and
pooling layers), in order to achieve higher performance on a
CPU rather than a GPU platform with minimal decrease in
accuracy. DroNet can perform 35 frames-per-second and on
an i5-8250U CPU processor around 60 frames-per-second on
an Nvidia MX150, a top-end GPU for laptops.
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1) Layer Structure: CNN-based object detectors consist
of three types of layers, a convolutional layer, a pooling
layer and a fully-connected layer. Each layer has a different
number of filters, filter size and stride. Each layer has different
requirements with respect to number of operations, measured
in billion floating operations per second (BFLOPs). Figure 2
demonstrates how the number of filters, filter size and stride
affects the number of BFLOPS produced for the first layer of
the DroNet network. As shown in Fig. 2 by increasing the
number of filters from one to six, we observe a small increase
on the number of BFLOPs from 0.002(1) BFLOPs to 0.009(6)
BFLOPs. By increasing the size of each filter from one to six
we observe an increase from 0.002(1) BFLOPs to 0.057(6)
BFLOPs. This shows a significant impact on the performance.
On the other hand, stride can reduce the number of BFLOPs
but also can lead to a higher reduction in accuracy. To find out
the impact of stride on BFLOPs, we increased the number of
filters and the size of each filter to 6(0.341 BFLOPs) in order
to have the maximum number of BFLOPs and increased the
size of stride from 1 to 6 (Fig. 2). Increasing the size of stride
lead to a significant reduction on the number of BFLOPs,
around 34×.

Through the above discussion it is evident that by appro-
priately selecting the number of parameters and reducing the
CNN network structure, we can reduce the computational
requirements ( e.g., power consumption ) and the memory
footprint, two important challenges of edge intelligence.

2) Input Size: Edge intelligence must address the compu-
tational, power and memory challenges while maintaining the
accuracy of the implemented machine learning application. In
this section, we demonstrate that the input image resolution
affects both the accuracy and the performance of the CNN
detector. Particularly, Fig. 3 shows the impact of the input
size on performance (in terms of FPS) and on the accuracy
of the CNN detector. As demonstrated in Fig. 3 the input size
affects positively the accuracy and negatively the performance
of the CNN detector - the larger input size on the network the
higher the accuracy of the CNN detector and at the same time
the lower the performance of the CNN detector. Moreover,
larger input size, can also increase both memory and power
requirements of the detector. Therefore, to maintain the good



accuracy and performance of a machine learning application
on an edge device one should take into account the input
size and the impact on accuracy, FPS, memory and power
consumption in order to choose the appropriate value.

Fig. 3: DroNet Performance with different input sizes

3) Object Size: Another parameter that can affect the
accuracy of the CNN detector is the size of the object that
the detector was trained to detect. Fig. 4 shows both accuracy
and performance denoted as sensitivity and average processing
time respectively on a vehicle dataset. In that case the accuracy
of the detector was between 75% and 95% with input sizes
between 352 and 544. Detecting large object will not be
affected by the resizing of the image, thus the input of the
network can be decreased to a certain point in order to increase
the performance and maintain the accuracy. On the other
hand, Fig. 5 shows the accuracy and the performance, using
the same network, on a pedestrian dataset. The accuracy of
the detector in that case, was between 25% and 75% which
shows a reduction of 50%. Considering the resolution that
cameras operate nowadays (e.g. 4K), this can lead to problems
especially in cases where the resolution of the objects of
interest becomes small due to the distance from the camera
or for small objects. It is clear that the input size has a
large impact on the accuracy for small objects and minimal
impact on larger objects. This indicates that given the object
size it might be efficient to reduce or decrease the input size
in order to increase the performance or the accuracy of the
detector accordingly. Embedded devices pose restrictions to
the power consumption and memory footprint of machine
learning applications. Therefore, there is a limit on how much
the input size can be increased to improve the accuracy. Thus,
there is a need of implementing efficient technique that keeps
the input size small and at the same time maintains the high
accuracy of the detector.

C. Selective Tile Processing

In order to make object detection more effective but at
the same time maintain overall performance at similar levels
a tiling strategy can be apply on high resolution images.
This strategy separates the larger input image into smaller
images with size equal to that of the CNN called tiles and
selectively process only a subset of them using different
selection criteria. At the same time, using a memory buffer,
tracks the activity in other tiles in order to estimate the position
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Fig. 4: DroNet Performance on vehicle dataset

6
6

6

4
2

0
10
20
30
40
50
60
70
80
90

100

0.034 0.036 0.038 0.04 0.042 0.044 0.046

SE
N

SI
TI

VI
TY

AVERAGE TIME

DRONET(PEDESTRIANS) 
352 384 416 512 544

Fig. 5: DroNet Performance on pedestrian dataset

of the object on the non-selected tiles. The assumption for
using this simple approach is that the relative position of
an object is not going to change significantly from the time
that the same tile will be processed again due to the high
performance of the detector. Tiling is an efficient way to
increase the accuracy of the detector without increasing the
memory requirements of the detector. The problem that arises
with the tiling approach is when and how many times each tile
must be selected for processing. This selection metric must be
chosen by taking into consideration both the movement of the
detected object and the camera. Moreover, for the selection of
each tile one can choose different selection criteria based on
his system requirements such as performance, accuracy, low-
power consumption, reduction of memory. In the extreme case,
it might be efficient to select one tile on each frame which
will increase the performance and at the same time reduce the
power consumption, due to the reduction of the computational
requirements.

1) DroNetTA - Processing of all Tiles: This approach
process all the tiles before moving to the next frame. This
will result in improving the accuracy but lead to a large
performance degradation on the FPS of the detector.

2) DroNetT1 - Single tile processing: In the extreme case
it might even be sufficient to process a single tile. Of course
this method is agnostic to the activity in each tile while some
image regions may need to processed more frequently than
others.

3) DroNetTSM - Process tiles based on selection criteria:
A rather more solid approach is to use the detection infor-
mation in order to steer the detector to select the top N tiles



Approach APT (sec) FPS SEN (%)
T iny − Y OLO 1.64 0.61 63.51

DroNet 0.20 4.83 19.86
DroNetTA 0.96 1.03 92.37
DroNetT1 0.10 9.36 80.10
DroNetTSM 0.39 2.54 91.10

TABLE I:
Performance on Odroid XU4

for further processing instead of selecting all or one tile. A
combined metric can be used to select one or more tiles for
processing by selecting the most promising ones.

D. Odroid XU4

Odroid XU4 is an embedded device running Linux-based
operating system with an octacore Samsung Exynos-5422
CPU at 2GHz with 2 GB of RAM. Table I shows the perfor-
mance for all tiling approaches. It is clear that for the specific
device DroNetT1 is by far better on FPS and accuracy for all
the approaches. DroNetT1 achieved 16× higher performance
than the Tiny−Y oloV 2 and 2× higher performance than the
DroNet.

In our case, we carefully designed a structure that was
efficient to detect both vehicles and pedestrians by keeping
the number of filters relatively small (256), using only 1 × 1
and 3×3 size of filters and the stride between 1−2, in order to
increase the accuracy due to the reduction of the other values.
Moreover, the tiling approach maintains the structure of the
network, and at the same time enhances the network for high
resolution images with minimal increase on the computational
requirements and a significant increase on the accuracy. This
shows that by using the aforementioned techniques and by
carefully designing the structure of a network, it is feasible to
push the intelligence to the edge.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Edge intelligence is recognized as the future for enabling
artificial intelligence on embedded edge devices at mass. It has
the potential to offer increasing security and reduced costs
while maintaining the performance compared to processing
on the cloud, and has the potential to enable new capabilities
for industry and consumers alike. Thus, in the light of the
above discussion, there is a significant need for improving
the capabilities not only of the computing infrastructure and
underlying processor architectures but also the efficiency of
the algorithms used of machine learning.

In this paper we have discussed the challenges and the
oportunities edge intelligence has to offer. In addition, we have
presented a use-case that shows how the careful design of a
CNN for object detection can lead to real-time performance on
embedded edge devices. We anticipate that the co-optimization
of algorithm and hardware architecture can provide the basis in
order to build highly intelligent and resource efficient systems
realizing the vision of edge intelligence.
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