
Numerical methods
for kinetic equations

Masterarbeit
zur Erlangung des akademischen Grades

Master of Science

Westfälische Wilhelms-Universität Münster
Fachbereich Mathematik und Informatik

Institut für Numerische und Angewandte Mathematik

Betreuung:
Prof. Dr. Mario Ohlberger

Eingereicht von:
Tobias Leibner

Münster, September 2015

Abstract

Kinetic equations play an important role in many physical applications. Prominent examples
are the Boltzmann equation of gas dynamics and the radiative transfer equation. In general,
analytic solutions are not available and thus numerical solutions have to be found. However,
due to their high dimensionality, kinetic equations cause a great amount of computational cost
which may effectively make it impossible to get a sufficiently accurate solution using standard
numerical solvers. Thus, methods that can find approximate solutions with less effort have to be
used.

A popular approach is to express the solution in terms of the first moments of the kinetic
equation. This eliminates the dependency on the velocity variable and reduces the computational
cost significantly. However, the resulting hyperbolic system of equations still has to be solved in
several dimensions. Furthermore, many moments and thus a large system of equations may be
necessary to get a reasonable approximation to the true solution. Hence, efficient solvers are
still required to solve the problem in reasonable time.

The goal of this thesis was the implementation of an efficient and generic solver for hyperbolic
systems of equations in the C++ software framework DUNE. The implementation was tested
against problems with known solution and existing solvers for the moment models.

I

Contents

1 Kinetic equations 1

2 Moment methods for kinetic equations 6
2.1 General idea . 6
2.2 Realizability . 8
2.3 Moment closures . 10

2.3.1 The PN closure . 11
2.3.2 The MN closure . 11
2.3.3 The KN closure . 13
2.3.4 Half and mixed moment closures . 15

3 Hyperbolic systems of first-order equations 16
3.1 Classical solutions . 17
3.2 Weak solutions and vanishing viscosity . 18
3.3 The Riemann problem . 23

4 Numerical methods 26
4.1 Finite volume methods for hyperbolic balance laws 26

4.1.1 Computational grids . 26
4.1.2 Finite volume schemes and numerical fluxes 28
4.1.3 Source terms . 32
4.1.4 Time step restrictions . 33
4.1.5 Higher order methods . 34
4.1.6 Boundary conditions . 37

4.2 Runge-Kutta methods . 38
4.3 Additional considerations for entropy closures . 45

4.3.1 Preserving Realizability . 46
4.3.2 Solving the dual problem . 47
4.3.3 Difficulties near the realizable boundary 48

5 Implementation 51
5.1 DUNE . 51
5.2 Implementation in dune-stuff . 52

5.2.1 Periodic boundary conditions . 53
5.2.2 Time-dependent functions . 53

5.3 Implementation in dune-gdt . 54
5.3.1 Discrete function spaces . 54
5.3.2 Operators on discrete function spaces . 55

II

5.3.3 Runge-Kutta time stepping . 57
5.3.4 Parallelization . 58

6 Numerical Results 60
6.1 Convergence tests . 60

6.1.1 Scalar advection equation . 60
6.1.2 Sod’s shock tube . 64

6.2 Comparison with existing implementations . 66
6.2.1 Fokker-Planck equation in one spatial dimension 66
6.2.2 Validity of results . 67
6.2.3 Performance comparison . 69
6.2.4 A two dimensional test for the Boltzmann equation 71

7 Conclusion and outlook 74

A Example implementation 76

III

Kinetic equations 1

1 Kinetic equations

Kinetic equations play an important role in many physical applications. One of the most
prominent examples is the Boltzmann equation which was derived by the Austrian physicist
Ludwig Boltzmann in 1872 [9] and still forms the basis for the kinetic theory of gases. The
Boltzmann equation or similar kinetic equations proved to be applicable not only to classical
gases but also to electron transport in solids and plasmas, neutron transport in nuclear reactors,
photon transport in superfluids and radiative transfer, among others [16, 52]. More recently,
kinetic equations were also derived in the context of biological modelling, e.g. for studying cell
movement or wolf migration [32, 41].

The kinetic equations we regard have the form

∂tp(t,x,v) + v · ∇p(t,x,v) = Lp(t,x,v), (1.1)

where ∇p denotes the gradient of p with respect to the spatial variable x ∈ Rd and ∂tp the
partial derivative with respect to the time variable t ∈ R+ := [0,∞]. Here and in the remainder
of the thesis we will use lower-case bold notation for vectors and upper-case bold notation for
matrices to distinguish them from scalar quantities more easily. Typically, p is a density (e.g. the
density of particles in a domain or a probability density) describing the distribution of particles
(gas molecules, photons, cells, etc.) at time t with respect to position x ∈ Ω ⊂ Rd and velocity
v ∈ V ⊂ Rd. L is a (possibly nonlinear) operator modelling velocity changes of the particles.
If L = 0, this equation is just describing transport of particles where each particle has fixed
velocity that does not change over time. Thus, kinetic equations are also often referred to as
transport equations.

Together with the kinetic equation we usually have an initial condition

p(0,x,v) = p0(x,v) (1.2)

for a given p0.

Often, Ω is not the whole space Rd but only a bounded domain. In that case, we also impose
boundary conditions

p(t,x,v) = pb(t,x,v) for v · n(x) < 0 (1.3)

where n is the outer normal to the boundary ∂Ω of the spatial domain. Note that we only
prescribe boundary conditions for velocities that correspond to particles entering the domain.
The number of particles leaving the domain is fully determined by the particle density and the
kinetic equation and thus cannot be prescribed if the problem shall be well-posed [23].

In principle, standard numerical solvers for partial differential equations (PDEs), such as finite
difference methods, can be used to solve a given kinetic equation directly. However, as the

Kinetic equations 2

density p depends on time, space and velocity, the problem must be solved in R2d+1 (or at
least in a bounded domain therein), where d is the spatial dimension. For d = 3 in a typical
application this results in a dimension of 7 which causes high computational cost and may de
facto render it impossible to solve the problem with sufficient accuracy. Thus, methods that can
find approximate solutions with less effort have to be used. A variety of Monte Carlo methods
has been developed for this purpose. However, they are very inefficient when macroscopic time
and space scales are regarded but the particle processes take place on the microscopic scale (e.g.
[8, 58, 67]). Sometimes, multiscale methods can be used to obtain limit equations in that case
(e.g. [19, 41, 42, 43]).

In this thesis, we focus on a different approach, the so-called moment models. These models
transfer the kinetic equation to a coupled system of PDEs that is independent of the velocity
variable (see Section 2). This reduces the dimension of the problem from 2d+ 1 to d+ 1 and
thus reduces computational cost significantly. In Section 3, we investigate the resulting systems
of PDEs. Numerical methods for the solution of moment models are regarded in Section 4. Even
with reduced dimension efficient solvers are still required to solve the problem in reasonable
time. One goal of this thesis is the implementation of an efficient solver in the C++ software
framework DUNE (see Section 5). Numerical tests of the implementation and a comparison
with existing solvers for moment models can be found in Section 6.

In the following, we will regard some examples to illustrate the occurrence of kinetic equations in
applications and to get a better idea of what the abstract operator L may look like in practice.

Example 1.1 (Boltzmann Transport Equation). We want to describe the distribution of
molecules within a gas. For that purpose, we would like to derive an equation for the particle
density p(t,x,v). We will follow the outlines in [66, 77] here.

If we regard a small volume of the domain, there are three reasons why the distribution of
particles in this volume would change:

• Molecules leave or enter the volume due to the motion of molecules (diffusion).

• Due to the influence of an external force F, molecules change their velocity.

• Collisions between molecules can lead to velocity changes.

Thus, we have three contributions to the time derivative of p:

∂tp = ∂tp|diff + ∂tp|force + ∂tp|coll.

The diffusion of molecules can easily be modelled: If a molecule at position x has velocity v, it
will be at position x + vdt after a short time dt. Thus,

p(t+ dt,x,v) = p(t,x− dtv,v)

Kinetic equations 3

and by Taylor expansion for infinitely small dt

p(t,x,v) + dt∂tp(t,x,v) = p(t,x,v)− dtv · ∇p(t,x,v)

which gives
∂tp|diff(t,x,v) = −v · ∇p(t,x,v)

for the diffusion-induced change in p.

For an external force F, the velocity of a particle changes according to

∂tv = 1
m

F

where m is the molecule mass. As in the diffusion case we can assume that a particle with
velocity v− dt∂tv will have velocity v at time t+ dt, so we get

∂t|forcep(t,x,v) = −∂tv · ∇vp(t,x,v) = − 1
m

F · ∇vp(t,x,v).

For the collision part, Boltzmann assumed that only binary collisions need to be considered
(dilute gas), that the effect of the external force and container walls on the collision rate is
negligible and that velocity and position are uncorrelated. Under the additional assumption
that the gas molecules are hard spheres the collision term takes the form [10]

∂t|collp(t,x,v) =
∫
R3

∫
S2

|n · (v− v2)|
(
p(v′)p(v′2)− p(v)p(v2)

)
dndv2

where we omitted the (t,x) dependency of p on the right-hand side. Here, S2 is the three-
dimensional unit sphere and n ∈ S2 is the unit vector parallel to the line segment joining the
molecule centres at the time of collision. The new velocities v′,v′2 can be calculated from the
old velocities v,v2 and the angle of collision n. Actually, the collision term consists of two parts
[10]: a loss term with the integrand −|n · (v − v2)|p(v)p(v2) that models collisions involving
molecules with velocity v that have a different velocity after the collision, and a gain term with
the integrand |n · (v− v2)|p(v′)p(v′2) that models collisions where molecules obtain the velocity
v.

Taken together, we get the Boltzmann transport equation

∂tp+ v · ∇p = − 1
m

F · ∇vp+
∫
R3

∫
S2

|n · (v− v2)|
(
p(v′)p(v′2)− p(v)p(v2)

)
dndv2. (1.4)

Example 1.2 (Mesenchymal motion). Mesenchymal motion is a form of cellular movement
through tissues which consist of fibre networks. An example is the migration of tumour cells
through collagen networks during metastasis. Cells migrate within fibre networks and change
their directions according to the orientational distribution of fibres. Moreover, cells actively
remodel the tissue by excreting degrading enzymes (e.g. protease) to generate sufficient space to
migrate in (see Figure 1 and [86]). In order to derive a mathematical model for mesenchymal
motion, we make the ansatz of a kinetic equation.

Kinetic equations 4

Figure 1: Scheme of mesenchymal motion. The cell movement is guided by the surrounding
tissue fibres. At the same time, the cells remodel the fibre network by expressing proteases.
From [83].

Let Ω ⊂ Rd be an arbitrary domain. Let V = [s1, s2] · Sd−1 be the set of all possible velocities
the cells can have. We are interested in an equation for the cell density p(t,x,v) at time t ∈ R+

and position x ∈ Ω with velocity v ∈ V .

Let q(t,x,θ) be a probability density that describes the distribution of fibre directions θ ∈ Sd−1.
As q is a probability density, we have ∫

Sd−1

q(t,x,θ) dθ = 1

for every (t,x) ∈ R+ × Ω. We assume a “run and tumble” model for the mesenchymal motion,
i.e. cells move at a constant velocity (“run”) until they reorient (“tumble”) and choose a new
velocity. We assume that these reorientation processes happen with a constant rate µ and take
no time (i.e. the cells “jump” to a new velocity). We further assume that the new directions
of movement follow the distribution q(t,x,θ), whereas the new speed is chosen randomly from
[s1, s2]. So if we define

v̂ = v
‖v‖ for v ∈ V and ω =

∫
V

q(t,x, v̂) dv,

where ‖v‖ is the Euclidean norm of v, then ω is a probability density on V and gives the
distribution of newly chosen velocities. Thus, we get the kinetic equation

pt(t,x,v) + v · ∇p(t,x,v) = −µp(t,x,v) + µ
q(t,x, v̂)

ω

∫
V

p(t,x,v′) dv′ (1.5)

where the first term on the right-hand side describes the fraction of cells that originally moved
with velocity v and choose a new velocity different from v at a rate µ, and the second term on
the right-hand side accounts for the cells that choose v as their new velocity.

Kinetic equations 5

Furthermore, cells remodel the tissue by secreting proteases and other enzymes that cut fibres
along their way. Fibres that are orthogonal to the cell’s movement direction are cut, while fibres
that align with the cell’s movement direction remain intact. Under these assumptions, Hillen
[40] derives the following equation for the tissue modifications:

qt(t,x,θ) = κ (Π(t,x,θ)−A(t,x)) q(t,x,θ)
∫
V

p(t,x,v) dv. (1.6)

Here, κ is a factor describing cutting efficiency and the difference Π(t,x,θ)−A(t,x) is a measure
of alignment between the mean direction of cell movement and the fibre direction θ. If the fibre
direction is “less parallel” to the cell movement than the average of the fibre distribution, it is
degraded. Otherwise its probability weight is increased. For details see [40].

We could regard the coupled partial differential equations (1.5) and (1.6) simultaneously but in
the following we concentrate on the kinetic equation (1.5) and assume q(t,x,θ) is given whenever
we refer to equation (1.5).

Moment methods for kinetic equations 6

2 Moment methods for kinetic equations

2.1 General idea

The moment models are motivated by the fact that in many applications we are interested in the
spatial distribution of particles, while the velocity distribution is not that important. Therefore,
we would like to reduce the dimension of the problem and derive an equation for the spatial
particle distribution

p̄(t,x) =
∫
V

p(t,x,v)dv.

This can essentially be done by integrating over the velocity component, but it turns out that
the integration does not give a closed equation for p̄. Instead, we have to regard a system of
equations obtained by multiplication by appropriate functions of the velocity and subsequent
integration.

Definition 2.1. Let L1
+(V) be the set of all L1(V) functions that are positive almost everywhere.

Let p ∈ L1
+(V) and ` = (`1, . . . , `d) ∈ Nd0 be a multi-index. Define the `-th moment of p as

p(`)(t,x) :=
∫
V

v`p(t,x,v)dv.

We say the moment p(`) has order k if |`| = k. Here we use the multi-index notation v` =
v`11 v

`2
2 . . . v`dd and |`| = `1 + . . .+ `d.

Definition 2.2. LetM(V) be a linear space of real-valued functions on V and let B = {ei | i ∈ N}
be a basis of this space. Define the i-th moment of p with respect to the basis B as

p(i)(t,x) :=
∫
V

ei(v)p(t,x,v)dv.

We say the moment p(i) has order k if ei is a polynomial of order k.

Usually, the space M(V) is chosen to be the space P(V) of polynomials over V . We will always
assume that 1 ∈M (i.e. the constant function with value 1) and that e0 = 1. This ensures that
the zeroth moment is the spatial particle distribution p̄.

By multiplying the kinetic equation by the respective basis functions and integrating over V ,
we obtain a system of infinitely many equations for the moments of p. For instance, for the
mesenchymal motion kinetic equation (1.5) in dimension d = 2, using the standard polynomial
basis v` we get the system of equations

∂tp
(`1,`2) = −∂x1p

(`1+1,`2) − ∂x2p
(`1,`2+1) − µp(`1,`2) + µ

∫
V

v(`1,`2) q

ω
dv p(0,0) (2.1)

for (`1, `2) ∈ N2
0, where we interchanged differentiation and integration. If M(V) 6= P(V), we

Moment methods for kinetic equations 7

should require vjei ∈M(V) for all j = 1, . . . , d and for all i ∈ I in addition to the assumptions
above to get a system of equations depending only on the moments.

To obtain a finite set of equations, we truncate the system at order N , i.e. use only equations for
the moments with order not greater than N (or for moments corresponding to a subset J ⊂ I in
the general case). However, because of the factor v in the transport term of the kinetic equation,
the equation for a moment with order |`| = k always depends on moments of order k + 1, as can
be seen exemplarily in (2.1). Hence, if we truncate the moment equations at a finite order, the
resulting system of equations is always underdetermined. In order to get a unique solution, we
therefore need to close the resulting system by making additional assumptions.

Example 2.3 ([72, Section 2]). If we regard the system (2.1) in one spatial dimension (d = 1)
and with velocity space V = [−1, 1], and truncate at order 1, we get the two equations

∂tp
(0) = −∂xp(1), (2.2a)

∂tp
(1) = −∂xp(2) − µp(1) + µp(0)

1∫
−1

v
q

ω
dv (2.2b)

for the three variables p(0), p(1), p(2) (recall
∫ q
wdv = 1, so the µ terms cancel in equation (2.2a)).

To close the system, we assume that the underlying density is linear in v, i.e.

p(t, x, v) = a(t, x)v + b(t, x). (2.3)

Using the definitions of the moments p(0), p(1), we get

p(0)(t, x) =
1∫
−1

a(t, x)v + b(t, x)dv = 2b(t, x),

p(1)(t, x) =
1∫
−1

a(t, x)v2 + b(t, x)vdv = 2
3a(t, x).

Hence p = 1
2p

(0) + 3
2p

(1)v and therefore

p(2) =
1∫
−1

v2
(1

2p
(0) + 3

2p
(1)v

)
dv = 1

3p
(0). (2.4)

Plugging (2.4) into (2.2) gives a closed system of equations for the two moments p(0) and p(1).
However, when closing the system of moment equations like that, we cannot guarantee that the
resulting moments are physically reasonable. For example, the assumed density (2.3), and thus
the zeroth moment p(0), can become negative.

Example 2.3 shows that, before dealing with moment closures, we should examine which moments
are reasonable, so we can check the results of our closure later on. This is known as the problem
of realizability which we investigate in the next section.

Moment methods for kinetic equations 8

2.2 Realizability

We restrict ourselves to the one-dimensional case and a monomial basis for now. The question
whether a vector p ∈ RN+1 can occur as the vector of moments of a density p is known as the
truncated Hausdorff moment problem [74]:

Definition 2.4. Let p = (p(0), p(1), . . . , p(N))T ∈ RN+1 and [vL, vR] ⊂ R be an interval. The
truncated Hausdorff moment problem with data p entails finding a density p ∈ L1

+(V) such that
vR∫
vL

vjp(v)dv = p(j), j = 0, . . . , N. (2.5)

If the truncated Hausdorff moment problem is solvable for p ∈ RN+1, we call p realizable. The
set of all realizable vectors in RN+1 is the realizability domain RN .

The realizability domain can be completely characterized by the definiteness of a set of Hankel
matrices built by the components of the moment vector p. For two matrices A,B we will use
the notation A > B if A−B is positive definite.

Theorem 2.5. For a given p ∈ RN+1 we define the matrices

A(k) := (p(i+j))ki,j=0, B(k) := (p(i+j+1))ki,j=0, C(k) := (p(i+j))ki,j=1.

The moment problem (2.5) is solvable

• for N = 2k + 1 if and only if

vRA(k) > B(k) > vLA(k),

• for N = 2k if and only if A(k) > 0 and

(vL + vR)B(k − 1) > vLvRA(k − 1) + C(k).

Proof. See [22], [72].

Note that similar conditions for the realizability of moments with respect to any other basis of
the polynomial space P(V) can be derived by applying a change of basis first and then using
Theorem 2.5.

To check for the positive definiteness of a matrix, we can use the well-known Sylvester’s criterion.

Theorem 2.6 (Sylvester’s criterion). Let M ∈ Cn×n be hermitian. Then

M > 0 if and only if det(Mk) > 0 for all k = 1, . . . , n,

where Mk is the k-th leading principal minor of M.

Proof. See e.g. [26].

Moment methods for kinetic equations 9

If we use Theorem 2.5 together with Theorem 2.6, we get a set of inequalities that describe the
realizability domain. These inequalities are usually termed realizability conditions.

Example 2.7. Let [vL, vR] = [−1, 1]. We get the following realizability conditions for

• N = 0: p(0) > 0,

• N = 1: p(0) > p(1) > −p(0),

• N = 2: p(0) > 0, p(0)p(2) − (p(1))2 > 0, p(0) > p(2), see Figure 2.

Figure 2: Realizability domain for N = 2. With respect to the normalized moments
p̂(j) = p(j)

p(0) the realizability domain is given by the inequalities (p̂(1))2 < p̂(2) < 1. Modified from
[64].

In the following, we collect some properties of the realizability domain that are important in
defining appropriate moment closures (see Section 2.3).

Lemma 2.8. RN is a convex cone (i.e. c1p + c2q ∈ RN for all p, q ∈ RN , 0 ≤ c1, c2 ∈ R).

Proof. This follows from the fact that L1
+ is a convex cone. If p, q ∈ L1

+(V) are densities that
realize the moments p and q, respectively, then c1p+ c2q ∈ L1

+(V) realizes c1p + c2q.

Lemma 2.9. RN ⊂ RN+1 is open.

Proof. See [1, 44].

By Lemma 2.9, we know that vectors on ∂RN are not realizable by any density in L1
+(V).

However, if we allow densities that consist of linear combinations of Dirac delta distributions,
we can still represent these vectors as moments.

Moment methods for kinetic equations 10

Definition 2.10. We call a density of the form

p(v) =
m∑
i=1

aiδ(v − vi)

atomic. For p ∈ RN , a representing atomic density is called minimal if m is minimal, i.e. if
there is no atomic density that is a linear combination of less than m Dirac delta distributions
and still represents p.

Theorem 2.11. a) For all p ∈ RN there exists a minimal representing atomic density.

b) For p ∈ ∂RN , there exists a unique representing atomic density.

c) There exists an efficient and robust algorithm to determine the minimal representing
measure.

Proof. See [22].

Altogether, we now have completely characterized the realizability domain in one dimension.
Generalizing this to higher dimensions is not trivial and subject to ongoing research. In fact,
there seems to be no similar complete characterization of the realizability domain for dimension
d > 1 yet. Partial results have been obtained, among others, in [3, 21, 20, 53, 54] but did not
lead to explicit realizability conditions. In [64], realizability conditions for moments of order up
to N = 2 in three space dimensions have been derived.

Despite the lack of general realizability conditions, closures that guarantee realizability can be
obtained by using the fact that on the level of densities realizability essentially equals positivity.
We investigate some popular closures in the next section.

2.3 Moment closures

In this section, we regard some of the most popular closure approaches. For simplicity, we
assume M(V) = P(V). We use the notation

〈g〉 :=
∫
V

g(v)dv for g ∈ L1(V). (2.6)

We collect a basis of the space PN (V) of polynomials on V of degree at most N in a vector m
and the corresponding moments in the vector p such that 〈mp〉 = p. The length of these vectors
(i.e. the dimension of PN (V)) is m :=

(N+d
d

)
, where the parentheses represent the binomial

coefficient. Note that the moments in p depend on the temporal and spatial variables (t,x)
whereas the polynomials in m depend solely on the velocity variable v. We further denote the
set of moments that are realizable with respect to the basis m as Rm.

Moment methods for kinetic equations 11

The system of moment equations for the kinetic equation (1.1) truncated at order N then is

∂tp(t,x) +
d∑
i=1

∂xi 〈vimp〉 = 〈mLp〉 (2.7)

To close the system, additional assumptions (usually on the density p) have to be made.

2.3.1 The PN closure

We start with one of the simplest closures, the polynomial PN closure. Like in Example 2.3, the
PN closure closes the truncated system of moment equations by assuming that p is polynomial
of order at most N . More precisely, the PN closure does a Galerkin semi-discretization in v. We
thus choose a basis m = (φ0(v), . . . , φm−1(v))T of the space PN (V). We then make an ansatz

pPN
(t,x,v) =

m−1∑
j=0

p(j)(t,x)φj(v), (2.8)

where p(l) is the moment of p with respect to φl. The Galerkin projection onto PN (V) is done
by multiplying equation (1.1) by the respective basis function and integrating over V:

∂t 〈φip〉+ 〈φiv · ∇p〉 = 〈φiLp〉 .

Using the ansatz (2.8) gives
m−1∑
j=0
〈φiφj〉 ∂tp(j) +

d∑
k=1

m−1∑
j=0
〈vkφiφj〉 ∂xk

p(j) =
〈
φiLpPN

〉
.

Defining the matrices M with Mij = 〈φiφj〉 and Dk with (Dk)ij = 〈vkφiφj〉 and the vector r
with ri =

〈
φiLpPN

〉
, we get the system of equations

∂tp(t,x) +
d∑

k=1
M−1Dk∂xk

p(t,x) = M−1r(t,x). (2.9)

M is invertible because the φi are linearly independent by the definition of a basis.

The PN closure is simple and easy to implement and still delivers a sufficient approximation of
the underlying distribution in many cases. However, it suffers from the same problem we saw
before: the assumed (polynomial) density can become negative and consequently the resulting
moments are not always realizable. Furthermore, there can be strong artificial oscillations (see
e.g. [25] for illustration) and N may have to be chosen quite large to get accurate results.

2.3.2 The MN closure

The MN closure (after G.N. Minerbo [63]) tries to overcome some of the limitations of the PN
closure. To close the system (2.7), the ansatz pMN

(p,m) is chosen to be the minimizer of a

Moment methods for kinetic equations 12

convex optimization problem under the constraint that it should reproduce the moments:

pMN
(p(t,x),m(v)) := argmin

g∈L1
+(V)
〈η ◦ g〉 subject to 〈mg〉 = p. (2.10)

Here, the entropy η : R → R can be any strictly convex function. In practice, it should be
chosen such that it is likely to be minimized by the correct solution. In physical applications,
natural choices occur from the physical concept of entropy. In the context of gas dynamics, the
Maxwell-Boltzmann entropy

η(z) = z log(z)− z (2.11)

may be selected [57].

Inserting the ansatz (2.10) in (2.7) gives the closed system of equations

∂tp(t,x) +
d∑
i=1

∂xifi(p(t,x)) = h(t,x,p(t,x)) (2.12)

with
fi(p) :=

〈
vimpMN

〉
, h(t,x,p) :=

〈
mLpMN

〉
.

Instead of directly solving the convex optimization problem (2.10) in L1
+(V), the optimization is

usually done by regarding the dual problem on Rm. It can be shown that if a solution to (2.10)
exists, it takes the form (see [57])

pMN
(p(t,x),m(v)) = Gα̃(p), Gα := η′∗(αTm)

where η′∗ : R→ R is the derivative of the Legendre transform of η and the Lagrange multipliers
α̃ : Rm → Rm are given as the solution to the dual problem

minimize
α∈Rm+1

{〈
η′∗(αTm)

〉
−αTp

}
. (2.13)

Vice versa, if a solution α̃ to the dual problem (2.13) exists, Gα̃ is a solution to the original
problem (2.10).

If we choose the Maxwell-Boltzmann entropy (2.11), we get

η∗(y) = η′∗(y) = exp(y)

and thus
Gα(v) = exp(αTm(v)).

Of course, the question occurs whether the MN closure is well-defined, i.e. whether a minimizer
to (2.10) (or equivalently to the dual problem (2.13)) exists for every realizable moment vector
p ∈ Rm. In general, this is not the case [36]. However, for bounded domains V and a polynomial
basis m as regarded here, the constraints in (2.10) are continuous in the L1-norm which ensures
the existence of a minimizer [1, 44].

Moment methods for kinetic equations 13

At least formally, the MN closure guarantees realizable moments by always using a positive
ansatz for the density. Whether or not the set Rm is invariant under the dynamics of (2.12),
i.e. whether the moments in the solution stay realizable for all times if we start with realizable
moments, seems to be an open question, though. However, as we will see in Section 4.3, it is
possible to enforce this invariance on the numerical level and thus ensure that the MN closure
always gives realizable moments. This is a major advantage over the PN closure. The downside
of the MN closure, however, is its complexity. The dual optimization problem (2.13) has to be
solved at every point (of a computational grid) in time and space which causes a considerable
amount of computational cost. Furthermore, near to the boundary of the realizability domain
the problem can become very ill-conditioned posing additional numerical challenges. The
optimization problems are independent (in the spatial domain at one point in time) though and
can thus be solved in parallel.

2.3.3 The KN closure

While the MN closure has considerable advantages over the PN closure in some cases, its
computational cost is quite high. In [45], Kershaw proposed a closure that produces realizable
moments without having the high computational cost of solving the dual problem. The idea is
that, on the boundary of the realizability domain, the representing density is uniquely determined
and can be calculated (see Theorem 2.11). By linear interpolation between these boundary
distributions, a closure can be achieved.

For this procedure, knowledge about the realizability domain Rm is needed. Thus, the Kershaw
closure has been mainly used for problems in one dimension where Rm is well-characterized. In
[64], Kershaw closures for three dimensions have been derived but only for orders N ≤ 2.

We thus restrict ourselves to the one-dimensional case here and regard a specific example, the
case N = 1, to illustrate the idea of the Kershaw closure. For simplicity, we further assume
V = [−1, 1]. Although we regard the K1 closure, we need the realizability conditions for N = 2
which are (see Theorem 2.5)

−1 < p̂(1) < 1, (p̂(1))2 < p̂(2) < 1,

where
p̂(j) = p(j)

p(0)

are the normalized moments. On the boundary of the realizability domain, i.e. for (p̂(1))2 = p̂(2)

or p̂(2) = 1, we can determine the atomic distributions plow(p̂(1)) and pup(p̂(1)). By linearity of
calculating moments, every convex combination

pKN
= apup + (1− a)plow

reproduces the normalized moment p̂(1). If we scale the boundary distributions properly by

Moment methods for kinetic equations 14

Figure 3: Illustration of the K1 closure. The normalized moments p̂(1) and p̂(2) are plotted
on the x-axis and y-axis, respectively. To close the moment equations, a distribution that
reproduces the first normalized moment p̂(1) is calculated as a convex combination of upper and
lower boundary distributions. A specific convex combination is chosen by demanding that the
moments of the constant (equilibrium) distribution are reproduced exactly. From [72].

multiplying with a constant factor, the moments p(0), p(1) will be reproduced by every such
convex combination.

To choose a specific convex combination, we need an additional condition. For that purpose, we
demand that the closure is exact for the moments up to order 2 of the constant distribution

pconst(t, x, v) = p(0)(t, x)
|V |

= p(0)(t, x)
2 .

Here and in the remainder of the thesis |V | denotes the d-dimensional volume of V . Calculating
the normalized moments of pconst results in

(p̂(1)
const, p̂

(2)
const) = (0, 1

3) != (p̂(1)
KN

(p̂(1)
const), p̂(2)

KN
(p̂(1)

const)).

Thus, our condition on a is
1
3

!= p̂(2)
KN

(p̂(1)
const) = ap̂(2)

up (p̂(1)
const) + (1− a)p̂(2)

low(p̂(1)
const) = a+ (1− a)(p̂(1)

const)2 = a.

Thus, we get pKN
= 1

3pup + 2
3plow. Calculating the second moment gives

p̂(2)(p̂(1)) = 1
3(2(p̂(1))2 + 1),

closing the moment equations. An illustration of the closure can be seen in Figure 3.

Moment methods for kinetic equations 15

2.3.4 Half and mixed moment closures

MN and KN closures may show unphysical shocks. This is due to a “zero netflux problem”: when
integrating over the velocity component, velocities that point in opposite directions annihilate
each other such that the resulting flux becomes zero. To overcome these problems, in one
dimension half moment models can be used, where instead of integrating over the whole interval
V = [−1, 1], two separate integrations over the half intervals [−1, 0] and [0, 1] are done to build
half moments:

p+ :=
∫ 1

0
mpdv =: 〈mp〉+

p− :=
∫ 0

−1
mpdv =: 〈mp〉−

Accordingly, the kinetic equation (1.1) is integrated over the half intervals instead of the full
interval after multiplying by m:

∂tp+ = −∂x 〈vmp〉+ + 〈mLp〉+ (2.14a)

∂tp− = −∂x 〈vmp〉− + 〈mLp〉− (2.14b)

The system of equations (2.14) can be closed similar to the full moments with any of the closures
outlined above where only slight adaptions are needed (see [72, 84]).

An advancement of the half moment models are the mixed moment models where full moments
are used for the lower order moments and half moments for the higher order ones. Here, the
realizability theory of the full moments does not apply anymore and an adapted theory is needed.
Once we have the realizability conditions for mixed moments, the closures outlined above (PN ,
MN , KN) can be done in a similar way (see [72]).

Hyperbolic systems of first-order equations 16

3 Hyperbolic systems of first-order equations

After transforming a given kinetic equation to a system of moment equations and applying a
suitable moment closure, we obtain a system of partial differential equations. In order to solve
these systems, we investigate their properties in the following. This chapter is largely based on
the descriptions in [48, 56].

Definition 3.1. Let f1, . . . , fd ∈ C1(Rm,Rm) and h ∈ C0(R+ × Rd × Rm,Rm). A system of
first-order equations of the form

∂tp(t,x) +
d∑
i=1

∂xif i(p(t,x)) = h(t,x,p(t,x)) (3.1)

is called a system of balance laws with flux functions f1, . . . , fd and source term h.

Defining F := (f1, . . . , fd)T , the system (3.1) can be rewritten as

∂tp +∇ · F(p) = h(t,x,p), (3.2)

where ∇ · F =
d∑
i=1

∂xif i(p) is the divergence of F.

These equations are called “balance laws” because they record the changes in p in a given part
of the spatial domain. To illustrate this, let K ⊂ Rd with non-empty interior be regular enough
that the divergence theorem is valid. If we integrate (3.2) over K and apply the divergence
theorem, we get

∂t

∫
K

p = −
∫
∂K

F · n +
∫
K

h, (3.3)

where n = (n1, . . . , nd)T is the outer unit normal to ∂K and F · n :=
d∑

k=1
fk(p)nk. If we think of

p as a density of particles, the integral on the left-hand side is just the number of particles in
the volume K. Assume h = 0 for now. Then the second term on the right-hand side vanishes
and (3.3) states that the number of particles is only changed by the flow of particles over the
boundary of the domain. No particles are created or destroyed inside the domain. The number
of particles is thus a conserved quantity. For this reason, balance laws with h = 0 are also
called conservation laws. Such conservation laws arise naturally in physics. An example are the
Euler equations of gas dynamics, where the physical conservation laws for mass, momentum and
energy lead to a conservation law for p = (ρ, ρv,E) consisting of the particle density ρ, the mass
flux ρv and the total energy E (see [56] for details and Section 6.1.2 for a numerical example).
If h 6= 0, the second term on the right-hand side of (3.3) accounts for particles that are created
or destroyed within the domain. The number of particles is no longer conserved but we know by
(3.3) how it changes.

The balance laws we regard have an additional important property:

Definition 3.2. The system of balance laws (3.1) is called hyperbolic in U if the symmetric

Hyperbolic systems of first-order equations 17

matrix

A(p; ξ) :=
d∑
i=1

Df i(p)ξi

is diagonalizable with real eigenvalues and a full set of right eigenvectors for all p ∈ U , ξ =
(ξ1, . . . , ξd)T ∈ Rd. The system is called strictly hyperbolic if A has m distinct eigenvalues
λ1(p; ξ) < . . . < λm(p; ξ) for all p, ξ.

Note that the balance laws coming from the moment models for kinetic equations are not
necessarily hyperbolic for arbitrary closures. This problem became already apparent in the
first widely known moment model for the Boltzmann equation, Grad’s 13-moment system [31],
which is only hyperbolic next to the thermodynamic equilibrium [15]. However, most of the
closures introduced in Section 2.3 always lead to hyperbolic equations. This can most easily
be seen for the PN equations. All the matrices Dk (see (2.9)) are symmetric, so any linear
combination of these matrices is also symmetric and thus diagonalizable. A little more work
has to be done for the minimum entropy closure but still minimum entropy moment equations
are strictly hyperbolic [57] (under some restrictions on the space M(V) in Definition 2.2). For
Kershaw closures, there is no general result on hyperbolicity [72], but the lower order Kershaw
moment models used in [64, 72] were shown to be hyperbolic, so we can hope that this is also
true for higher order Kershaw closures.

3.1 Classical solutions

For the further investigation of hyperbolic systems of equations, we drop the source term and
only regard hyperbolic conservation laws (i.e. h = 0). The source term can be handled separately
in numerical schemes (see Section 4.1.3). We further assume that d = 1 as the one-dimensional
case is best understood and the obtained numerical methods can relatively easy be generalized
to higher dimensions. Finally, we assume that the flux f is convex. In addition to the hyperbolic
conservation law, we need an initial condition. Thus, the problem we regard in the following is

∂tp(t, x) + ∂xf(p(t, x)) = 0 ∀ t ∈ R+, x ∈ R, (3.4a)

p(0, x) = p0(x) ∀x ∈ R, (3.4b)

where we assume that p0 has bounded support in R and bounded total variation (see Section
4.1.5 for the definition of total variation). If p fulfills (3.4), we say p is a classical solution for
the initial value problem.

Classical solutions can be constructed by the method of characteristics. We will do this here for
the scalar case. A characteristic curve X(t) for the hyperbolic conservation law is a curve in the
(t, x)-plane fulfilling

X ′(t) = f ′(p(t,X(t))). (3.5)

Hyperbolic systems of first-order equations 18

Along characteristic curves, the solution p(t, x) of the conservation law is constant:

dt p(t,X(t)) = (∂xp)(t,X(t))X ′(t) + (∂tp)(t,X(t))
(3.5)= (∂xp)(t,X(t))f ′(p(t,X(t))) + (∂tp)(t,X(t)) (3.4)= 0.

Here, dt denotes differentiation with respect to t. As p is constant along the characteristic curve,
X ′(t) = const by (3.5), so the characteristic curves are straight lines in the (t, x)-plane. Thus,
a classical solution to (3.4) can always be found by calculating the characteristic curves and
tracing them back to the initial condition at t = 0. However, the characteristics may intersect
after a (possibly very short) finite time such that the solution may not be well-defined any more.
An important exception is the case that f is linear, i.e. if we regard the linear advection equation

∂tp(t, x) + λp(t, x) = 0 (3.6)

with λ ∈ R. Here, f ′ = λ is constant and thus all characteristic curves are parallel and never
intersect. The advection equation thus has a global classical solution p(t, x) = p0(x− λt).

We can use this knowledge about the scalar advection equation to get solutions for linear
hyperbolic systems of equations

∂tp + A∂xp = 0 (3.7)

with a matrix A ∈ Rm×m. Due to the hyperbolicity condition (3.2), A is diagonalizable, so we
can write

A = RΛR−1, (3.8)

where R is the matrix of right eigenvectors and Λ is the diagonal matrix containing the
eigenvalues λ1, . . . , λm. We can now introduce new variables

w = R−1p (3.9)

to reduce the system (3.7) to a system of decoupled advection equations

∂tw + Λ∂xw = 0. (3.10)

The s-th equation in (3.10) is the advection equation

∂tws + λs∂xws = 0 (3.11)

with solution ws(t, x) = (w0)s(x− λst), where the initial values are given as w0 = R−1p0. Once
we have the solution w, we can express it in terms of our original variables by (3.9).

3.2 Weak solutions and vanishing viscosity

We have seen that we can find global classical solutions if the flux is linear, but for general
fluxes there is no solution to (3.4) for arbitrary times. In addition, the physical relevant solution
to a conservation law may contain discontinuities. For example, if the initial condition for the

Hyperbolic systems of first-order equations 19

linear advection equation is discontinuous, the solution p0(x− λt) is still unambiguously defined
but cannot be a classical solution as it is discontinuous. For various physical problems that are
modelled by hyperbolic conservation laws, discontinuous solutions may arise even from smooth
initial data [49]. For that reason, we relax the conditions on p and allow for solutions that fulfil
(3.1) in the distributional sense.

Definition 3.3. Let L1
loc(Rd,Rm) be the space of locally integrable functions u : Rd → Rm and

let C∞0 (Rd,Rm) be the space of smooth functions with compact support. Let p0 ∈ L1
loc(Rd,Rm).

Then p ∈ L1
loc(Rd ×R+,Rm) is called a weak solution of (3.1) together with an initial condition

p(0,x) = p0(x) if ∫
Rd×R+

(p∂tϕ+
d∑
j=0

f j(p)∂xjϕ+ h(p)ϕ) = −
∫
Rd

p0ϕ(·, 0)

for all ϕ ∈ C∞0 (Rd × R+,Rm).

Note that classical solutions are weak solutions, and a weak solution that is smooth enough is a
classical solution.

An obvious choice for weak solutions are piecewise classical solutions with a separating discon-
tinuity. It turns out that we cannot simply combine any two classical solutions to get a weak
solution. Instead, a jump condition has to be fulfilled along the discontinuity.

Theorem 3.4 (Rankine-Hugoniot). Let σ(t) ∈ C1(R+), Ωl = {(t, x) ∈ R+ × R |x < σ(t)},
Ωr = {(t, x) ∈ R+ × R |x > σ(t)}, S := {(t, σ(t))} and

p(x, t) :=

pl(x, t) if (x, t) ∈ Ωl,

pr(x, t) if (x, t) ∈ Ωr,

where pl ∈ C1(Ωl) and pr ∈ C1(Ωr). Then p is a weak solution to (3.4) if and only if pl, pr
are classical solutions to (3.4) in Ωl, Ωr, respectively, and

(pl(σ(t), t)− pr(σ(t), t))σ′(t) = f(pl(σ(t), t))− f(pr(σ(t), t)) ∀ t > 0. (3.12)

Proof. See e.g. [48].

For scalar conservation laws in one dimension, we can calculate the speed of the propagating
discontinuity by (3.12) as

σ′(t) = f(pl(t, σ(t)))− f(pr(t, σ(t)))
pl(t, σ(t))− pr(t, σ(t)) .

For linear systems of conservation laws (3.7), we see that pl−pr always has to be an eigenvector
of the flux matrix A at the discontinuity.

Weak solutions overcome the problem that smooth solutions may not be well-defined after
arbitrarily short times but they introduce a new problem: They may not be unique.

Hyperbolic systems of first-order equations 20

Example 3.5 ([55]). The two functions

p(t, x) =

0 for 2x < t

1 for 2x > t
and p(t, x) =

0 for x < 0

x/t for 0 < x < t

1 for t < x

are both weak solutions to the initial value problem for Burgers’ equation

∂tp+ ∂x
p2

2 = 0, p(0, x) =

0 if x < 0,

1 if x > 0.

In physical problems, however, we expect that there is a unique solution, namely the one which
occurs in nature. Thus, an additional criterion is needed to decide which solution is the “right”
one. A criterion that may be used is the vanishing viscosity approach. This approach is motivated
by the fact that gas dynamics may be modelled either with or without viscosity. For the viscous
flow, an additional ε∂2

xxp term occurs instead of 0 on the right-hand side of the conservation
law, where ε is the viscosity coefficient. This additional viscosity ensures the uniqueness of the
solution pε. For ε→ 0, we would expect that pε → p, where p is a solution of the inviscous flow
model. Transferring this approach to the hyperbolic balance law leads to the following theorem
for the scalar case.

Theorem 3.6 ([48]). Let p0 ∈ L1(Rd) ∩ L∞(Rd). Let ∆ denote the Laplace operator and let
f i, h be such that all (partial) derivatives up to second order exist and are bounded. Then, for
any ε > 0, there exists a uniquely defined classical solution pε of

∂tp+
d∑
i=1

∂xif
i(p) = h(t, x, p) + ε∆p in Rd × R+, (3.13a)

p(0, x) = p0(x) in Rd (3.13b)

such that pε converges almost everywhere in Rd × R+ as ε→ 0 to a weak solution p of

∂tp+
d∑
i=1

∂xif
i(p) = h(t, x, p) in Rd × R+,

p(0, x) = p0(x) in Rd.

For systems of conservation laws, even in one dimension, the above theorem does not hold. For
general data, there may even be no weak solution to (3.4) at all (see [48, Section 4.1]). However,
in [7] the authors showed that a unique vanishing viscosity solution to (3.4) exists as long as the
total variation (see Section 4.1.5) of the initial values is sufficiently small.

Usually we want to choose a unique weak solution as the vanishing viscosity limit of the viscous
problem (3.13). However, this condition is hard to work with in practice. Therefore, a variety of
conditions has been developed that can be directly applied to weak solutions of the conservation
law. These conditions are called admissibility conditions or entropy conditions. The underlying

Hyperbolic systems of first-order equations 21

idea is to make use of an entropy function η(p). To choose a weak solution of the conservation
law, we require that this entropy, similar to the entropy in physics, should only be allowed to
either decrease or increase. While the physical entropy is defined to be non-decreasing, the
mathematical entropy functions are usually chosen to be non-increasing.

More precisely, we need an entropy function η(p) together with an entropy flux ψ(p) such that
an integral conservation law

x2∫
x1

η(p(t2, x))dx =
x2∫
x1

η(p(t1, x))dx+
t2∫
t1

ψ(p(t, x1))dt−
t2∫
t1

ψ(p(t, x2))dt (3.14)

is fulfilled whenever p is smooth and that is not fulfilled at discontinuities. The condition that
the entropy must be non-increasing over time is then given by (3.14) where we replace the “=”
by “≤”.

If p is smooth enough, we can derive the differential form of (3.14)

∂tη(p) + ∂xψ(p) = 0. (3.15)

If η, ψ are smooth enough we can rewrite (3.15) as

Dη(p)∂tp + Dψ(p)∂xp = 0. (3.16)

where Dη(p),Dψ(p) ∈ R1×m are the Jacobians of η, ψ, respectively. Applying Dη to the
conservation law (3.4a) gives

Dη(p)∂tp + Dη(p)Df(p)∂xp = 0. (3.17)

Comparing (3.16) and (3.17) we see that the entropy flux should satisfy

Dψ(p) = Dη(p)Df(p). (3.18)

To see whether we can single out the vanishing viscosity solution by the entropy approach, we
regard the viscous equation corresponding to the conservation law (3.4a)

∂tpε + ∂xf(pε) = ε∂2
xxpε. (3.19)

Multiplying by Dη(pε) from the left and using (3.18) and the fact that solutions to the parabolic
viscous equation 3.19 are always smooth gives

∂tη(pε) + ∂xψ(pε) = εDη(pε)∂2
xxpε. (3.20)

We rewrite the right-hand side to get

∂tη(pε) + ∂xψ(pε) = ε∂x
(
Dη(pε)∂xpε

)
− ε(∂xpε)TH(η)(pε)∂xpε (3.21)

where H(η) is the Hessian matrix of η. Integrating (3.21) over the rectangle [x1, x2] × [t1, t2]

Hyperbolic systems of first-order equations 22

results in
x2∫
x1

η(p(t2, x))dx =
x2∫
x1

η(p(t1, x))dx+
t2∫
t1

ψ(p(t, x1))dt−
t2∫
t1

ψ(p(t, x2))dt

+ ε

t2∫
t1

(
Dη(pε(t, x2))∂xpε(t, x2)−Dη(pε(t, x1))∂xpε(t, x1)

)
dt

− ε
t2∫
t1

x2∫
x1

(∂xpε)TH(η)(pε)∂xpεdxdt.

This looks exactly like the entropy conservation law (3.14) except for the two additional terms
on the right-hand side. The first of these terms vanishes as ε → 0. This is clearly true if the
limit function p is smooth at x1 and x2 but can be proven more generally, see [56]. The second
term may not vanish in general. However, if we demand that η is convex, then H(η) is positive
definite and the second term will always be positive. We thus see that the vanishing viscosity
solution satisfies the entropy condition ((3.14) with “≤” instead of “=”) for convex entropies
η. Instead of working with this integral entropy condition, it is often easier to use the weak
formulation ∫

R+

∫
R

(η(p)∂tφ+ ψ(p)∂xφ) dxdt+
∫
R

φ(0, x)η(p(0, x))dx ≥ 0 (3.22)

for all test functions φ ∈ C1
0(R× R) now required to be positive (φ(t, x) > 0 for all x, t).

We summarize our results in the following definition.

Definition 3.7. Let η, ψ : Rm → R. The pair (η, ψ) is called an entropy pair for (3.4) if η is
convex (i.e. H(η) is positive definite) and

Dψ(p) = Dη(p)Df(p).

Let p be a weak solution of the hyperbolic system (3.4). We say that p is an entropy solution if
there exists an entropy pair (η, ψ) such that (3.22) holds.

It can be shown that entropy weak solutions are indeed unique and can be considered a vanishing
viscosity limit (see [48] for the scalar case in one or several dimensions and [7] for systems of
equations in one dimension). For systems of equations in several dimensions, there is no general
existence result for weak solutions.

For scalar conservation laws in one dimension, a simpler condition can be derived to decide
whether a weak solution containing discontinuities is the entropy weak solution. An intuitive
requirement is that information, i.e. the characteristics, should flow into the discontinuity, not
come out of it. It turns out that this is enough to decide whether the discontinuity is admissible
in the entropy solution as long as the flux is strictly convex or concave.

Definition 3.8. For a strictly convex (or strictly concave) scalar conservation law, a discontinuity

Hyperbolic systems of first-order equations 23

propagating with speed s satisfies the Lax entropy condition if

f ′(pl) > s > f ′(pr) (3.23)

where pl(t), pr(t) are the (limit) values of p at the discontinuity from the left and right, respectively.
A discontinuity that satisfies the jump condition (3.4) and the Lax entropy condition is called a
shock.

Note that f ′ is the characteristic speed. Thus, the Lax entropy condition ensures that the
characteristics impinge on the shock.

3.3 The Riemann problem

We now analyse solutions to a special class of initial value problems for the conservation law
(3.4) where the initial values are piecewise constant with a single discontinuity at x = 0, i.e.

p0(x) =

pl if x < 0

pr if x > 0,
pl, pr ∈ Rm. (3.24)

These special problems are called Riemann problems and are an important building block for
the numerical schemes for hyperbolic conservation laws, as we will see in Section 4.1. We restrict
ourselves to the scalar case here. Further, we assume that the flux f is either convex or concave.
If we look at the quasilinear form of the scalar conservation law

∂tp+ f ′(p)∂xp = 0

we see that for constant p this is an advection equation with advection speed f ′(p). Thus,
distant from the discontinuity at x = 0 the initial values in the Riemann problem will simply
be transported at speed f ′(pl) or f ′(pr). Around x = 0, there are essentially two possibilities,
depending on the data of the Riemann problem. In Figure 4, this is depicted for a traffic flow
model with concave flux f(p) = p(1− p). In Figure 4a, the initial values are chosen such that
f ′(pl) > 0 > f ′(pr). The characteristics meet and a shock with speed given by (3.12) forms
which satisfies the Lax entropy condition (3.23). As the speed is negative, the shock moves to the
left. In Figure 4b, the initial values imply f ′(pl) < 0 < f ′(pr) and the Lax entropy condition can
no longer be satisfied. Instead of moving to the right or left, the discontinuity is spreading out.
This is most easily understood if we think of the discontinuity as slightly smoothed out such that
p takes all values between 0 and 1 in a very small neighbourhood of x = 0. Consequently, f ′(p)
takes values between −1 and 1 and the density is spreading out in both directions. This is called
a centred rarefaction wave. For 0 < f ′(pl) < f ′(pr) (not depicted in the figure), the discontinuity
would also spread out but would be moving to the right which is called a right-going rarefaction
wave. Of course, also right-going shocks or left-going rarefaction waves are possible.

It is important to note that the value of the solution at the point x = 0 is constant over the time
interval (0,∞). This will be exploited in the numerical schemes in Section 4.1. For left-going

Hyperbolic systems of first-order equations 24

shocks or rarefaction waves, the value is pr, for right-going shocks or rarefaction waves it is pl.
In the case of a centred rarefaction wave, the value is neither pl nor pr but the unique (as f is
strictly convex or concave) value ps such that f ′(ps) = 0. In the case of a stationary shock with
speed 0, the value is not well-defined. Note however that, by the Rankine-Hugoniot condition
(3.4), f(pl) = f(pr) for a stationary shock. Hence, the value of the flux can still be defined
unambiguously which is all that is needed for the numerical scheme.

(a) left-going shock (b) centered rarefaction wave

Figure 4: Solutions and characteristics of Riemann problems for a traffic flow model
with concave flux f(p) = p(1 − p). The initial values and the solution at a later time are
plotted at the bottom and at the top, respectively. In the middle, the characteristics are depicted.
(a) Here, f ′(pl) > 0 > f ′(pr). The characteristics meet which leads to a shock that moves
with speed given by (3.12) (drawn as a dashed line in the characteristics plot). (b) Here,
f ′(pl) < 0 < f ′(pr). The characteristics are spreading out (for the characteristics plot it is
assumed that the discontinuity in the initial values is slightly smoothed out such that p takes all
values between 0 and 1 in a very small neighborhood of x = 0). As a result, a rarefaction wave
forms. Modified from [56, Section 11.1].

For systems of equations, the situation is more complicated, as there are in general m families
of characteristics, resulting in m shocks or rarefaction waves. As long as the system is strictly

Hyperbolic systems of first-order equations 25

hyperbolic and the genuine nonlinearity condition, replacing the convexity requirement to the
flux in the scalar case, is fulfilled, the solution to the Riemann problem consists of m+1 constant
states connected by rarefaction waves or shocks. Analogous to the scalar case, conditions for
when a shock or rarefaction wave is admissible and which constant states can be connected to
each other by either a shock or a rarefaction wave can be derived. Applying these conditions,
the Riemann problem can in principle be solved. As in the scalar case, the value of the solution
at x = 0 is constant over the time (0,∞). This constant value is one of the m + 1 constant
states, except if one of the rarefaction waves is centred.

In the case of a linear system of equations, the value at x = 0 can be determined particularly
easily. In that case, we can solve the system by reduction to a system of decoupled advection
equations, where the velocity in each advection equation is given by one of the eigenvalues λs of
the flux matrix (see Section 3.1). Note that we can write the solution by (3.9) as

p(t, x) =
m∑
s=1

ws(t, x)rs (3.25)

where rs is the eigenvector of the flux matrix to the eigenvalue λs and ws is the solution of the
s-th advection equation. If we have Riemann initial values for p, we obtain a Riemann problem
for each of the decoupled advection equations with left initial value (ws)l and right initial value
(ws)r. The advection equations shift the initial values with speed λs. Thus, by (3.25), for t > 0
we get

p(t, 0) =
m∑
s=1

ws(t, 0)rs =
∑

s:λs<0
(ws)rrs +

∑
s:λs>0

(ws)lrs. (3.26)

If one of the eigenvalues is zero, the value at x = 0 is not well-defined. However, as in the scalar
case, the value of the flux is still unambiguously defined.

Numerical methods 26

4 Numerical methods

4.1 Finite volume methods for hyperbolic balance laws

In the last section, we have seen that solutions to hyperbolic systems of equations may contain
discontinuities. This poses difficulties for classical finite difference methods as the differential
equation does not hold at the discontinuities. Finite volume methods overcome this problem
by being based on the integral form of the conservation law that is also valid for discontinuous
solutions. Furthermore, the conservation property (3.3) can be preserved in the discrete solution
using finite volume methods.

4.1.1 Computational grids

In numerical computations, we usually cannot simulate the whole Rd but only a bounded domain
Ω ⊂ Rd. Finite volume methods work with averages of the solution over small volumes of this
domain instead of approximating the solution pointwise. We therefore have to partition the
domain Ω into small volumes. For that purpose, we first need some geometrical definitions.

Definition 4.1. A subset A ⊂ Rd is called affine if for all x1,x2 ∈ A the line through x1 and
x2 also lies in A. For A affine, the set

W = {x |x0 + x ∈ A}

is a linear subspace of Rd for arbitrary x0 ∈ A. If dim(W) = r then A has affine dimension r,
denoted affdim(A) = r. For an arbitrary set B ⊂ Rd, the affine hull aff(B) is defined as the
smallest affine set containing B. The affine dimension of B is then defined as

affdim(B) := affdim(aff(B)).

Definition 4.2. A convex polytope P ⊂ Rd is the convex hull of a finite set of points x1, . . . ,xk ∈
Rd. For a convex polytope P , a non-empty subset F ⊂ P is called an r-face if affdim(F) = r

and for all x1,x2 ∈ P
(x1,x2) ∩ F 6= ∅ ⇒ [x1,x2] ⊂ F

where (x1,x2) = {ax1 + (1 − a)x2 | a ∈ (0, 1)} and [x1,x2] = (x1,x2) ∪ {x1,x2} are the open
and closed line segment between x1 and x2, respectively.

It can be shown that this definition of a face is equivalent to defining a face as the intersection
of P with a supporting hyperplane [37]. Faces of a convex polytope are again convex polytopes.

Example 4.3. A cube is a polytope in R3. The 0-, 1- and 2-faces of the cube are the vertices,
edges and faces, respectively. The cube itself is a 3-face.

Let finally Poly(k) be the set of convex polytopes in Rd with at most k vertices (0-faces) and
non-empty interior. We can now define a grid on Ω.

Numerical methods 27

Definition 4.4. Let I := {0, 1, . . . , Nx − 1} ⊂ N0 be a finite index set. The set

τh := {Ti | Ti ∈ Poly(k), i ∈ I}

is called unstructured conformal grid for Ω if

• Ω =
⋃
i∈I

Ti,

• T̊i ∩ T̊j = ∅ ∀i 6= j ∈ I and

• either Ti ∩ Tj = ∅ or Ti ∩ Tj is an r-face of both Ti and Tj for an r ∈ {0, . . . , d− 1}.

Here, T̊i denotes the interior of Ti. Note that this definition of a grid requires that the boundary
∂Ω consists of (d− 1)-faces of the grid cells Ti. For arbitrary domains with a smooth boundary,
we can never fulfil the requirement that Ω should be the union of a finite set of polytopes. We
index these boundary (d− 1)-faces by an index set J ⊂ N with I ∩ J = ∅ and denote Ĩ = I ∪ J .

Let
E := {(i, j) ∈ I × I | i 6= j and Ti ∩ Tj is a (d− 1)-face of Ti and Tj}

and define Sij = Ti ∩Tj for (i, j) ∈ E . Let further Sij also denote the boundary (d− 1)-face with
index j ∈ J where i ∈ I is chosen such that Sij ⊂ Ti. We define the set of interfaces of Ti as

S(i) := {j ∈ Ĩ |Sij exists}. (4.1)

We always assume that the grid fulfils the regularity property

αhdi < |Ti|, (4.2a)

α|∂Ti| < hd−1
i (4.2b)

for an α > 0 and all i ∈ I. Here, |Ti|, |∂Ti| denote the volume and area of Ti, ∂Ti, respectively,
and the local grid width hi := diam(Ti) is the length of the longest straight line contained in Ti.
The global grid width is defined as h := max

i∈I
hi. This regularity property essentially ensures that

the angles in all polytopes Ti stay bounded away from zero.

Similarly to the spatial discretization of the domain, we only regard a finite time interval [0, tend]
instead of R+. We subdivide [0, tend] into Nt intervals [tn, tn+1] with t0 = 0 and tNt = tend. We
define the n-th time step as ∆tn = tn+1 − tn for n = 0, . . . , Nt − 1.

Numerical methods 28

4.1.2 Finite volume schemes and numerical fluxes

Integrating (3.1) over a single grid cell Ti and the time interval [tn, tn+1], we get

tn+1∫
tn

∫
Ti

h(t,x,p) =
tn+1∫
tn

∫
Ti

(∂tp +
d∑
j=0

∂xj f j(p))

=
∫
Ti

p(·, tn+1)−
∫
Ti

p(·, tn) +
tn+1∫
tn

∫
Ti

(div f1, . . . ,div fd)T

=
∫
Ti

p(·, tn+1)−
∫
Ti

p(·, tn) +
tn+1∫
tn

∫
∂Ti

(f1 · n, . . . , fd · n)T

=
∫
Ti

p(·, tn+1)−
∫
Ti

p(·, tn) +
tn+1∫
tn

∫
∂Ti

d∑
k=1

fk(p)nk.

(4.3)

Here, n is the unit outer normal to ∂Ti and fi = (f1
i , . . . , f

d
i)T (not to be confused with

f i = (f i1, . . . , f id)T).

If we approximate p on a grid cell Ti and a point in time tn by its average on the cell, i.e.

pni := 1
|Ti|

∫
Ti

p(tn,x)dx, (4.4)

we can write (4.3) after dividing by 1/|Ti| as

pn+1
i = pni −

∆tn
|Ti|

1
∆tn

tn+1∫
tn

∫
∂Ti

d∑
k=1

fk(p)nk + 1
|Ti|

tn+1∫
tn

∫
Ti

h(t,x,p). (4.5)

Thus, to get a discrete method we would like to approximate the flux term

1
∆tn

tn+1∫
tn

∫
∂Ti

d∑
k=1

fk(p)nk (4.6)

and the source term
1
|Ti|

tn+1∫
tn

∫
Ti

h(t,x,p) (4.7)

by terms that depend only on the discrete values pnj , j ∈ I. For that purpose, we need to
discretize the time integral by an appropriate quadrature and then approximate the spatial
integral at each quadrature time point. For presentation purposes, we use Euler time stepping
here (see Section 4.2) and thus approximate the time integral by evaluating at time tn and
multiplying by ∆tn. Higher order methods for the approximation of the integral are regarded in
Section 4.2.

For the spatial discretization, we start with the flux term. After the Euler discretization of the

Numerical methods 29

time integral, we are left with the approximation∫
∂Ti

d∑
k=1

fk(p(tn, ·))nk

for the flux term. Information in a hyperbolic system of equations propagates with finite speed
(see Section 4.1.4). Hence, if we choose the time step ∆tn small enough, it is safe to assume that
we can approximate the flux term by only using the values pnj for cells Tj in a sufficiently small
neighbourhood of Ti. Note that ∂Ti consists of the interfaces Sij , j ∈ S(i). We thus make the
ansatz ∫

∂Ti

d∑
k=1

fk(p(tn, ·))nk =
∑
j∈S(i)

∫
Sij

d∑
k=1

fk(p(tn, ·))nk ≈
∑
j∈S(i)

gij(pni ,pnj).

The approximation gij is called a numerical flux. If j ∈ J , i.e. if the interface Sij is on the
boundary, the value pnj does not exist. We thus have to specify boundary values or define gij
using only pni (see Section 4.1.6). In the following, we will always assume that pnj is suitably
defined.

The main challenge in developing finite volume methods is to find appropriate numerical flux
functions gij . We summarize some requirements on the numerical flux in the following definition.

Definition 4.5. For an interface Sij , gij : (Rm)2 → Rm is called a numerical flux with respect
to f1, . . . , fd if it holds

• Lipschitz continuity: ∀ p,q,p′,q′ ∈ BR(0) :

|gij(p,q)− gij(p′,q′)| ≤ Lg|Sij |(|p− p′|+ |q − q′|),

• Conservation: gij(p,q) = −gji(q,p),

• Consistency: gij(p,p) =
∫
Sij

F(p) · nij :=
∫
Sij

d∑
k=1

fk(p)nij,k.

Here, nij is the unit outer normal to the interface Sij and BR(0) ⊂ Rm is the ball with radius
R centred at 0.

If there is no source term, i.e. if h = 0, we are ready to define a numerical scheme to solve (3.1):

Definition 4.6. For each interface Sij of a grid, let gij be a numerical flux with respect to
f1, . . . , fd. The scheme

p0
i := 1

|Ti|

∫
Ti

p0(x)dx, (4.8)

pn+1
i := pni −

∆tn
|Ti|

∑
j∈S(i)

gij(pni ,pnj) (4.9)

Numerical methods 30

is called finite volume scheme in conservation form. The function

ph(t,x) := pni ∀x ∈ Ti, t ∈ [tn, tn+1)

is called numerical solution to the finite volume scheme.

Even if the requirements from Definition 4.5 are fulfilled, the numerical scheme will not necessarily
converge to the correct entropy weak solution. Some additional restrictions have to be made
to the flux to ensure this convergence. Classes of fluxes that have this property are monotone
fluxes and E-fluxes (see e.g. [4, 56]). We do not treat these general classes here but rather regard
some specific fluxes.

Example 4.7. One of the simplest numerical fluxes is the Lax-Friedrichs flux [55]

gLFij (p,q) :=
(

1
2(F (p) + F (q)) · nij −

1
2λij

(q − p)
)
|Sij |, (4.10)

where λij is chosen such that

λij = λji ≥ c > 0, (4.11)

λij sup
p

(F(p) · nij)′ ≤ 1 (4.12)

for a constant c ∈ R.

It can be easily verified that the Lax-Friedrichs flux is indeed a numerical flux in the sense of
Definition 4.5. Furthermore, it contains numerical viscosity that ensures convergence to the
entropy weak solution [48]. This can most easily be seen in the one-dimensional scalar case on
an equidistant grid with hi = ∆x for all i. Here, traditionally λij = ∆tn/∆x is used which fulfils
(4.12) as long as the CFL condition (see Section 4.1.4) is satisfied. Using the Lax-Friedrichs flux,
the update formula for pni is

pn+1
i = pni + ∆tn

f(pni+1)− f(pni−1)
2∆x − (∆x)2

2
pni+1 − 2pni + pni−1

(∆x)2

which looks like we are modelling the viscous equation

∂tp+ ∂xf(p) = β∂2
xxp

for β = (∆x)2

2∆tn with a finite difference method. This ensures the convergence to the entropy
solution but often leads to strong smearing of shocks [56].

Instead of using λij = ∆tn/∆x, a locally determined value

λij = max |f ′(p)| over all p between pni and pnj

can be used at each interface. This method is called the local Lax-Friedrichs method. If the
CFL condition is satisfied, then |f ′(p)| ≤ ∆tn/∆x everywhere. Hence, the traditional Lax-
Friedrichs scheme amounts to using a uniform viscosity that is sufficient everywhere. The local

Numerical methods 31

Lax-Friedrichs methods shows less smearing and still contains enough viscosity to guarantee
convergence to the entropy solution [56].

Example 4.8. For the scalar advection equation, information propagates only in one direction
given by the velocity vector. For example, in one dimension, a positive velocity λ suggests using
only information from the left one of the two cells in the numerical flux

gij(pni , pnj) =

λp
n
i if Ti is to the left of Tj

−λpnj else.

If the velocity was negative, information from the right cell would have to be used. Such a
method looking at the direction from which information should be coming is called an upwind
method. For a linear system of equations in one dimension, the above flux can be easily adapted
by using the upwind flux on each of the decoupled advection equations.

The Godunov flux [28] is one of the most used flux functions and generalizes the upwind flux idea
to non-linear equations. Upwind information is obtained by solving one-dimensional Riemann
problems with initial values pi and pj at each interface Sij . To be more precise, we solve the
problem

∂tu(t, y) + ∂y(F · nij)(u(t, y)) = 0,

u0(y) =

pni if y < 0

pnj if y > 0

exactly where we can think of y as being the coordinate normal to the interface Sij . The value
of the solution u at y = 0 (or at least the flux using the value of u at y = 0, see Section 3.3)
is constant over the time interval (tn, tn+1). Let F(uG(pni ,pnj)) = F(u(tn + 1

2∆tn, 0)) be this
constant flux value. If we replace F(p) by F(uG) on Sij , we can determine the flux term (4.6) as

1
∆tn

tn+1∫
tn

∫
Sij

F(uG) · nij = |Sij |F(uG) · nij .

Thus, the Godunov flux is defined as

gGij(p,q) := |Sij |F(uG(p,q)) · nij . (4.13)

For the scalar advection equation or a linear system of equations in one space dimension, this is
just the upwind flux from above.

It can be shown that the finite volume scheme using Godunov’s flux converges to the entropy
solution as long as the Riemann problem at each interface is solved with the correct entropy
solution.

Solving the Riemann problem at each interface in every time step can be computationally
demanding. Moreover, the full solution u is not needed for the Godunov flux, only the value

Numerical methods 32

uG. Thus, a variety of approximate Riemann solvers has been developed. We will use a simple
linearized Riemann solver (see [56, Section 15.3]) where we solve the linearized equation

∂tu + A∂yu = 0 (4.14)

locally at each cell interface with A = D(F · nij)(1
2(pni + pnj)) being an approximation of the

Jacobian of F · nij at the interface Sij .

4.1.3 Source terms

If h 6= 0, we need to include the source term in our calculation. If we use Euler time stepping,
the source term (4.7) becomes

∆tn
|Ti|

∫
Ti

h(t,x,p).

A simple approach to discretize the source term is to replace p by pni in each time step. The
remaining integral can then be computed analytically, if possible, or by quadrature. Using a
simple midpoint quadrature, for example, the update formula including flux and source term
becomes

pn+1
i = pni −

∆tn
|Ti|

∑
j∈S(i)

gij(pni ,pnj) + ∆tnh(tn,xi,pni), (4.15)

where xi is the midpoint of the cell Ti.

Another approach introduced by Godunov in [28] is to split the problem (3.1) in two problems
that are solved successively in each time step. More precisely, instead of (3.1) we regard the two
equations

∂tp(t,x) +
d∑
i=1

∂xif i(p) = 0, (4.16)

∂tp(t,x) = h(t,x,p) (4.17)

and solve both equations separately in each time step, using the result of the first equation as
data for the second one. The first equation is just the conservation law without source term.
Averaging the second equation (4.17) over a grid cell gives the ordinary differential equation
(ODE)

dt
1
|Ti|

∫
Ti

p(t,x)dx = 1
|Ti|

∫
Ti

h(t,x,p)dx. (4.18)

We can use the finite volume scheme (4.8) for (4.16) and a standard ODE method for (4.17) (or
rather the integral form (4.18)). If we use the forward Euler method for both equations, our

Numerical methods 33

scheme becomes

p∗i = pni −
∆tn
|Ti|

∑
j∈S(i)

gij(pni ,pnj), (4.19a)

pn+1
i = p∗i + ∆tn

|Ti|

∫
Ti

h(tn,x,p∗i)dx. (4.19b)

Note that we simply replaced p(tn,x) by p∗i in the source term h to get a fully discrete method.
It may look like we evolve our equation by 2∆tn here, but in each step we use only one of
the terms of our original equation, so this gives an approximation to (3.1). This is called a
fractional step method. The method (4.15) introduced before is called an unsplit method. The
fractional step method is formally only first order accurate even if the two subproblems are
solved exactly because a splitting error of O(∆t) is introduced. The advantage of the fractional
step method over the unsplit method is, however, that numerical methods for the two equations
can be applied separately. In particular, the higher order methods for the conservation law we
present in Section 4.1.5 can be applied directly, whereas deriving an unsplit method based on
these methods may be more complicated. Using the higher order methods in the fractional step
approach can give considerably better results particularly in discontinuous parts of the solution.

Changing the evaluation order of the equations (4.19) in each time step, called Strang splitting
[80], can improve the formal accuracy. Despite its low-order formal accuracy, the fractional step
approach can give reasonably good results in practice (see [56, Section 17]).

4.1.4 Time step restrictions

In the definition of the finite volume scheme, we assumed that we can approximate the flux using
only information from the adjacent cells. This is justified by the observation that information in
a hyperbolic system of equations propagates with finite speed. The solution at (t̃, x̃) thus does
not depend on the initial values for all x ∈ Rd but only on the initial values in a smaller domain.
This domain is called the domain of dependence of the point (t̃, x̃). For the linear advection
equation in one dimension with speed λ, the domain of dependence consists only of the single
point x̃− λt̃, whereas for a linear system of equations, the m points x̃− λst̃ build the domain
of dependence. For a nonlinear equation in one dimension, the domain of dependence is more
complex but is contained in the interval [x̃− ut̃, x̃+ ut̃], where u = max

p
|f ′(p)|. For a nonlinear

system, the domain of dependence can be bound depending on the maximum eigenvalues of
Df . In several dimensions, the domain of dependence can be bound in a similar way using the
appropriate flux f i for each coordinate direction.

A numerical method can only be stable if the numerical domain of dependence contains the
analytical domain of dependence. This was first stated by Courant, Friedrichs and Lewy [18]
and is thus often called the CFL condition. If the numerical domain of dependence does not
contain the analytical domain of dependence, a change in the initial values might affect the true

Numerical methods 34

solution at the point (t̃, x̃) but not the numerical approximation. This shows that the scheme
cannot converge for arbitrary initial values.

If we use an equidistant grid with cell width ∆x and denote the i-th grid cell by Ti = [xi− 1
2
, xi+ 1

2
],

the numerical domain of dependence of pni for the finite volume scheme (4.8) in one dimension is

[xi− 1
2
− n∆x, xi+ 1

2
+ n∆x],

as in each time step the value pn+1
i depends on the values in the cells Ti−1, Ti and Ti+1 in the

previous time step. If we use a constant time step ∆t, then tn = n∆t. We thus have to require

xi− 1
2
− n∆x ≤ xi− 1

2
− un∆t,

xi+ 1
2

+ un∆t ≤ xi+ 1
2

+ n∆x

where u is an upper bound on the information propagation speed, e.g. u = max
p
|f ′(p)| for a

nonlinear scalar equation. We thus have to restrict the time step such that

∆t ≤ 1
u

∆x.

The factor ∆t
∆x is called CFL number or Courant number. We will use the term Courant number

throughout this thesis to avoid ambiguity with the CFL coefficient in Section 4.2. For a scheme
with varying cell diameter hi and time steps ∆tn the Courant number describes the ratio ∆tn

hi
.

In order to get a stable scheme, the Courant number has to be chosen small enough.

The CFL condition is only a necessary condition. In practice, the Courant number may have to
be chosen much smaller than the CFL condition requires to get a stable scheme.

4.1.5 Higher order methods

The Lax-Friedrichs and Godunov schemes introduced in Examples 4.7 and 4.8 use the average
values pni and pnj to approximate the flux at the interface Sij . It can be shown that these fluxes
(under the assumptions made, i.e. regularity of the grid, bounded total variation of the initial
values, suitable time step restriction) give a finite volume scheme that converges to the correct
entropy weak solution of the conservation law (see [4, 48, 56]). However, the convergence rate is
quite low.

Theorem 4.9 (Convergence rate of finite volume schemes, [4]). Let p be the entropy weak
solution to a scalar hyperbolic conservation law where p0 has bounded total variation. Let ph
be an approximate solution obtained by the finite volume scheme (4.8) (where the regularity
condition on the grid (4.2) and a CFL-like condition on the time step is satisfied) using one of
the fluxes from Examples 4.7 and 4.8. Let K ⊂⊂ R+ × Rd be relatively compact. Then there
exists a constant C ≥ 0 such that ∫

K

|p− ph| ≤ Ch1/4.

Numerical methods 35

Moreover, in the one-dimensional case, the optimal convergence rate of 1/2 is obtained.

It is known that the L1-norm convergence rate bound of 1/2 is sharp for general conservation
laws [4].

The accuracy can be improved by using information from a wider stencil of cells to reconstruct
the value of p at the interface. We do this here for the scalar conservation law in one space
dimension (m = d = 1, h = 0). Furthermore, for simplicity, we assume an equidistant grid with
cell width ∆x. Equation 4.3 for the average value over the grid cell [xi− 1

2
, xi+ 1

2
] then becomes

pn+1
i = pni −

∆tn
∆x

 1
∆tn

tn+1∫
tn

f(p(tn, xi+ 1
2
))− 1

∆tn

tn+1∫
tn

f(p(tn, xi− 1
2
))

 .
The finite volume scheme (4.8) thus is

pn+1
i = pni −

∆tn
∆x

(
gi,i+1(pni , pni+1) + gi,i−1(pni , pni−1)

)
. (4.20)

Here, the numerical flux gi,i+1 approximates the flux at the point xi+ 1
2
using the average cell

values pni and pni+1. The method can be improved by making a better guess of the value p(tn, xi+ 1
2
)

from both sides of the interface xi+ 1
2
and using these values instead of the average cell values in

the numerical flux gi,i+1.

One way to improve the approximation of p at the interface xi+ 1
2
is to do a linear reconstruction.

We first calculate a slope σni on each cell using the values pnj of the adjacent cells. We can, for
example, use one of the following slopes

(σni)centred =
pni+1 − pni−1

2∆x , (σni)left =
pni − pni−1

∆x , (σni)right =
pni+1 − pni

∆x .

We then reconstruct the value of p at the interface xi+ 1
2
in both adjacent cells as

(pni)+ = pni + ∆x
2 σni ,

(pni+1)− = pni+1 −
∆x
2 σni+1.

Using the reconstructed values, the finite volume scheme (4.20) becomes

pn+1
i = pni −

∆tn
∆x

(
gi,i+1((pni)+, (pni+1)−) + gi,i−1((pni)−, (pni−1)+)

)
. (4.21)

This approach gives better accuracy in smooth parts of the solution. Near discontinuities,
however, artificial oscillations are introduced by this method as the slopes may become very
large and cause overshoots (see e.g. [56, Section 6.6] for an illustration of the problem). Hence,
we would like to use a smaller slope such that artificial oscillations do not occur. If we limit the
slope too much, however, we do not obtain higher accuracy at all. To figure out how to choose
the slope, we first need a measure of oscillations in the solution.

Numerical methods 36

Definition 4.10. The total variation of a function p is defined as

TV (p) = sup
s∈N

sup
y0<...<ys

s∑
k=1
|p(ys)− p(ys−1)|.

For a grid function pn = (pni)∞i=−∞, we define the total variation as

TV (pn) =
∞∑

k=−∞
|pnk − pnk−1|.

For smooth functions, an equivalent definition is

TV (p) =
∞∫
−∞

|p′(y)|dy.

The total variation will be infinite if p does not tend towards a constant value for x → ±∞.
However, if we start with initial values that have bounded total variation, the solution of a
hyperbolic conservation law is total variation non-increasing (see [34]), i.e.

TV (p(t1, ·)) ≤ TV (p(t2, ·)) for all t1 ≤ t2. (4.22)

Somewhat inaccurately, this property is usually called total variation diminishing (TVD) instead
of total variation non-increasing (TVNI).

It is reasonable to demand that a numerical scheme for the hyperbolic conservation law should
also be TVD, i.e. the approximate solution at time tn+1 should always have lower or equal total
variation compared to the approximate solution at time tn. This prevents artificial oscillations
as they would increase the total variation. The method (4.21) introduced above using linear
reconstruction thus is not TVD. It can be shown that the finite volume scheme (4.20) using
the Lax-Friedrichs flux or the Godunov flux is TVD [56]. We can get these methods from the
linear reconstruction method (4.21) by setting the slope to zero. Thus, we might expect that
the scheme (4.21) is TVD if we limit the slope sufficiently. It turns out that this is indeed the
case. Choices of limited slopes that give a TVD method include (see [56, Section 6.9])

(σni)minmod = minmod ((σni)right, (σni)left) , (4.23)

(σni)superbee = maxmod (minmod ((σni)right, 2(σni)left) ,minmod (2(σni)right, (σni)left)) , (4.24)

(σni)MC = minmod ((σni)centred, 2(σni)left, 2(σni)right) , (4.25)

where the minmod function chooses the argument with smallest absolute value if all of its
arguments have the same sign and is zero else. The maxmod function is defined analogously but
chooses the argument with greatest absolute value.

These methods can be generalized to linear systems of equations by carrying out the reconstruction
process for each of the decoupled advection equations after the variable transformation. The
generalization to nonlinear systems is more complicated. Simply doing the reconstruction for each
component of the solution separately is in general not sufficient. Instead, a wave decomposition

Numerical methods 37

has to be done and each of the waves has to be regarded separately similar to the linear case
(see [56, Section 15.4]).

Note that while the flux limiter methods described here give faster convergence in practice, there
is no theoretical a priori result similar to Theorem 4.9 for these methods with a convergence
rate higher than 1/2 [4, 48].

4.1.6 Boundary conditions

Boundary conditions for hyperbolic systems of equations must be chosen with caution to get a
well-posed problem and are a difficult topic on their own. We do not go into any details here
but only regard some basic concepts. See, for example, [27, 81] for an introduction to the topic.

Consider the scalar advection equation (3.6) on the domain Ω = [xL, xR] with initial values p0(x).
If λ > 0, the characteristics leave from the left boundary x = xL. We hence need to prescribe
the value of p on that boundary, p(t, xL) = pL(t). In contrast, the characteristics impinge on
the right boundary x = xR and thus the value of p on that boundary is fully determined by the
initial values p0. If we prescribed boundary values in this case, the problem would be ill-posed
in general.

Consider a finite volume scheme using the Lax-Friedrichs flux. If we use an equidistant grid with
grid width ∆x = (xR−xL)/Nx, we have Nx cells Ti = [xL+i∆x, xL+(i+1)∆x], i = 0, . . . , Nx−1.
On the boundary cells T0 and TNx−1, we cannot simply use the Lax-Friedrichs flux as this would
require information from neighbouring cells to both sides. One possibility to solve this problem
is to use the Lax-Friedrichs flux on the inner cells T1, . . . , TNx−2 and use a different method
using only information from one side (e.g. an upwind flux) on the boundary cells (see [56,
Section 7]). However, often it is easier to use the same method for all cells and add ghost cells
at the boundary, i.e. additional cells that are not in the physical domain. Here, we use one
extra cell on both sides, i.e. a cell T−1 = [xL −∆x, xL] and a cell TNx = [xR, xR + ∆x]. On
the left boundary, we can then set the value of pn−1 in the cell T−1 according to the boundary
conditions, for example by averaging pL(t) over the time interval in each time step. On the
right boundary, on the other hand, we cannot impose boundary conditions but still need a
value in the cell TNx for the Lax-Friedrichs flux. This can be solved by calculating the value
pnNx

from the values in the cells TNx−2 and TNx−1, for example by simply setting pnNx
= pnNx−1

(zero-order interpolation) or getting pnNx
by linear interpolation from the two values pnNx−2 and

pnNx−1. This way, the information still comes only from the cells in the physical domain and no
extra boundary conditions need to be imposed. Thus, this approach is similar to using some
kind of upwind method in the right-most cell.

If we use one of the higher order methods from Section 4.1.5, two ghost cells on both sides and
suitable values in these cells are needed.

For a linear hyperbolic system of equations, there may be both incoming and outgoing charac-

Numerical methods 38

teristics on each boundary. Here, a characteristic decomposition in decoupled scalar advection
equations can be done and the values in the ghost cells can be calculated as above for each
advection equation. For nonlinear equations, requirements to the boundary conditions can be
derived for example by a linearization of the problem at the boundary (see [27]).

Often, we actually regard a problem in an unbounded domain (with initial values that have
bounded support) but need to use a bounded domain for the computations. In this case, we do
not want the boundary to have any influence on the solution. This can be done by choosing
the domain large enough that the support of the solution never reaches the boundary over the
time regarded, but of course this causes a lot of extra computational cost. Instead, we can
use absorbing (also called non-reflecting) boundary conditions that are supposed to completely
absorb any wave that reaches the boundary. For Godunov-type methods, this can be done by
simply using zero-order extrapolation [56]. Another possible choice of boundary conditions in
this case, especially if information mostly flows in one direction, are periodic boundary conditions.
Here, the ghost cells are filled with the values of p in the cells next to the boundary on the
opposite side of the domain.

If we regard hyperbolic systems of equations that come from moment models, additional
problems occur. Usually, boundary values for the kinetic equation are given only for velocities
that correspond to incoming data (see (1.3)) but the definition of moments includes integration
over the whole velocity space. In practice, this can sometimes be solved by extending the
definition of the kinetic boundary values to all velocities or choosing the domain large enough
that the boundary conditions have negligible effect on the solution, but in general this is an
open question [1, 35].

4.2 Runge-Kutta methods

In Section 4.1 we derived an equation for the cell averages pni at time tn in the balance law (3.1)
by integrating both over a grid cell Ti and a time interval (tn, tn+1). Recall that we approximated
the time integral by assuming that the integrand is constant over the time interval. Hence, the
numerical flux functions we derived in Section 4.1 essentially are an approximation to the flux
at time tn. We can make use of this fact to get better temporal accuracy in the finite volume
scheme. We only regard hyperbolic conservation laws without source terms in this section as we
incorporate the source terms in the scheme by the fractional step approach (see Section 4.1.3).

If we integrate (3.1) (with h = 0) over the cell Ti only and divide by 1/|Ti|, we get

dt pi(t) = − 1
|Ti|

∫
∂Ti

d∑
k=1

fk(p(t,x))nkdx

with
pi(t) := 1

|Ti|

∫
Ti

p(t,x)dx.

Numerical methods 39

If we use the interpretation of the numerical fluxes as approximation to the flux at time t, we
get the semidiscrete scheme

dt pi(t) = − 1
|Ti|

∑
j∈S(i)

gij(t,p(t)), (4.26)

where we collected the cell averages pi(t) in the array p(t) = (p0(t), . . . ,pNx−1(t)). We can
write this in the abstract form

dt p(t) = L(t,p(t)), t ∈ [0, T], (4.27a)

p(0) = p̃0, (4.27b)

where p : [0, tend]→ (Rm)Nx , L : [0, tend]× (Rm)Nx → (Rm)Nx , p̃0 = (1
|Ti|

∫
Ti

p0(x))i∈I .

This is a system of ordinary differential equations (ODEs). Note that while we assumed
that the flux function in the conservation law is not explicitly time-dependent, L can well be
time-dependent, e.g. if there are time-dependent boundary values.

We can now use standard ODE solvers to discretize (4.27) in time, but we need to take care
that the time discretization does not break the desired TVD property of the numerical schemes
from Section 4.1. We thus regard Runge-Kutta methods [50, 68], some of which can conserve
the TVD property, as we will see in the following.

If we have the value of p at time tn, we can calculate the value of p at the next time step tn+1

by

p(tn+1) = p(tn) +
tn+1∫
tn

dtp(ξ)dξ (4.27)= p(tn) +
tn+1∫
tn

L(ξ,p(ξ))dξ. (4.28)

Given an approximation pn of p(tn), Runge-Kutta methods replace the integral in (4.28) by a
quadrature to get an approximation pn+1 of p(tn+1) as

pn+1 = pn + ∆tn
s−1∑
k=0

bkkk, (4.29a)

where

kk = L(tn + ck∆tn,pn + ∆tn
s−1∑
l=0

aklkl), k = 0, . . . , s− 1. (4.29b)

Thus, starting with p0 = p̃0, we obtain a series of approximations pn to p at the time points tn.
The particular Runge-Kutta method is given by the number of stages s ∈ N, the weights bk ∈ R,
the nodes ck ∈ R and the coefficients akl ∈ R (0 ≤ k, l ≤ s− 1). This data is often arranged in a

Numerical methods 40

table called Butcher array or Butcher tableau:

c A
bT

=

c0 a00 . . . a0,s−1
...

...
...

cs−1 as−1,0 . . . as−1,s−1

b0 . . . bs−1

. (4.30)

The error introduced by the scheme (4.29) in a single time step is called the local truncation
error, whereas the error at the endpoint tNt = tend is called global truncation error.

Definition 4.11. For all n = 0, . . . , Nt − 1 the local truncation error is defined as

len = |p(tn+1)− p(tn)−∆tn
s−1∑
k=0

bkkk|.

The global truncation error is defined as

E = |pNt − p(tend)|.

Definition 4.12. The scheme (4.29) has order r if r is the largest integer such that

len = O((∆tn)r+1), n = 0, . . . Nt − 1

for sufficiently smooth problems (4.27), i.e. if the Taylor series for the exact solution and the
approximation agree up to the (∆tn)r-term for smooth problems.

If the Runge-Kutta scheme has order r, the global truncation error is O((∆tmax)r) (see [33])
where

∆tmax = max
n=0,...,Nt−1

∆tn.

In general, (4.29b) is a nonlinear system of m · s equations that has to be solved at every time
step, which can cause a considerable amount of computational cost. However, there is a subclass
of Runge-Kutta methods that avoid this problem:

Definition 4.13. A Runge-Kutta method is called explicit if

akl = 0 for l ≥ k.

The coefficient matrix A for an explicit Runge-Kutta method is strictly lower triangular. Thus,
kk depends only on kl with l < k, so the kk can be calculated successively. We use a simplified
Butcher tableau for explicit methods omitting the zeros on and above the diagonal of A.

Example 4.14. The simplest explicit Runge-Kutta method is the forward Euler method

pn+1 = pn + ∆tnL(tn,pn) (4.31)

Numerical methods 41

with the following Butcher array.
0

1

Note that this method approximates the temporal integral by evaluating at tn and multiplying
by ∆t. This is exactly what we did to approximate the integral in the flux and source term in
Section 4.1. The methods regarded there are thus TVD if the Euler method is used for time
stepping.

Example 4.15. Heun’s method [39]
0
1 1

1
2

1
2

is a two-stage Runge-Kutta method.

Example 4.16. The classical Runge-Kutta method [50, 68]

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

has four stages.

In the following, we set some additional restrictions to the coefficients of the Runge-Kutta
scheme.

Lemma 4.17. An explicit Runge-Kutta scheme is consistent, i.e.

lim
∆tmax→0

max
n

len
∆tn

= 0,

if and only if
s−1∑
k=0

bk = 1. (4.32)

Proof. By the continuity of L we have kk → L(tn,p(tn)) as ∆tn → 0. Furthermore,

p(tn+1)− p(tn) = ∆tndtp(tn) + o(∆tn) = ∆tnL(tn,p(tn)) + o(∆tn)

by Taylor expansion and (4.27). Thus

len = |p(tn+1)− p(tn)−∆tn
s−1∑
k=0

bkkk|

∆tn→0−→ |∆tn

(
1−

s−1∑
k=0

bk

)
L(tn,p(tn)) + o(∆tn)|.

Numerical methods 42

Consistency implies convergence for Runge-Kutta methods (see e.g. [51]). Thus, we can be sure
that the scheme converges as long as we choose b according to (4.32).

We only consider explicit methods from now on. We further demand that

ck =
s−1∑
l=0

akl. (4.33)

Note that this implies c0 = 0 and thus k0 = L(tn,pn) for explicit methods. This condition is
not necessary for lower order methods but simplifies the derivation of higher order methods (see
e.g. [33, 51]).

Under these conditions, we can write (4.29) in a slightly different form

p(k) = pn + ∆tn
k−1∑
l=0

dklL(tn + cl∆tn,p(l)), k = 1, . . . , s, (4.34a)

p(0) = pn, p(s) = pn+1 (4.34b)

with dkl = akl for k = 1, . . . , s−1 and dsl = bl. The p(k) are called the stages of the Runge-Kutta
method and the kk = L(tn + ck∆tn,p(k)) are sometimes called the stage derivatives.

If we choose arbitrary αkl ≥ 0, 0 ≤ l < k ≤ s with
k−1∑
l=0

αkl = 1, we get from (4.34a) (see [76])

p(k) =
k−1∑
l=0

αklp(0) + ∆tn
k−1∑
l=0

dklL(tn + cl∆tn,p(l))

= αk0p(0) +
k−1∑
l=1

αkl

p(l) −∆tn
l−1∑
q=0

dlqL(tn + cq∆tn,p(q))

+ ∆tn

k−1∑
l=0

dklL(tn + cl∆tn,p(l))

=
k−1∑
l=0

αklp(l) + ∆tn

dkl − k−1∑
z=l+1

dzlαkz

L(tn + cl∆tn,p(l))

 .
If we define

βkl = dkl −
k−1∑
z=l+1

dzlαkz, (4.35)

we can rewrite (4.34a) equivalently as

p(k) =
k−1∑
l=0

(
αklp(l) + ∆tnβklL(tn + cl∆tn,p(l))

)
. (4.36)

The transformation of (4.34a) to (4.36) is not unique and depends on the choice of the αkl.
However, a method of the form (4.36) defines a unique Runge-Kutta method of the form (4.34a)

Numerical methods 43

by

dkl = βkl +
k−1∑
z=l+1

dzlαkz. (4.37)

This is just a rearrangement of (4.35). Note that the formula for dkl depends only on dzl with
z < k. By (4.33), we get from (4.37)

ck =
k−1∑
l=0

(αklcl + βkl) . (4.38)

In the following we only regard methods of the form (4.36) knowing that we can always obtain a
unique Runge-Kutta method of the form (4.34a). We assume that the numerical scheme using
the explicit Euler forward method (4.31) is TVD under the time step restriction

∆t ≤ ∆tEuler. (4.39)

We would now like to know whether the scheme is still TVD if higher order Runge-Kutta
methods are used, possibly under a different time-step restriction. It turns out that this is not
true for general Runge-Kutta methods. In the classical form of the Runge-Kutta methods, the
coefficients dkl (and thus the ck) are positive. We also required the αkl to be positive but the
βkl can be negative. If βkl ≥ 0 and αkl > 0 for all 0 ≤ l < k ≤ s , the scheme is indeed TVD:

Lemma 4.18 ([76]). If the forward Euler method is TVD under the time step restriction (4.39)
and βkl ≥ 0, then the method (4.36) is TVD under the time step restriction

∆t ≤ C∆tEuler with C = min
k,l

αkl
βkl

. (4.40)

Here, we define αkl
βkl

=∞ if βkl = 0. The constant C is called the CFL coefficient.

Proof. ([75]) If (4.40) is satisfied, the Euler method is TVD with time step size βkl
αkl

∆t for all
k, l. Thus,

TV (p(l) + βkl
αkl

∆tL(t+ cl∆t,p(l))) ≤ TV (p(l)). (4.41)

We now use induction to prove
TV (p(l)) ≤ TV (pn) (4.42)

for l = 0, . . . , s. Obviously, (4.42) is true for l = 0. If (4.42) is true for l ≤ k − 1, we get

TV (p(k)) = TV

(
k−1∑
l=0

(
αklp(l) + βkl∆tL(t+ cl∆t,p(l))

))

≤
k−1∑
l=0

αklTV

(
p(l) + βkl

αkl
∆tL(t+ cl∆t,p(l))

)
≤

k−1∑
l=0

αklTV (p(l))

≤
k−1∑
l=0

αklTV (pn) = TV (pn).

Numerical methods 44

If negative βkl occur, some more work has to be done. We consider an adjoint problem to (4.27)

dtp = L̃(t,p) (4.43)

where we assume that the Euler backward time discretization

pn+1 = pn −∆tnL̃(tn,pn) (4.44)

is TVD. In the context of hyperbolic conservation laws, where (4.27) comes from a spatial
discretization of a PDE

∂tp + ∂xf(p) = 0, (4.45)

the adjoint problem corresponds to a spatial discretization of the backward-in-time version of
the conservation law

∂tp− ∂xf(p) = 0. (4.46)

The spatial discretization for (4.46) can be done in the same way as for the original conservation
law except that the upwind direction changes.

Once we have the adjoint problem, we can use it in the Runge Kutta scheme whenever βkl is
negative.

Lemma 4.19 ([76]). If the forward Euler method (4.31) and the backward Euler method (4.44)
are both TVD, then the Runge-Kutta method (4.36), with βklL replaced by βklL̃ whenever βkl is
negative, is TVD with CFL coefficient

C = min
k,l

αkl
|βkl|

. (4.47)

Methods with negative values of β are less common in applications because of the need to deal
with L̃, which is extra work and causes extra computational and storage cost [75]. Unfortunately,
methods with order greater than 4 must have negative β (see [46, 47, 69]). Thus, multistep
multistage Runge-Kutta methods or other modifications are investigated (see e.g. [11, 17, 46]).
However, within this thesis, we stick to the singlestep Runge-Kutta methods regarded above
with positive coefficients. The optimal (with respect to the CFL coefficient and the positivity of
the βkl) second and third order schemes with two and three stages, respectively, are given in [30]:

Lemma 4.20 ([30]). The optimal second order two-stage TVD-Runge-Kutta method is Heun’s
method (4.15) with a CFL coefficient C of 1. The optimal third order three-stage TVD-Runge-
Kutta method has the Butcher array

0
1 1
1
2

1
4

1
4

1
6

1
6

2
3

(4.48)

and also a CFL coefficient of 1.

Numerical methods 45

Note that while the time steps do not have to be shortened with these methods, the computational
cost is still doubled and tripled for the second order and third order TVD method, respectively,
in comparison to the Euler method.

An order four four-stage method has to have at least one negative βkl. If we allow more stages,
fourth-order methods with positive βkl can be found, e.g. a five-stage method with C = 1.508
(see [29, 79]).

4.3 Additional considerations for entropy closures

If the MN entropy closure (see Section 2.3.2) is used to close the moment system for a kinetic
equation, the flux in the hyperbolic balance law is defined via the solution of the dual problem
(2.13). This has the advantage that we can numerically enforce the invariance of the set Rm and
ensure that the solution will always be realizable. On the other hand, a convex optimization
problem has to be solved in every grid cell and time step, which is not only computationally
intensive but can be challenging even if we leave the performance aspect apart.

To illustrate some of the additional issues that may occur when using an entropy closure, we regard
the kinetic scheme introduced in [1] for the solution of the MN model to the one-dimensional
kinetic equation

∂tp+ v∂xp+ σt(x)p = σs(x)
2 〈p〉 (4.49)

on the bounded interval Ω = [xL, xR] with non-negative coefficient functions σs(x), σt(x). Again,
angle brackets denote integration over V = [−1, 1].

The MN model using the Maxwell-Boltzmann entropy (2.11) and the first N + 1 Legendre
polynomials then is

∂tp + ∂xf(p) + σtp = σsQp (4.50)

with Q ∈ R(N+1)×(N+1) given by Q00 = 1, Qij = 0 else and flux f = 〈vmGα̂〉 (see Section 2.3.2).

To discretize (4.50) we choose an equidistant grid with Nx cells and width ∆x = (xR − xL)/Nx.
We further choose a uniform time step ∆t. Let tn = n∆t and xi be the center of the i-th cell
Ti = [xL+ i∆x, xL+ (i+ 1)∆x]. Note that the spatial cells with indices i ∈ {−2,−1, Nx, Nx+ 1}
are ghost cells (see Section 4.1.6). We use a semidiscrete scheme (see (4.26))

dtpi +
gi+1/2 − gi−1/2

∆x + σtpi = σsQpi, i ∈ {0, . . . , Nx − 1}, (4.51)

with numerical flux gi+1/2 given by

gi+1/2 =
〈
vmĜi+1/2

〉
, (4.52)

where Ĝi+1/2 is an approximation of the entropy ansatz at the cell boundary, defined by

Numerical methods 46

upwinding:

Ĝi+1/2(t, v) :=

Ĝi(t, v) + ∆x
2 ŝi(t, v), v > 0,

Ĝi+1(t, v)− ∆x
2 ŝi+1(t, v), v < 0.

Here, Ĝi is the entropy minimizer from (2.10) associated to pi:

Ĝi(t, v) = Gα̂(pi(t))(v) (4.53)

and ŝi is an approximation of the spatial derivative of Ĝ in the cell Ti:

ŝi = minmod
{
θ
Ĝi − Ĝi−1

∆x ,
Ĝi+1 − Ĝi−1

2∆x , θ
Ĝi+1 − Ĝi

∆x

}
(4.54)

where 1 ≤ θ ≤ 2 is a parameter that controls numerical diffusion (see [65], [85]). See Section
4.1.5 for the definition of the minmod function.

For the temporal discretization, we use Heun’s method (4.15). As it is easier to handle here we
number the stages slightly different than in (4.34a):

p(0) = pn,

p(k) = p(k−1) + ∆tL(p(k−1)), k ∈ {1, 2},

pn+1 = 1
2(p(0) + p(2)).

(4.55)

4.3.1 Preserving Realizability

As mentioned before, we can enforce on the numerical level that the moments in the solution
are always realizable. This is done by ensuring that, in each stage of the Runge-Kutta method,
the moments are realized by a positive density function if the moments in the prior stage were
realizable.

In the numerical scheme, we cannot use the exact solution to the dual problem (2.13) in
(4.53) but need to use a numerical approximation. Let ᾱ(p) be the approximate solution and
Ḡ

(k)
i := G

ᾱ(p(k)
i). With the approximate solution, the numerical flux (4.52) becomes

gi+1/2 =
〈
vmḠi+1/2

〉
, (4.56)

where Ḡi+1/2 is calculated analogously to Ĝi+1/2, using Ḡi instead of Ĝi. As a measure of the
relative error introduced by solving the dual problem inexactly, we define

γ
(k)
i := Ḡ

(k)
i

Ĝ
(k)
i

, k ∈ {0, 1}, γmax := max
k∈{0,1}

i∈{−2,...,Nx+1}
v∈[−1,1]

γ
(k)
i (v), (4.57)

where k represents the stage in Heun’s method.

We can now show that the scheme (4.51) always gives realizable moments under a suitable time

Numerical methods 47

step restriction depending on the error introduced in solving the dual problem.

Theorem 4.21 ([1]). Let pni ∈ Rm for all i ∈ {−2, . . . , Nx + 1}. Let the moments in the ghost
cells be realizable at each stage of Heun’s method and

γmax
∆t
∆x

2 + θ

2 + σt∆t < 1. (4.58)

Then pn+1
i ∈ Rm for all i ∈ {0, . . . , Nx − 1}.

Proof. We only give a sketch of the proof here. If we can show for k ∈ {1, 2}:

p(k−1)
i ∈ Rm for i ∈ {−2, . . . , Nx + 1} ⇒ p(k)

i ∈ Rm for i ∈ {0, . . . , Nx − 1},

then the realizability of pn+1
i follows from (4.55) and the convexity of Rm. The key point of the

proof is to observe that
p(k)
i =

〈
mΦ

(k)
i

〉
, k ∈ {1, 2}, (4.59)

with

Φ
(k)
i := Ĝ

(k−1)
i − v ∆t

∆x
(
Ḡ

(k−1)
i+1/2 − Ḡ

(k−1)
i−1/2

)
+ ∆t

(
−σtĜ(k−1)

i + σs
2
〈
Ĝ

(k−1)
i

〉)
. (4.60)

Therefore, it is left to show that Φ(k)
i ≥ 0. It turns out that this is indeed the case under the

time step restriction (4.58). See [1] for the details of the proof.

4.3.2 Solving the dual problem

The function that is supposed to be minimized in the dual problem (2.13) is

f(α) := 〈Gα〉 −αTp.

We further term the gradient of f as

g(α) := ∇f(α) = 〈mGα〉 − p

and its Hessian as
H(α) := H(f(α)) =

〈
mmTGα

〉
.

Note that f is strictly convex and H is symmetric and positive definite. The convexity of f
ensures that there is at most one minimum and no inner maximum, so it is sufficient to find
a root of g. This is done by Newton’s method with an Armijo backtracking line search. We
start with an initial estimate α0 of the root. For t = 0, α0 is chosen such that Gα0 is the
isotropic distribution with moment p(0). If the moments are normalized such that α0 = 1, this
means α0 = (− log(2), 0, . . . , 0). For t > 0, the root ᾱ from the last time step is chosen as initial
estimate. Once we have an estimate, the next estimate is calculated as

αk+1 = αk + βad(αk) (4.61)

Numerical methods 48

with d(αk) = −H−1(αk)g(αk), β ∈ (0, 1) and a ∈ N0 minimal such that

f(αk + βad(αk)) ≤ f(αk) + βaξg(αk)Td(αk) (4.62)

for ξ ∈ (0, 1/2). The backtracking condition ensures a sufficient decrease of f in each step (where
“sufficient” is defined by the selection of ξ ∈ (0, 1/2)). For a stopping condition, we choose
parameters τ, εγ > 0. We stop at αk if

||g(αk)|| ≤ τ and exp(5ζ||d(αk)||) ≤ 1 + εγ

with ζ = maxv ||m(v)|| and || · || being the Euclidean norm on RN+1. The first condition is
natural as we want to find a root of g. The second condition is important for realizability. In
order to choose the time step length such that realizability is maintained during the whole
scheme, an upper estimate of γmax is needed. If we define γk := Gαk

/Gα̂, we obtain (using the
definition of G and the Cauchy-Schwarz inequality)

max
v ∈ [−1,1]

γk(v) = max
v ∈ [−1,1]

exp((αk − α̂)Tm(v)) ≤ exp(ζ||αk − α̂||).

As the exact minimizer α̂ is unknown, we further approximate ||αk − α̂|| by ||d(αk)||. Asymp-
totically, this is a good estimate as Newton’s method converges quadratically. As it is not a
rigorous estimate though and γk is not an upper bound on γmax, an additional factor of 5 is
inserted into the stopping condition to increase the probability that γmax stays below this bound.
In [1], the authors reported that with this approach they were able to use a time step length
of about 90 % of the optimal time step length, i.e. the time step length which corresponds to
solving the dual problem exactly and is calculated by setting γmax = 1 in (4.57), in typical
applications.

4.3.3 Difficulties near the realizable boundary

The definition of the objective function, its gradient and its Hessian include integration over V .
In general, these integrals cannot be evaluated exactly but a quadrature has to be used. This
causes several problems that we will investigate in the following.

Let Q denote a quadrature on V with a number of nQ nodes vi and weights wi. We define the
Q-realizable set as

RQm =
{

p
∣∣∣∣∣ p =

nQ∑
i=1

wim(vi)fi, fi > 0
}
. (4.63)

RQm is a strict polytopic subset of Rm and like Rm it is a convex open cone. Furthermore, the
set RQm|p(0)=1 is the interior of the convex hull of the points m(vi), i = 1, . . . , nQ [2].

Although the dual problem is solvable for each p ∈ Rm, the use of a quadrature means that
the dual problem will be solvable only if p ∈ RQm. Furthermore, in the Newton scheme the
matrix H needs to be inverted. This is always possible for the exact matrix H, as it is positive
definite, but with the quadrature an approximation HQ is used. This is especially a problem

Numerical methods 49

near the boundary of the realizability domain. On the boundary ∂Rm, the moments are uniquely
represented by atomic densities, i.e. linear combinations of delta distributions (see Section
2.2). Near ∂Rm, the representing distributions are often “almost” linear combinations of delta
distributions, i.e. they have a small support and vary over several orders of magnitude. Thus,
near ∂Rm, many quadrature points may be needed to resolve the structure of Gα̂(p) and get
a sufficient approximation HQ(α̂(p)). With too few quadrature points, HQ(α̂(p)) may be
singular. Even if HQ(α̂(p)) is not singular, Newton’s method may not converge. To ensure
global convergence of the numerical scheme, a quadrature with a great number of quadrature
points has to be used although for most p a quadrature with relatively few points would be
sufficient.

To avoid excessive computational cost due to an overprecise quadrature, the authors in [1]
propose an adaptive quadrature approach where the number of quadrature points is adapted
to the particular Gα. This can be implemented as follows: We start with a Gauss-Legendre
quadrature with nQ = N + 5 quadrature points. To test the accuracy of the quadrature, the
(2nQ + 1)-Gauss-Kronrod quadrature is determined and the results of the two quadratures
are compared. If the difference is below a tolerance parameter τQ, the quadrature is accepted.
Otherwise, nQ is incremented by one and the test is repeated until the difference is below the
tolerance or until nQ reaches a specified upper bound nMAX

Q .

In some cases, often near the boundary ∂Rm, H is that ill-conditioned that the Newton scheme
does not converge for any reasonably fine quadrature. In these cases, a regularization procedure
can be used to improve the condition while altering the moments p as few as possible [1]. For
the regularization, we choose r ∈ (0, 1) as small as possible and define the regularized moment

q(r) = (1− r)p + rQp. (4.64)

The regularization exploits the convexity of Rm to move the moment vector slightly away from
∂Rm and towards the moment vector associated with the isotropic distribution p(t, x, v) =
p(0)(t, x)/2. Note that p(0) is not changed by this regularization.

To implement the regularization, we set a soft upper bound nmax
Q to the number of quadrature

points. We further choose a small r0 > 0 and create a sequence rl+1 = min(2rl, rmax) where
rmax is a prescribed upper bound for r. If the soft upper bound nmax

Q is encountered during the
adaptive quadrature, the problem is considered too difficult to solve. The optimization procedure
is then restarted with q(r0) instead of p. If the number of quadrature points exceeds nmax

Q again,
the optimization is tried with q(r1) and so forth, until the optimization finishes using less than
nmax
Q quadrature points or until rmax is reached. If rmax is reached, the optimization is carried

out with q(rmax), no matter how many quadrature points it takes (up to the hard upper bound
nMAX
Q).

While the adaptive quadrature takes care of a sufficient approximation and avoids excessive
computational cost, it can cause some other numerical problems. For example, the Q-realizable

Numerical methods 50

set changes with every change of the quadrature. Thus, an iterate in the Newton scheme that is
realizable in the old quadrature may become unrealizable in the new quadrature, forcing the use
of techniques like regularization that affect accuracy. To avoid these problems, an alternative
approach was proposed in [2] that uses a fixed quadrature but an adaptive change of basis. Here,
in each iteration of the Newton scheme, the basis m is changed such that the Hessian at the
current iterate becomes the identity matrix. This keeps the condition of the Hessian under control
and avoids some complexity and computational cost. It is important to choose a quadrature such
thatRm\RQm is small, as only moments fromRQm will be realizable with the fixed quadrature. For
this reason, a Curtis-Clenshaw quadrature is used in [2] instead of a Gauss-Legendre quadrature.
The authors in [2] note that this approach reduces regularization considerably and thus increases
accuracy and convergence rate compared to the adaptive quadrature approach.

Implementation 51

5 Implementation

The major goal of this thesis was to create an efficient solver for PN moment models. For that
purpose, finite volume schemes for hyperbolic systems of PDEs were implemented in the software
framework DUNE. Analytical flux as well as boundary and initial conditions for the PN models
were then calculated manually from the kinetic equation and given to the solver for hyperbolic
systems.

In this section, we will regard some aspects of the implementation. A full working example can
be found in Appendix A.

5.1 DUNE

DUNE (Distributed and Unified Numerics Environment, [5, 6, 24]) is “a modular toolbox for
solving partial differential equations (PDEs) with grid-based methods” [24]. The modules are
written in C++ and can be downloaded separately. However, there are a number of core modules
that most of the modules depend on. These core modules (dune-common, dune-geometry,
dune-grid, dune-istl and dune-localfunctions) provide the basic functionality for solving PDEs
numerically. This includes infrastructure for debugging and exception handling, classes for linear
algebra (dense and sparse container classes and corresponding solvers) and the interface for grids
together with some grid implementations.

A Grid (here and in the following we write C++ quantities in typewriter font) in DUNE is rather
a collection of several grids in the sense of Section 4.1.1. For example, we could do a series of
grid refinements and store the unrefined grid and all subsequent refined grids together with their
hierarchy in a Grid. What we usually refer to as a grid in this thesis is a GridView in DUNE.
Grids and GridViews in DUNE consist of a set of entities which are abstractions for convex
polytopes (see Section 4.1.1). The entities can be divided in equivalence classes according to
their shape and are represented by one representative of this class, the reference element [6].
For instance, the reference element for the equivalence class of r-dimensional cube entities in
DUNE is the unit cube in r dimensions.

The entities are positioned in the grid domain by their Geometry which essentially represents an
injective map Φ : Rr → Rd from the reference element in Rr to the grid domain in Rd. Thus,
there are two different sets of coordinates for each Entity: local coordinates, i.e. the coordinates
on the reference element, can be mapped to global coordinates which are the coordinates in the
grid domain. The map Φ is called the local-to-global map.

Entities in the grid can also be classified by their codimension, which is the difference between
grid dimension and dimension of the reference element, i.e. d− r in the notation above. Entities
of codimension 0 are what we are usually referring to as grid cells in this thesis, whereas the
interfaces Sij of the grid (see Section 4.1.1) are entities of codimension 1.

Implementation 52

We can access entities in a GridView by Iterators which are essentially pointers to an Entity

that can be incremented to point to the next Entity. There are several iterators, for example
allowing for iteration over all entities of a given codimension or a given shape. Each Entity of
codimension 0 (representing a grid cell Ti) provides iterators to walk over all of its Intersections
Sij . On the other hand, each Intersection Sij provides the inside method to get the Entity

corresponding to Ti and the outside method to get the Entity corresponding to Tj . If Sij is
on the boundary of the domain, Tj may not exists (if there are no ghost cells) and the outside

method will throw an error. To check whether an Intersection is on the boundary and whether
it has an outside Entity, the boundary and neighbor bool method can be used, respectively.

In the following, the term entity will always describe an entity of codimension 0 if not noted
otherwise.

5.2 Implementation in dune-stuff

The DUNE module dune-stuff [62] provides extensions to the core modules that are mostly
aimed at enhancing usability. For example, it improves handling of configuration files and
contains the fromString and toString methods to convert vector and matrix classes to a string
representation and vice versa.

Often it is much easier to implement a method, e.g. a numerical quadrature, on the reference
element where we exactly know the shape than for an arbitrary entity in the grid domain. To
take advantage of this, dune-stuff has the concept of a localizable function. Consider a function
f on the grid domain. Let ΦTi denote the local-to-global map on the grid cell Ti. If we want
to evaluate the function at a point x ∈ Ti, we can instead also evaluate f ◦ ΦTi at the local
point y = (ΦTi)−1x in the reference element. To calculate the integral of f over Ti we can use
the transformation theorem for integrals (the Geometry class provides the necessary factor in
the integral) and use a quadrature on the reference element. The function f ◦ ΦTi is called the
local function of f with respect to Ti. Functions that can be evaluated locally on an entity and
provide a local function are represented in dune-stuff by the LocalizableFunctionInterface.

To be able to calculate several quantities in a single walk over the grid, e.g. calculate the integral
over the domain for several functions at once instead of iterating over the grid for every single
function, dune-stuff provides the Walker class. Via the add method, several functors can be
added to the walker before using the walk method to apply all functors in a single walk over the
grid. The add method takes an additional argument that specifies on which entities the functor
should be applied. Thus, functors can also be classified by codimension. A functor that is only
applied on entities of codimension 0 is a functor of codimension 0, whereas a functor that is only
applied on intersections is a functor of codimension 1. As an example, consider a finite volume
scheme where we want to evaluate the operator L (see Section 4.2). For that purpose, we need
to evaluate the numerical flux gij at each intersection Sij . As we have seen in Section 4.1.6, we
may have to treat the boundary intersections differently as there is no neighbour cell on the

Implementation 53

outside of the intersection. In addition, there may be source terms that have to be evaluated on
each entity. In dune-stuff, this could be realized as

1 using namespace Dune::Stuff::Grid;
2 Walker< GV > walker(grid_view);
3 walker.add(flux_operator, new ApplyOn::InnerIntersections< GV >());
4 walker.add(boundary_flux_operator, new ApplyOn::BoundaryIntersections< GV >());
5 walker.add(source_operator, new ApplyOn::AllEntities< GV >());
6 walker.walk();

In line 6 the walker walks over all entities of the grid and apply the source operator (represented
by a functor of codimension 0). On each entity, the flux operator and the boundary flux operator
(functors of codimension 1) are applied on all inner intersections and boundary intersections,
respectively.

5.2.1 Periodic boundary conditions

If periodic boundary conditions are used, we would expect the outside method to return
the periodic neighbor entity on the opposite side of the grid for boundary Intersections.
To our knowledge, this is not the case for any of the standard grids in DUNE. We thus
implemented the class PeriodicGridView in dune/stuff/grid/periodicview.hh. It takes any
GridView and replaces the IntersectionIterator and Intersection classes of the Grid by
a PeriodicIntersectionIterator and PeriodicIntersection. These periodic classes are
derived from the respective classes of the original GridView. The only difference is that a
PeriodicIntersection on a periodic boundary will return true in both the boundary and
neighbor method and the outside method will return the periodically adjacent Entity.

typedef typename Dune::Stuff::Grid::PeriodicGridView< GridViewType > PeriodicGridViewType;
std::bitset< 3 > periodic_directions(std::string("100"));
const PeriodicGridViewType periodic_grid_view(grid_view, periodic_directions);
/* use periodic_grid_view exactly like any other grid_view */

Currently, the PeriodicGridView works only for GridViews on an axis-parallel cubic domain.
The optional bitset argument can be used to specify periodic coordinate directions. In the
example above, the periodic_grid_view is only periodic in the first coordinate direction. Note
that this periodicity holds only with respect to intersections by now. Corresponding grid nodes
on the periodic boundary do not share the same global index, for example.

5.2.2 Time-dependent functions

On non-periodic boundaries we have to specify boundary conditions that may be time-dependent.
There were no time-dependent functions available in dune-stuff so we implemented the Time-
DependentExpression function in dune/stuff/functions/expression.hh built on the already
existing Expression function, which is a localizable function that can be created from a string.

Implementation 54

Dune::Stuff::Functions::TimeDependentExpression</*...*/ > time_dep_function("x","sin(t*x[0])");
auto function_ptr = time_dep_function.evaluate_at_time(3.0); // sin(3*x[0])

The evaluate_at_time(value) method replaces all occurrences of t in the string by value and
returns a pointer to an Expression function using the resulting string. Note that currently all
occurrences of t are replaced so the variable name (“x” in the example above) must not contain
the letter t.

5.3 Implementation in dune-gdt

The DUNE module dune-gdt [61, 70] is a generic discretization toolbox which contains building
blocks for discretization methods. Initially, it was mainly focused on methods for linear elliptic
problems. In this thesis, support for hyperbolic problems should be added.

5.3.1 Discrete function spaces

For finite element methods the discrete solution is expressed in terms of a set of basis functions
associated with the degrees of freedom (DoFs) of the ansatz space. The support of these basis
functions often includes only a few grid cells. Thus, to evaluate or integrate an element of the
ansatz space, on each grid cell we only need to take the basis functions into account that are
non-zero on this grid cell. In this context, dune-gdt provides discrete function spaces derived
from the SpaceInterface that defines the methods

BaseFunctionSetType base_function_set(const EntityType& entity) const;
const MapperType& mapper() const;

providing a set of local functions (as defined for dune-stuff, see above) corresponding to the
non-zero basis functions on each entity and a mapper mapping from the indices of the local
basis functions to the global DoFs. To represent an element of such a discrete function space,
dune-gdt provides the DiscreteFunction class.

In the finite volume setting for a hyperbolic system of m equations, the discrete solution is an
element of the space of functions that are constant on each entity, called finite volume space in
the following. Thus, we can choose {e1, . . . , em} as the set of local basis functions on each entity,
where ej is the vector with ej = 1, ei = 0 for i 6= j. The value of a DiscreteFunction on an entity
is given by a vector c in local coordinates, i.e. to evaluate a DiscreteFunction on an entity we
have to calculate c1e1 + . . .+cmem. This is rather inefficient for finite volume spaces as it involves
many multiplications and additions with ones and zeros. Instead of regarding the finite volume
space as a space of vector-valued piecewise constant functions, we can also see it as the product of
m spaces of scalar piecewise constant functions. We thus implemented a ProductSpaceInterface

(in dune/gdt/spaces/productinterface.hh) and derived the FV::DefaultProduct space from
it (see dune/gdt/spaces/fv/defaultproduct.hh), implementing the methods

Implementation 55

template< size_t ii > const FactorSpaceType factor() const;
const FactorMapperType& factor_mapper() const;

that give the ii-th factor space and a mapper that allows to map from local indices in the
factor space to global indices in the product spaces. This way, we only have to calculate cj · 1
for all factor spaces j to evaluate a discrete function. Because this is still less efficient than
simply returning the local vector directly, we added a specialization to the DiscreteFunction

for finite volume spaces. However, the product finite volume space is still useful as it makes
accessing a component of the vector-valued function easier. For example, we can use the existing
infrastructure for scalar-valued functions to visualize a component of the vector-valued discrete
function.

5.3.2 Operators on discrete function spaces

Given a finite volume discrete function space, we need to implement operators on these spaces.
We denote the domain of an operator as source space and the image as range space. The term
source here is not to be confused with the source term in the hyperbolic equation. Both source
and range space of the operator L(t, ·) in a finite volume scheme at a fixed time t are the finite
volume space.

We implemented the operator L for different finite volume schemes. The operator is derived
from the already existing OperatorInterface in dune-gdt and thus has a method

void apply(const SourceType& source, RangeType& range) const

that takes a function source representing pn and stores the update L(pn) in the function range.
Usually, both source and range will be DiscreteFunctions on the finite volume space. As an
example, in the AdvectionLaxFriedrichs operator for the Lax-Friedrichs scheme the apply
method takes the following form:

1 template< class SourceType, class RangeType >
2 void apply(const SourceType& source, RangeType& range, const double time = 0.0) const
3 {
4 auto current_boundary_values = boundary_values_.evaluate_at_time(time);
5 AdvectionLaxFriedrichsLocalizable</*...*/ > localizable_operator(analytical_flux_,
6 dx_,
7 dt_,
8 source,
9 *current_boundary_values,

10 range,
11 /*...*/);
12 localizable_operator.apply();
13 }

Note that we had to add the optional time argument to allow for time-dependent operators
which is not covered by the OperatorInterface yet. The apply method creates a localizable

Implementation 56

operator that takes (in addition to boundary values, source and range) a representation of the
analytical flux f , the current time step length ∆t (dt_) and a LocalizableFunction dx_ that
gives the width hi on each grid cell Ti. Variables with an underscore at the end of their name
are members of AdvectionLaxFriedrichs and created on construction of the operator. The
localizable operator is derived from the SystemAssembler class, which itself is derived from the
Walker class in dune-stuff. The apply method of the localizable operator is thus implemented
as:

1 void apply()
2 {
3 this->add(inner_assembler_, source_, range_,
4 new DSG::ApplyOn::InnerIntersections< GridViewType >());
5 this->add(inner_assembler_, source_, range_,
6 new DSG::ApplyOn::PeriodicIntersections< GridViewType >());
7 this->add(boundary_assembler_, source_, range_,
8 new DSG::ApplyOn::NonPeriodicBoundaryIntersections< GridViewType >());
9 this->assemble();

10 }

Local assemblers that are applied to inner and periodic boundary intersections or to non-
periodic boundary intersections are added to the localizable operator. The grid walk is
started using the assemble method. The local assemblers are created in the constructor of
AdvectionLaxFriedrichsLocalizable using the analytical flux and time step and grid width
information (see dune/gdt/operators/advection.hh). Together with the source_ function
representing pn, they thus have all data to calculate the numerical flux using the formulas from
Section 4.1. The assemble method redirects to the dune-stuff Walker class and ends up calling
the following method:

1 template< class EntityRange >
2 void walk_range(const EntityRange& entity_range)
3 {
4 for (const EntityType& entity : entity_range) {
5 // apply codim0 functors
6 apply_local(entity);
7 // walk the intersections using the entity’s intersection iterator
8 const auto intersection_it_end = grid_view_.iend(entity);
9 for (auto intersection_it = grid_view_.ibegin(entity);

10 intersection_it != intersection_it_end;
11 ++intersection_it) {
12 const auto& intersection = *intersection_it;
13 // apply codim1 functors
14 if (intersection.neighbor()) {
15 const auto neighbor_ptr = intersection.outside();
16 apply_local(intersection, entity, *neighbor_ptr);
17 } else
18 apply_local(intersection, entity, entity);

Implementation 57

19 } // walk the intersections
20 } // walk the entities
21 }

Usually, the entity_range contains all entities in the grid view (except if we use multi-threading,
see Section 5.3.4). Because we did not add any functors of codimension 0, line 6 does not have
any effect here, but will be used for the source terms (see below). For the finite volume scheme,
only the walk over all intersections of the entity (line 9-19) is important. From each intersection,
the outside entity, if there is one, is extracted and the apply_local method called. This method
then calculates the numerical flux 1

|Ti|gij at that intersection, using the inner and boundary
assembler we added to the localizable operator in its apply method. The result is added to the
value of the discrete function range_ on that entity, which, if it was zero on each entity before,
thus contains −L(tn,pn) after the grid walk.

In addition to the AdvectionLaxFriedrichs operator for the Lax-Friedrichs scheme, we
implemented AdvectionGodunov and AdvectionGodunovWithReconstruction operators for
the Godunov scheme and Godunov scheme with linear reconstruction and slope limiting in
dune/gdt/operators/advection.hh. The AdvectionLaxFriedrichs operator can also be con-
figured in the constructor to use the local Lax-Friedrichs scheme. The linear reconstruction is
done in the constructor of the AdvectionGodunovWithReconstructionLocalizable operator
in an additional grid walk. The slope limiter (minmod, mc or superbee) can be chosen using the
Dune::GDT::Operators::SlopeLimiters enum.

For the source terms h(t,x,p) in the hyperbolic balance law, we implemented a similar operator
AdvectionSource that essentially evaluates the source terms on each entity. Here, only a functor
of codimension 0 is applied on each entity and there is no walk over the intersections.

5.3.3 Runge-Kutta time stepping

The RungeKutta class was implemented in dune/gdt/timestepper/rungekutta.hh to do the
time stepping. The actual Runge-Kutta scheme is implemented in the member method
apply_RK_scheme:

1 template< class OperatorType >
2 void apply_RK_scheme(const OperatorType& op, const double dt, const double factor)
3 {
4 for (size_t k = 0; k < num_stages_; ++k) {
5 p_stages_[k].vector() *= 0;
6 p_tmp_.vector() = p_n_.vector();
7 for (size_t l = 0; l < k; ++l)
8 p_tmp_.vector() += p_stages_[l].vector()*(dt*factor*(A_[k][l]));
9 op.apply(p_tmp_, p_stages_[k], t_ + dt*c_[k]);

10 }
11 for (size_t l = 0; l < num_stages_; ++l)
12 p_n_.vector() += p_stages_[l].vector()*(factor*dt*b_[l]);

Implementation 58

13 }

This corresponds to the Runge-Kutta scheme (4.34). The operator op is any of the operators
mentioned above, e.g. the AdvectionLaxFriedrichs operator. The argument dt is the time
step length and the third argument factor can be ignored for now. The discrete function p_n_

stores the approximative solution pn at the current time step tn (member variable t_). The
first for loop (lines 4-10) calculates the stage derivatives kk, k = 0, . . . , s− 1, and stores them
in the vector of discrete functions p_stages_. In each iteration k of the loop, the stage p(k) is
assembled in p_tmp_ (lines 6-8) and the operator op is applied is to obtain kk. Note that we do
not need to loop over all stages but only the stages l < k in the inner for loop (lines 7-8) as we
only allow explicit schemes. The second for loop (lines 11-12) then gives pn+1.

A time step of the fractional step scheme (see Section 4.1.3) is then easily implemented:

1 double step(const double dt)
2 {
3 apply_RK_scheme(flux_operator_, dt, -1.0); // delta_t p = L(t,p)
4 apply_RK_scheme(source_operator_, dt, 1.0); // delta_t p = h(t,x,p)
5 t_ += dt; // increment time
6 /* calculate new time step dt_new */
7 return dt_new;
8 }

Here, we see why we needed the additional factor argument in the method above: The
flux_operator_ we implemented actually is −L(tn,pn) so we need to add the factor −1.0 to
get the correct sign. After the fractional steps, a different step length dt_new for the next time
step could be calculated depending on the result. We always use a fixed time step length in this
thesis and thus choose dt_new = dt.

Based on these methods, the RungeKutta time stepper provides the method

1 void solve(const double t_end, const double first_dt, const double save_step_length,
2 const bool save_solution,
3 const bool visualize_solution, const std::string filename_prefix,
4 std::vector< std::pair< double, DiscreteFunctionType > >& solution)

that solves a problem (specified in the constructor of RungeKutta) up to time t_end and saves
or visualizes (if save_solution or visualize_solution is true, respectively) the solution at
an interval of save_step_length.

5.3.4 Parallelization

To take advantage of multi-core processors, we use the shared memory multi-threading capacity
that is already implemented in dune-stuff based on Intel Threading Building Blocks (TBB).
It works by splitting the set of entities of the GridView in several partitions. Instead of using

Implementation 59

one iterator (or EntityRange) for the whole GridView, an EntityRange for each partition is
created. The walk_range method in the Walker class (see above) can then be applied separately
to each of these EntityRanges. This can easily be done in parallel: The input data is not
modified during the grid walk and local functions and operators that act on one entity do not
write to variables that are associated with another entity. We used the existing implementation
and copied the approach to also parallelize the grid walk for the linear reconstruction in the
AdvectionGodunovWithReconstructionLocalizable operator.

DUNE also supports parallelism using the Message Passing Interface (MPI) for distributed
parallel computations, which we did not utilize in this work.

Numerical Results 60

6 Numerical Results

6.1 Convergence tests

To check the implementation of the finite volume schemes, we experimentally determine conver-
gence rates in some test problems. Recall that Theorem 4.9 states that the L1-error between
the approximate solution ph from the finite volume scheme and the exact solution p is O(hκ),
where κ = 1

4 in general and κ = 1
2 in one dimension. If Theorem 4.9 held with equality, i.e.

||p− ph||L1(Rd×R+) = Chκ, (6.1)

we could divide (6.1) for two grid widths h 6= h′ to get

||p− ph||L1

||p− ph′ ||L1
=
(
h

h′

)κ
which can be solved for κ. This motivates the following procedure to determine the exponent κ
experimentally. We take a series of equidistant grids (τh1 , τh2 , . . . , τhk

) where the grid widths fulfil
h1 > h2 > . . . > hk and solve the same test problem on each of these grids (with a fixed Courant
number to determine the time steps tnh) to obtain the approximate solutions (ph1 , ...,phk

). For
each i = 2, . . . , k − 1, an estimate for κ, the experimental order of convergence (EOC), is then
calculated as

EOC(hi, hi−1) :=
log ||p̃−phi

||L1
||p̃−phi−1 ||L1

hi
hi−1

. (6.2)

Here, p̃ is the exact solution discretized in space and time by averaging on the finest grid τhk

(see (4.4)) at every time point tnhk
. If there is no exact solution available, the solution on the

finest grid can be used as reference solution, p̃ = phk
.

6.1.1 Scalar advection equation

We start with a simple test case for the scalar advection equation

∂tp+ v · ∇p = 0 for x ∈ Rd, t ∈ [0, 1], (6.3a)

p(x, 0) = p0,d(x) for x ∈ Rd (6.3b)

with initial values

p0,1(x) =

104 · (x− 0.2)2 · (x− 0.4)2 · e0.02−(x−0.2)2−(x−0.4)2 if 0.2 ≤ x < 0.4

1 if 0.6 ≤ x < 0.8

0 else

(6.4a)

for d = 1 and

p0,d(x) =
d∏
i=1

p0,1(xi) (6.4b)

Numerical Results 61

for d > 1. The initial values can be seen plotted in Figure 5 (“Exact solution”). They were
chosen to contain both a smooth bump and a discontinuous one to make sure that the numerical
schemes can handle either. The velocity was chosen as v = 1 for d = 1 and v = (1, 2)T for d = 2.
The calculations were done on the domain [0, 1]d with periodic boundary conditions to simulate
Rd.

As can be seen in Table 1, the Godunov flux delivers the expected convergence rate in one
dimension. On the coarsest grids, the EOC is lower than expected, which may be due to a bad
resolution of the initial values and a relative error of about 100 % (the L1-norm of the exact
solution is about 0.3). The Lax-Friedrichs method shows similar behaviour, except that a finer
grid is needed to obtain an EOC of 1/2. The local Lax-Friedrichs flux is not shown here as it
agrees with the Godunov flux for the scalar advection equation in one dimension.

The higher order slope limiter methods clearly show better convergence in this case. The EOC is
around 1, which results in a much lower error on the finest grid. This can also be seen graphically
in Figure 5. The Lax-Friedrichs solution shows strong smearing both at the smooth bump and at
the shock on coarse grids. Moreover, it introduces some oscillations at the shock, which is known
to be a problem with the Lax-Friedrichs flux despite it being TVD (see [12], [82]). The Godunov
flux performs better but still smears out the bumps. The slope limiter methods overcome these
problems and sharply resolve the shock, but struggle with the smooth bump. Because of the
slope limiting, the maximum is flattened out and appears more like a shock with these methods.
On the finer grid, the smearing can still be seen for the Lax-Friedrichs and Godunov fluxes but
to a much lesser extent. The flattening of the smooth maximum is only visible for the minmod
limiter, whereas the superbee and MC limiter are close to the real solution.

We used Euler time stepping here even for the slope limiter methods as the use of higher order
TVD time stepping methods (see Section 4.2) did not improve the results noticeably.

The convergence results for the advection equation in two dimensions can be seen in Table 2.
Both the Lax-Friedrichs scheme and the Godunov scheme deliver a convergence rate above the
expected 1/4 for the finer grids. On the coarse grids, the EOC is again quite low and even
becomes negative in the first step, which indicates that these grids are too coarse to obtain
a reasonable approximation to the true solution. Because higher order methods were only
implemented for linear hyperbolic equations in one spatial dimension, we could not use them
here, although it would be desirable as can be seen in Figure 6. Even on the finest grid, both
the Lax-Friedrichs scheme and the Godunov scheme show a considerable amount of smearing.
The height of the smooth bump is decreased and the sharp discontinuity is smoothed out. The
Lax-Friedrichs scheme shows some distortion whereas the solution obtained by the Godunov
scheme is more symmetric. However, even in this simple test case, finer grids are clearly needed
to obtain an accurate approximation with these methods which is computationally expensive
especially in several dimensions.

Numerical Results 62

Figure 5: Solutions to the scalar advection equation test case (6.3) in one dimension
at time t = 1 on a grid with 128 (top) and 4,096 grid cells (bottom). Because of the
periodic boundary conditions, the exact solution at time t = 1 equals the initial values (6.4) (as
the velocity was chosen as 1 and the domain has length 1). On the coarse grid, the Lax-Friedrichs
flux and the Godunov flux both show strong smearing. The slope limiter methods do not show
this problem but struggle with the smooth maximum instead. On the finer grid, the smearing
produced by the Lax-Friedrichs and Godunov flux can still be seen but to a much lesser extent.
The slope limiter methods are close to the analytic solution here.

Lax-Friedrichs Godunov Minmod Superbee
Nx h

L1-error EOC L1-error EOC L1-error EOC L1-error EOC
8 1.25e-1 3.64e-1 – 3.25e-1 – 3.02e-1 – 2.77e-1 –

16 6.25e-2 3.56e-1 0.03 2.87e-1 0.18 1.82e-1 0.73 1.16e-1 1.26
32 3.13e-2 3.11e-1 0.20 2.18e-1 0.40 7.42e-2 1.29 6.12e-2 0.92
64 1.56e-2 2.48e-1 0.32 1.54e-1 0.50 3.74e-2 0.99 4.17e-2 0.55
128 7.81e-3 1.86e-1 0.42 1.06e-1 0.54 3.50e-2 0.10 2.77e-2 0.59
256 3.91e-3 1.31e-1 0.50 7.06e-2 0.59 2.96e-2 0.24 1.75e-2 0.66
512 1.95e-3 8.91e-2 0.56 4.65e-2 0.60 1.77e-2 0.74 8.03e-3 1.12

1,024 9.77e-4 5.92e-2 0.59 3.06e-2 0.60 9.23e-3 0.94 3.74e-3 1.10
2,048 4.88e-4 3.90e-2 0.60 2.03e-2 0.59 4.53e-3 1.03 1.86e-3 1.01
4,096 2.44e-4 2.57e-2 0.60 1.36e-2 0.58 2.24e-3 1.02 9.85e-4 0.92

Table 1: Experimental order of convergence for the scalar advection equation in
one dimension. The Lax-Friedrichs and Godunov fluxes deliver a convergence order of about
1/2, whereas the higher order methods show a convergence order of about 1 in this test case.
Data for the MC-Limiter is not shown as it is similar to the Superbee data. Nx: number of grid
cells, h: grid width.

Numerical Results 63

(a) Lax-Friedrichs scheme (b) Godunov scheme

(c) Exact solution

Figure 6: Solutions to the scalar advection equation test case (6.3) in two spatial
dimensions at time t = 1 on a grid with 262,144 cells. Because of the periodic boundary
conditions the exact solution at time t = 1 equals the initial values (6.4). Both the Lax-Friedrichs
scheme and the Godunov scheme show some smearing. The solution obtained by the Godunov
scheme is quite symmetric whereas the Lax-Friedrichs solution is a little deformed.

Numerical Results 64

Lax-Friedrichs Godunov
Nx h

L1-error EOC L1-error EOC
64 1.77e-1 6.87e-2 – 6.86e-2 –

256 8.84e-2 7.52e-2 -0.13 7.79e-2 -0.18
1,024 4.42e-2 6.77e-2 0.15 7.44e-2 0.07
4,096 2.21e-2 5.09e-2 0.41 5.79e-2 0.36

16,384 1.10e-2 3.79e-2 0.42 4.36e-2 0.41
65,536 5.52e-3 2.80e-2 0.44 3.22e-2 0.44
262,144 2.76e-3 2.00e-2 0.49 2.29e-2 0.49

Table 2: Experimental order of convergence for the scalar advection equation in
two dimensions. Both the Lax-Friedrichs flux and the Godunov flux deliver a convergence
order slightly below 1/2. Nx: number of grid cells, h: grid width.

6.1.2 Sod’s shock tube

As a second test case, we choose the shock tube test case for the nonlinear Euler equations of
gas dynamics introduced by Gary A. Sod in [78]. It models a one-dimensional tube with two
chambers that are separated by a membrane. The gas in both chambers is initially at rest and
the pressure and density are discontinuous across the membrane. At time t = 0, the membrane
is removed. For an ideal gas this model results in the Riemann problem

∂tp + ∂xf(p) = 0 for x ∈ [0, 1], t ∈ [0, 0.25], (6.5a)

p(x, 0) =

pL for x < 0.5,

pR for x > 0.5,
(6.5b)

p(t, 0) = pL, p(t, 1) = pR for t ∈ [0, 0.25], (6.5c)

where the conserved variables are the density ρ, the mass flux ρu and the energy E:

p =

p1

p2

p3

 =

ρ

ρu

E

 , f(p) =

p2

4
5
p2

2
p1

+ 2
5p3

7
5
p2p3
p1
− 1

5
p3

2
p2

1

 . (6.5d)

The initial values were chosen as

pL =

1
0

2.5

 , pR =

0.125

0
0.25

 . (6.5e)

The Riemann problem can be solved semi-analytically, which has been done in [59]. To determine
the solution, the root of a transcendental function has to be found which is done numerically.
The solution consists of four constant states connected by a rarefaction wave and two shocks
(see Figure 7 for a plot of the density ρ at time t = 0.25). We use this solution (with Γ in [59]
chosen as 7/5) as a reference solution. Note that none of the waves in the solution have reached

Numerical Results 65

Lax-Friedrichs Local L.-F. Godunov
Nx h

L1-error EOC L1-error EOC L1-error EOC
8 1.25e-1 3.47e-2 – 2.43e-2 – 1.86e-2 –

16 6.25e-2 2.07e-2 0.74 1.42e-2 0.78 1.03e-2 0.86
32 3.13e-2 1.27e-2 0.71 8.39e-3 0.76 5.86e-3 0.81
64 1.56e-2 7.80e-3 0.70 5.04e-3 0.74 3.43e-3 0.77
128 7.81e-3 4.79e-3 0.70 3.03e-3 0.73 2.03e-3 0.76
256 3.91e-3 2.93e-3 0.71 1.81e-3 0.74 1.21e-3 0.75
512 1.95e-3 1.77e-3 0.73 1.08e-3 0.75 7.14e-4 0.76

1,024 9.77e-4 1.05e-3 0.75 6.36e-4 0.76 4.18e-4 0.77
2,048 4.88e-4 6.22e-4 0.76 3.79e-4 0.75 2.44e-4 0.78
4,096 2.44e-4 3.64e-4 0.77 2.30e-4 0.72 1.41e-4 0.79

Table 3: Experimental order of convergence for the shock tube test case. All fluxes
deliver a similar rate of convergence of about 3/4. Still, as can be seen by the error on the
finest grid, the Godunov scheme performs best followed by the local Lax-Friedrichs scheme. Nx:
number of grid cells, h: grid width, L.-F.: Lax-Friedrichs.

Figure 7: Solutions to the shocktube test case at time t = 0.25 on a grid with 128
(top) and 4,096 cells (bottom). Plotted is only the first component of the solution, the
density ρ. On the coarse grid, all schemes show some smearing. This is strongest for the
Lax-Friedrichs and local Lax-Friedrichs schemes but can also clearly be seen with the Godunov
scheme. On the fine grid, all schemes are close to the semi-analytic solution except at one of the
shocks that is still smoothed out.

Numerical Results 66

the boundary at time t = 0.25. Therefore, choosing the boundary values according to the initial
constant states is reasonable and will not affect well-posedness.

We tested the convergence using the Lax-Friedrichs flux, the local Lax-Friedrichs flux and the
Godunov flux (with a linearized Riemann solver, see (4.14)) in the finite volume scheme with
Euler time stepping. The results can be found in Table 3. Surprisingly, the (local) Lax-Friedrichs
and Godunov schemes perform better in this case than for the linear advection equation. All
methods obtain a convergence rate of about 3/4 which results in a relatively small error on the
finest grid (see Figure 7). On a coarse grid with 128 cells, all methods show smearing at the
discontinuities, which is strongest for the global Lax-Friedrichs flux and weakest for the Godunov
flux. On a fine grid with 4,096 cells, all schemes are close to the semi-analytic solution, except at
one of the two shocks that is still smoothed noticeably. Again, the Godunov flux performs best.

Naively using the slope reconstruction in the linearized Riemann solver for the Godunov flux
together with Heun’s method resulted in solutions that are almost identical to what was obtained
with the unmodified Godunov flux. To actually get more accurate results, higher order methods
designed for nonlinear equations would have to be implemented (see [56]).

6.2 Comparison with existing implementations

To test the implementation further, we compare the results obtained by our implementation
with results obtained by existing implementations for PN moment models.

6.2.1 Fokker-Planck equation in one spatial dimension

As a test case in one dimension, we regard the Fokker-Planck equation which describes particle
transport through a background medium where the particle scattering is very forward-peaked,
i.e. the majority of the scattering events include very little energy transfer and almost no change
of direction of the particle. We get a mathematically one-dimensional problem if we regard a
slab-like geometry with infinite extension in two spatial directions and assume symmetry in
these directions such that the solution depends only on the third spatial direction (see [38]).
This gives the kinetic equation

∂tp(t, x, µ) + µ∂xp(t, x, µ) = Q(x) + T (x)
2 ∆µp(t, x, µ)− σa(x)p(t, x, µ), (6.6)

where µ ∈ V = [−1, 1] is the cosine of the angle between the x-axis and the direction of particle
travel and ∆µ is the Laplace-Beltrami operator on the unit sphere (see [1]).

The corresponding PN model using Legendre polynomials as a basis for P(V) then is

∂tp(t, x) + A∂xp(t, x) =
(

Q(x)−
(
σa(x) + T (x)

2

)
I
)

p(t, x) (6.7)

Numerical Results 67

with I being the unit matrix, Q(x)p(t, x) = (Q(x)p(0)(t, x), 0, . . . , 0) and A such that

Aij =

i+1
2i+1 if j = i+ 1,
i

2i+1 if j = i− 1,

0 else.

We will focus on the two beams test case from [1] that models particles entering an absorbing
medium in the spatial domain Ω = [−0.5, 0.5] from both sides. Here, we have T (x) = Q(x) = 0
and σa(x) = 4. Further, we have initial conditions

p(0, x, µ) = 10−4 for x ∈ (−0.5, 0.5), µ ∈ [−1, 1],

and boundary conditions

p(t,−0.5, µ > 0) = 100δ(µ− 1), p(t,−0.5, µ < 0) = 100δ(µ+ 1)

where δ is the Dirac delta distribution. Initial and boundary conditions for the moments are
calculated from these conditions by assuming the boundary conditions are given for all µ.

6.2.2 Validity of results

There are two existing solvers for the Fokker-Planck PN equations that we will take as a reference.
The first one is a MATLAB implementation by Florian Schneider based on the original code
of Martin Frank that was used in [1]. The second one is a Python implementation by Julia
Brunken [13] in the pyMOR framework [61].

We solved the two beams test case for the Fokker-Planck PN equations up to tend = 2 with
N = 1, 5, 8, 16, 19 on different grids and calculated the relative L1-error between the solutions by

||p(0)
DUNE − p

(0)
Other||L1([0,2]×Ω)

||p(0)
DUNE||L1([0,2]×Ω)

where p(0)
DUNE is the first component of the discrete solution calculated by the DUNE implement-

ation.

The results for the comparison with the pyMOR implementation can be found in Figure 8a.
On the coarsest grid, the relative L1-error of the pyMOR solution with respect to the DUNE
solution is about 3 %. The error is decreasing as the grid becomes finer. This can be explained
by the fact that the pyMOR implementation uses an unsplit method to incorporate the source
terms while the DUNE implementation uses a fractional step approach (see Section 4.1.3) which
may result in different solutions. As h → 0, both methods converge to the true solution and
thus approach each other. To eliminate this error source in our comparison, we temporarily
made DUNE use the same unsplit method and tested again (see Figure 8b). The errors are
considerably lower now and are almost completely gone for the P1 equations (around 10−7).

Numerical Results 68

(a) DUNE vs. pyMOR (b) DUNE unsplit vs. pyMOR

(c) DUNE vs. pyMOR exact data (d) DUNE unsplit vs. pyMOR exact data

Figure 8: Comparison of solutions to the two beams test case for the Fokker-Planck
PN equations. The horizontal axis represents the number of grid cells. The relative L1-error
of the pyMOR solution with respect to the DUNE solution is displayed on the vertical axis. (a)
The difference between the solutions becomes smaller with increasing grid size but does not
vanish completely. (b) If DUNE uses an unsplit method for the source terms, the difference
is considerably smaller but still quite high for the higher order equations and increases with
grid size. (c) If pyMOR uses the exact data, the difference vanishes with increasing grid size.
(d) If DUNE uses the unsplit method and pyMOR uses the exact data, there is essentially no
difference between the solutions.

However, for the higher order equations the error is still quite high considering that the same
finite volume method on the same grid is used. Additionally, it seems to increase with the grid
size. We found that this is due to the pyMOR implementation of the Legendre polynomials.

Instead of always using Legendre polynomials as a basis for the velocity function space, the
pyMOR implementation is designed to find a better (i.e. more efficient) choice for the basis
functions using reduced basis methods. A grid for the angular domain V is chosen (here, we
choose a grid with 1,000 cells for the domain [−1, 1]). The basis functions are then chosen
from the space of continuous functions that are linear (first order polynomials) on each grid
cell. For order greater than 1, the Legendre polynomials are not contained in this space. Thus,
if the pyMOR implementation is told not to search for an ideal basis and just uses Legendre
polynomials, a projection is done by evaluating the Legendre polynomials at each intersection
of the grid and interpolating linearly in between. The integrals over the velocity component

Numerical Results 69

in the definition of the PN equations are then calculated by a quadrature which is first order
on each cell of the velocity grid and thus does not introduce additional errors. Because of the
projection, pyMOR does not solve the PN equations for the Legendre polynomials but the PN
equations for a slightly different basis. Thus, even with an exact solver the results will differ.
For testing purposes, we bypassed the system assembly from the basis and provided the pyMOR
solver with the exact flux and source terms and initial and boundary conditions. If DUNE uses
the fractional step method for the source terms and pyMOR uses the exact data, the error
decreases with increasing grid size (see Figure 8c), also for the higher order equations. If in
addition DUNE uses the unsplit method, there is essentially no difference between the solutions
(relative L1-error of about 10−7, see Figure 8d).

The MATLAB implementation uses the exact Legendre polynomials as a basis and an unsplit
method for the source terms. Thus, the comparison between the DUNE and the MATLAB
implementation looks like Figures 8c and 8d. The error decreases with increasing grid size and if
DUNE uses the unsplit method, there is essentially no difference in the solutions.

We conclude that the observed differences are fully explained by the above considerations and
there does not seem to be a systematic error in the DUNE implementation.

6.2.3 Performance comparison

We also used the two beams test case to measure the relative performance of the implementations.
As the pyMOR implementation is not optimized for performance yet and is thus slower than the
MATLAB implementation, we did not include it in our comparison.

We measured execution times for the P5 and P50 two beams test case up to time tend = 2 for
the smaller grids and up to tend = 0.01 for the largest grid to keep computing time reasonably
short. The automatic parallelization that MATLAB uses for some built-in functions and linear
algebra operations did not kick in during the P5 tests as it is only applied if the data size
(for example vectors and matrices in a linear algebra operation) exceeds some threshold [60].
During the P50 test, however, MATLAB made heavy use of multiple cores. Surprisingly, this
did not improve performance. Execution times were up to three times longer in comparison to
disabled parallelization. Explicitly setting processor affinity did not help, nor did testing on
another system or manually measuring time to exclude an error in the timing. We thus decided
to test MATLAB with multithreading disabled (option “-singleCompThread”) to get the best
performance.

As can be seen in Table 4, MATLAB is not much slower than DUNE in the P5 test case. If no
parallelization is used, it is sometimes even faster. This may be due to the fact that iterating over
the grid, as the DUNE implementation does, comes at some cost in comparison to simply using
vectorized computations. The advantage of the DUNE approach is, however, that non-equidistant
grids and grids with different cell shapes in several dimensions can be used much easier. Using

Numerical Results 70

MATLAB DUNE relative DUNE relative
tend Nx [s] 1 thread [s] performance 16 threads [s] performance
2.00 100 5.2 0.5 10.3 0.6 9.5
2.00 1,000 52.2 21.1 2.5 11.8 4.4
2.00 5,000 336.4 485.6 0.7 208.1 1.6
0.01 50,000 173.0 222.1 0.8 71.3 2.4

(a) P5

MATLAB DUNE relative DUNE relative
tend Nx [s] 1 thread [s] performance 16 threads [s] performance
2.00 100 15.0 3.2 4.6 2.9 5.1
2.00 1,000 508.0 97.0 5.2 44.5 11.4
2.00 5,000 10,239.5 2,823.0 3.6 463.2 22.1
0.01 50,000 6,833.7 890.3 7.7 139.0 49.2

(b) P50

Table 4: Execution times for the two beams test case. Average of three runs. The
relative performance is calculated by dividing the execution time for DUNE 1 thread/DUNE 16
threads by the MATLAB execution time. (a) In the P5 test case, the DUNE implementation is
not much faster than the MATLAB implementation. If no multithreading is used, it is sometimes
even slightly slower. (b) In the P50 test case, DUNE is considerably faster even with a single
thread. Nx: number of grid cells, tend: end time.

16 threads, DUNE is about twice as fast as MATLAB on the larger grids.

In the P50 test case, the vectors involved in the computations on each grid cell are considerably
larger than in the P5 test case which increases computational cost and the amount of memory
allocated. Here, the picture is completely different. DUNE is faster across the board even when
using only a single thread. With 16 threads DUNE is almost 50 times as fast on the largest grid.

We also took a look at the scaling with additional threads for the DUNE implementation. To
investigate strong scaling, we measured the execution time for the P50 two beams test case on
a grid with Nx = 105 cells for an increasing number of threads. For the weak scaling test, we
started with a grid with Nx = 3,000 cells and doubled Nx with every doubling of the thread
count. In both cases we calculated up to tend = 0.02 and used a fixed time step of ∆t = 5 · 10−6

for all grids, which gives a Courant number of 0.5 on the finest grid. We did not alter the time
step length in the weak scaling test with the grid size because it is clear that our implementation
can only scale with the number of grid cells and cannot parallelize the time steps. If the execution
time with k threads is tk, we calculate the scaling efficiency as

t1
k · tk

and t1
tk

for strong and weak scaling, respectively.

The results can be found in Table 5. In the strong scaling test, the execution time shrinks by
about 1/3 for each doubling of the number of threads, which gives a scaling efficiency of about

Numerical Results 71

No. Wall Scaling
threads Nx time [s] efficiency

1 105 7,253 –
2 105 4,848 0.75
4 105 3,018 0.60
8 105 2,042 0.44
16 105 1,380 0.33
32 105 1,139 0.20

(a) Strong scaling

No. Wall Scaling
threads Nx time [s] efficiency

1 3,000 259 –
2 6,000 315 0.82
4 12,000 383 0.68
8 24,000 477 0.54
16 48,000 618 0.42
32 96,000 1,071 0.24

(b) Weak scaling

Table 5: Scaling of the DUNE implementation in the two beams test case.
(a) In the strong scaling test, the execution time shrinks by about 1/3 for each doubling of the
number of threads. (b) In the weak scaling test, execution takes about 25 % longer with each
concurrent doubling of problem size and number of threads.

3/4 in the first step and an accordingly lower scaling efficiency with the subsequent doublings.
An exception is the last step from 16 to 32 threads which gives a much lower speed-up. This is
probably because the calculations were done on a system with two CPUs with 16 cores each
such that the first tests can be run on a single CPU whereas in the last step both CPUs have to
be used which comes with some additional overhead.

The weak scaling test shows a similar outcome. With each concurrent doubling of the problem
size and number of threads, the execution time extends by about 20 - 30 % which gives a scaling
efficiency of about 4/5 in the first step and a correspondingly worse scaling efficiency in the
subsequent steps. Again, the scaling is worse in the last step where we go from 16 to 32 threads.

In conclusion, the use of multithreading gives a considerable speed-up, even though the scaling
is not optimal. However, optimal scaling could not be expected since multithreading always
comes with some overhead. Furthermore, the problem is not completely parallelizable as the
time stepping has to be done serially. This includes addition and multiplication of some large
vectors which is not parallelized in the implementation yet.

6.2.4 A two dimensional test for the Boltzmann equation

As a two-dimensional test, we use the Checkerboard test case from [14]. Applying the PN
approach using spherical harmonics to the Boltzmann equation in two dimensions gives the
model

∂tp(t,x) + X∂xp(t,x) + Z∂zp(t,x) = s(t,x) + (σs(x)Q− σt(x)I) p(t,x) (6.8)

where x = (x, z), I is the unit matrix and Q00 = 1, Qij = 0 else. The positive coefficients σs
and σt describe scattering and total cross section, respectively, and s(t,x) is a particle source.
See [14] for the definitions of the matrices X and Z and the derivation of the model.

The Checkerboard test case assumes a spatial domain [0, 7]× [0, 7] that is divided in 49 axis-

Numerical Results 72

Figure 9: Illustration of the domain used in the Checkerboard test case. The orange
and white regions are scattering regions with σt = σs = 1. The black regions are absorbing
regions with σt = 10, σs = 0. At t = 0, a source is turned on in the centre region (white). From
[73].

parallel cubes with edge width 1. Most of the domain is composed of a scattering material with
σt = σs = 1 but there are 11 scattering regions with σt = 10, σs = 0 (see Figure 9). At time
t = 0, a source with strength 1 is turned on in the centre region, i.e. s(t,x) = (1, 0, . . . , 0)T for
x in the centre region and s(t,x) = 0 else. At the boundary and as an initial condition, the
solution is set to zero.

In this setting, the particles coming from the source in the centre region will spread out uniformly
in all directions until an absorbing region is met. Considering the distribution of absorbing
regions, we expect a cross-shaped region of high particle density in the centre with particles
leaking to the top and between the absorbers.

We computed solutions for the P1 and the P15 moment models using the Godunov flux and
explicit Euler time stepping on a grid with 700× 700 cells. The results can be found in Figure
10 where we included the solutions from [14] calculated by a second order scheme as a reference.
Note that the color scales may differ slightly. Still, it can be seen that both the P1 and the P15

solution agree very well with the reference solutions. The P1 solutions differ slightly in the wave
going to the top. The P15 reference solution exhibits some oscillations behind the absorbers on
the left, right and bottom that are almost absent in the DUNE solution. These are probably
artificial oscillations introduced by the P15 model that would not appear in the true solution of
the kinetic equation but should be present in the exact solution of the P15 model. Here, the
second order scheme used in the reference solution apparently gives a better resolution of the
oscillations than the first order Godunov scheme.

Numerical Results 73

(a) P1 (b) P1 Reference

(c) P15 (d) P15 Reference

Figure 10: Solutions to the Boltzmann Checkerboard test case in two dimensions.
The solutions on the left are computed with DUNE whereas the reference solutions are taken
from [14]. Note that the color scales may differ slightly. Both the P1 and the P15 solutions agree
very well with the reference solutions. The P1 solutions differ slightly in the wave going to the
top. The reference P15 solution shows some oscillations that are almost absent in the DUNE
solution.

Conclusion and outlook 74

7 Conclusion and outlook

Kinetic equations, such as the Boltzmann equation of gas dynamics, play an important role
in many physical applications. However, due to their high dimensionality, directly solving
the kinetic equations with standard numerical methods often causes a prohibitive amount of
computational cost. In this thesis, we investigated a family of model reduction techniques for
kinetic equations. These models reduce the dimension of the problem by first transferring it
to a coupled system of infinitely many partial differential equations for the moments of the
kinetic equation and then truncating the system at a finite order. The resulting truncated
system is underdetermined and needs to be closed. There are several approaches to achieve that
closure which lead to different moment models (see Section 2.3). However, most of them result
in hyperbolic systems of PDEs that need to be solved.

An efficient solver for hyperbolic systems of equations was implemented in the C++ software
framework DUNE [5, 6]. The implementation uses the finite volume method and provides
several numerical flux functions and Runge-Kutta time stepping. Both Dirichlet and periodic
boundary conditions are supported. Furthermore, calculations are done in parallel using the
built-in shared-memory parallelization functionality from dune-stuff [62] and dune-gdt [70] (see
Section 5.3.4).

The implementation was verified using test problems with known analytical solution in one and
two dimensions. Furthermore, it was tested against existing solvers for the PN moment models
[13, 14, 72]. The results obtained by the DUNE implementation were shown to agree with the
results obtained by the existing solvers. Execution times were shown to be significantly shorter
compared to the existing MATLAB and Python implementations.

While the DUNE implementation proved to be able to efficiently solve test problems in one
and two dimensions, there are several improvements that can be made. More accurate schemes
using slope reconstruction were only implemented for linear problems in one dimension. Similar
schemes should also be implemented for several dimensions to be able to accurately solve complex
problems without the need of a very fine grid. Especially in three dimensions, the computational
cost increases rapidly with each refinement of the grid. For a cube grid in three dimensions the
number of grid cells increases by a factor of 8 if the grid width is halved in each coordinate
direction. Using a fixed Courant number this amounts to an increase of the computational cost
by a factor of 16.

Even if higher-order schemes are used, the computational cost will be quite high in several
dimensions for complex problems, probably too high to solve on a single processor. To be able
to efficiently compute on clusters with distributed memory, the MPI functionality in DUNE
should be used.

Another approach to minimize computational cost is, instead of using a fixed polynomial basis
for the velocity space, to use reduced basis methods in order to find an optimal basis. This

Conclusion and outlook 75

was investigated in [13] and implemented in Python in the pyMOR framework [61]. That
implementation is not optimized for performance yet. To improve performance, we plan to
couple the basis generation process in pyMOR with the efficient solver for hyperbolic systems in
DUNE.

The current DUNE implementation is mainly centred at PN models. For MN entropy moment
models, tools for the solution of the dual problem such as a root finder, adaptive quadrature or
adaptive change of basis and regularization techniques have to be implemented. In addition,
higher-order schemes for nonlinear hyperbolic systems of equations would be beneficial.

In summary, the DUNE implementation proved to be able to efficiently solve hyperbolic problems
arising from PN moment models in one or two dimensions. Furthermore, it can be seen as
a starting point for the development of a fast solver for general moment models. Due to the
modular nature of DUNE, the implementation can easily be extended to allow for MPI parallelism,
higher order schemes in several dimensions, coupling with model reduction techniques for basis
generation and different closure approaches.

Example implementation 76

A Example implementation

In this appendix, we investigate a main function for the solution of the two beams test case
using our finite volume implementation. The example was implemented in the DUNE module
dune-hdd [71] and can be found in dune/hdd/examples/hyperbolic/twobeams.cc

1 #include "config.h"
2

3 #include <string>
4 #include <vector>
5

6 #include <dune/stuff/common/string.hh>
7 #include <dune/stuff/grid/provider/cube.hh>
8 #include <dune/stuff/grid/information.hh>
9 #include <dune/stuff/la/container/common.hh>

10

11 #include <dune/gdt/discretefunction/default.hh>
12 #include <dune/gdt/operators/advection.hh>
13 #include <dune/gdt/operators/projections.hh>
14 #include <dune/gdt/spaces/fv/defaultproduct.hh>
15 #include <dune/gdt/timestepper/rungekutta.hh>
16

17 #include <dune/hdd/hyperbolic/problems/twobeams.hh>
18

19 using namespace Dune::GDT;
20

21 int main(int argc, char* argv[])
22 {
23 DS::threadManager().set_max_threads(8); // number of threads used
24 DSC_CONFIG.set("threading.partition_factor", 1, true); // one partition per thread
25

26 static const size_t dimDomain = 1;
27 static const size_t momentOrder = 5;
28

29 //choose GridType
30 typedef Dune::YaspGrid< dimDomain > GridType;
31 typedef typename GridType::Codim< 0 >::Entity EntityType;
32

33 //choose problem (P_5 two beams test case)
34 typedef Dune::HDD::Hyperbolic::Problems::TwoBeams< EntityType, double,
35 dimDomain, double,
36 momentOrder > ProblemType;
37 // create problem
38 const auto problem_ptr = ProblemType::create();
39 const auto& problem = *problem_ptr;
40

41 // get data from problem
42 typedef typename ProblemType::FunctionType FunctionType;

Example implementation 77

43 typedef typename FunctionType::DomainFieldType DomainFieldType;
44 typedef typename ProblemType::RangeFieldType RangeFieldType;
45 const auto analytical_flux_ptr = problem.flux();
46 const auto initial_values_ptr = problem.initial_values();
47 const auto boundary_values_ptr = problem.boundary_values();
48 const auto source_ptr = problem.source();
49 static const size_t dimRange = ProblemType::dimRange; // number of moments
50

51 // get grid configuration from problem and create Grid and GridView
52 auto grid_config = problem.grid_config();
53 typedef Dune::Stuff::Grid::Providers::Cube< GridType > GridProviderType;
54 GridProviderType grid_provider = *(GridProviderType::create(grid_config));
55 auto grid_ptr = grid_provider.grid_ptr();
56 typedef typename GridType::LeafGridView GridViewType;
57 const GridViewType grid_view = grid_ptr->leafGridView();
58

59 // make a product finite volume space on the grid_view
60 typedef Spaces::FV::DefaultProduct< GridViewType,
61 RangeFieldType, dimRange, 1 > FVSpaceType;
62 const FVSpaceType fv_space(grid_view);
63

64 // create a discrete function
65 typedef typename Dune::Stuff::LA::CommonDenseVector< RangeFieldType > VectorType;
66 typedef DiscreteFunction< FVSpaceType, VectorType > DiscreteFunctionType;
67 DiscreteFunctionType p(fv_space, "solution");
68

69 // project initial values to discrete function
70 project(*initial_values, p);
71

72 // choose Courant (CFL) number and t_end and calculate dx and dt
73 Dune::Stuff::Grid::Dimensions< GridViewType > dimensions(fv_space.grid_view());
74 const double dx = dimensions.entity_width.max();
75 const double CFL = 0.5;
76 double dt = CFL*dx;
77 const double t_end = 2;
78

79 // define operator types
80 typedef typename Dune::Stuff::Functions::Constant
81 < EntityType, DomainFieldType, dimDomain,
82 RangeFieldType, dimRange, 1 > ConstantFunctionType;
83 typedef typename Dune::GDT::Operators::AdvectionGodunovWithReconstruction
84 < AnalyticalFluxType, ConstantFunctionType,
85 BoundaryValueType, FVSpaceType,
86 Operators::SlopeLimiters::minmod > OperatorType;
87 typedef typename Dune::GDT::Operators::AdvectionSource
88 < SourceType, FVSpaceType > SourceOperatorType;
89 typedef typename Dune::GDT::TimeStepper::RungeKutta
90 < OperatorType, SourceOperatorType, FVFunctionType, double > TimeStepperType;
91

Example implementation 78

92 // create butcher_array for Heun’s method
93 typedef typename Dune::DynamicMatrix< RangeFieldType > DynamicMatrixType;
94 typedef typename Dune::DynamicVector< RangeFieldType > DynamicVectorType;
95 DynamicMatrixType A(DSC::fromString< DynamicMatrixType >("[0 0; 1 0]"));
96 DynamicVectorType b(DSC::fromString< DynamicVectorType >("[0.5 0.5]"));
97 DynamicVectorType c(DSC::fromString< DynamicVectorType >("[0 1]"));
98

99 //create Operators
100 ConstantFunctionType dx_function(dx); // we use an equidistant grid, so dx is constant
101 OperatorType advection_operator(*analytical_flux, dx_function, dt,
102 *boundary_values, fv_space, true);
103 SourceOperatorType source_operator(*source, fv_space);
104 TimeStepperType timestepper(advection_operator, source_operator, p, A, b, c);
105

106 // solve and visualize solution
107 const double saveInterval = t_end/100.0;
108 timestepper.solve(t_end, dt, saveInterval, true, false, "twobeams");
109

110 return 0;
111 } // ... main(...)

In the beginning (line 23), the number of threads that will be used has to be specified. Here, we
set a maximum of 8 threads directly in the code. We could also read a command line option to
allow changing the number of threads after compilation. In the next line, we choose how many
partitions of the grid should be created per thread.

We then specify the grid dimension and the moment order N for the PN model and choose to
use the built-in YaspGrid which also gives the type for entities with codimension 0 (lines 26-31).

In line 34, we choose the TwoBeams class with the specified moment order and grid dimen-
sion as ProblemType. The TwoBeams class contains all information about the analytical flux,
boundary and initial values and source terms for the two beams test case and is implemen-
ted in dune/hdd/hyperbolic/problems/twobeams.hh. In addition to the TwoBeams class, we
also implemented similar problem classes for the other test cases in [72], the test cases for
the Boltzmann equation from [14] and some classical hyperbolic problems such as the one-
dimensional shallow water equations. Furthermore, a problem interface and a default problem
implementation that aim to make the addition of new problems as simple as possible can be
found in dune/hdd/hyperbolic/problems/.

In the next two lines (38-39), an object problem is instantiated, which includes creation of
functions for the problem data such as analytical flux and initial values. The data functions are
obtained from the problem in lines 42-49. The problem also stores data about the grid that
should be used such as the grid domain and the number of grid cells in each coordinate direction.
This information is used to create a Grid and subsequently a GridView in lines 52-57. If we
would like to use periodic boundary conditions, we could create a PeriodicGridView from the
GridView but for this test case we use Dirichlet boundary conditions.

Example implementation 79

In lines 60-67, a finite volume space (seen as a product of dimRange scalar finite volume spaces)
and a discrete function on this space are instantiated. The initial values are then projected to
the discrete function.

In lines 73-77, the grid width is determined and a Courant number of 0.5 is chosen to calculate
the time step length.

We choose a Godunov flux with linear reconstruction and the minmod slope limiter. Further we
choose AdvectionSource as an operator for the source terms and the RungeKutta time stepper
(lines 80-90). To use Heun’s method, we create the appropriate matrix and vectors forming the
butcher array (lines 93-97). We instantiate the operators for source terms and numerical flux
using the problem data and then create the Runge-Kutta time stepper using these operators
and the butcher array (lines 100-104).

In the end, we specify in which interval the solution should be written and start the solving
process using the solve method of the time stepper. With the arguments used here, the solution
will be visualized at 100 equidistant time points in the interval [0, 2].

References 80

References

[1] G. W. Alldredge, C. D. Hauck and A. L. Tits. ‘High-Order Entropy-Based Closures
for Linear Transport in Slab Geometry II: A Computational Study of the Optimization
Problem’. In: SIAM Journal on Scientific Computing 34.4 (2012), B361–B391.

[2] G. W. Alldredge et al. ‘Adaptive change of basis in entropy-based moment closures for
linear kinetic equations’. In: Journal of Computational Physics 258 (2014), pp. 489–508.

[3] C.-G. Ambrozie. ‘Multivariate truncated moments problems and maximum entropy’. In:
Analysis and Mathematical Physics 3.2 (2013), pp. 145–161.

[4] T. Barth and M. Ohlberger. ‘Finite Volume Methods: Foundation and Analysis’. In:
Encyclopedia of Computational Mechanics. Ed. by E. Stein, R. d. Borst and T. J. R.
Hughes. Chichester, UK: John Wiley & Sons, Ltd, 2004.

[5] P. Bastian et al. ‘A generic grid interface for parallel and adaptive scientific computing.
Part I: Abstract framework’. In: Computing 82.2-3 (2008), pp. 103–119.

[6] P. Bastian et al. ‘A generic grid interface for parallel and adaptive scientific computing.
Part II: Implementation and tests in DUNE’. In: Computing 82.2-3 (2008), pp. 121–138.

[7] S. Bianchini and A. Bressan. ‘Vanishing Viscosity Solutions of Nonlinear Hyperbolic
Systems’. In: Annals of Mathematics 161.1 (2005), pp. 223–342.

[8] G. A. Bird. ‘Direct Simulation and the Boltzmann Equation’. In: Physics of Fluids 13.11
(1970), p. 2676.

[9] L. Boltzmann. ‘Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen’. In:
Sitzungsberichte der Akademie der Wissenschaften, Mathematische-Naturwissenschaftliche
Klasse 66 (1872), pp. 275–370.

[10] A. Bressan. Notes on the Boltzmann equation. https://www.math.psu.edu/bressan/

PSPDF/boltz.pdf. 2005.

[11] C. Bresten et al. ‘Strong Stability Preserving Multistep Runge-Kutta Methods’. In: ArXiv
e-prints (2013). eprint: 1307.8058.

[12] M. Breuß. ‘The correct use of the Lax-Friedrichs method’. In: ESAIM: Mathematical
Modelling and Numerical Analysis 38.3 (Mar. 2010), pp. 519–540.

[13] J. Brunken. ‘Model Reduction for Kinetic Equations’. MA thesis. Westfälische Wilhelms-
Universität Münster, 2015.

[14] T. A. Brunner and J. P. Holloway. ‘Two-dimensional time dependent Riemann solvers for
neutron transport’. In: Journal of Computational Physics 210.1 (2005), pp. 386–399.

[15] Z. Cai, Y. Fan and R. Li. ‘On hyperbolicity of 13-moment system’. In: Kinetic and Related
Models 7.3 (2014), pp. 415–432.

https://www.math.psu.edu/bressan/PSPDF/boltz.pdf
https://www.math.psu.edu/bressan/PSPDF/boltz.pdf
1307.8058

References 81

[16] C. Cercignani. The Boltzmann Equation and Its Applications. Vol. 67. Applied Mathemat-
ical Sciences. New York, NY: Springer New York, 1988.

[17] E. M. Constantinescu and A. Sandu. ‘Optimal Explicit Strong-Stability-Preserving General
Linear Methods’. In: SIAM Journal on Scientific Computing 32.5 (2010), pp. 3130–3150.

[18] R. Courant, K. Friedrichs and H. Lewy. ‘Über die partiellen Differenzengleichungen der
mathematischen Physik’. In: Mathematische Annalen 100.1 (1928), pp. 32–74.

[19] N. Crouseilles, H. Hivert and M. Lemou. ‘Multiscale numerical schemes for kinetic equations
in the anomalous diffusion limit’. In: Comptes Rendus Mathematique 353.8 (2015), pp. 755–
760.

[20] R. E. Curto and L. A. Fialkow. ‘Truncated K-moment problems in several variables’. In:
J. Operator Theory 54 (2005), pp. 189–226.

[21] R. E. Curto and L. A. Fialkow. ‘The Truncated Complex K-Moment Problem’. In: Trans-
actions of the American Mathematical Society 352.6 (2000), pp. 2825–2855.

[22] R. Curto and L. Fialkow. ‘Recursiveness, positivity and truncated moment problems’. In:
Houston J. Math 17.4 (1991), pp. 603–635.

[23] J. J. Duderstadt and W. R. Martin. Transport theory. New York: Wiley, 1979.

[24] DUNE (Distributed and Unified Numerics Environment). http://www.dune-project.

org/.

[25] C. K. Garrett and C. D. Hauck. ‘A Comparison of Moment Closures for Linear Kinetic
Transport Equations: The Line Source Benchmark’. In: Transport Theory and Statistical
Physics 42.6-7 (2014), pp. 203–235.

[26] G. T. Gilbert. ‘Positive Definite Matrices and Sylvester’s Criterion’. In: The American
Mathematical Monthly 98.1 (1991), p. 44.

[27] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conser-
vation laws. Vol. 118. Applied Mathematical Sciences. New York: Springer, 1996.

[28] S. K. Godunov. ‘A finite difference method for the numerical computation of the equations
of fluid dynamics’. In: Mat. Sb. 47 (1959), pp. 271–290.

[29] S. Gottlieb, Z. J. Grant and D. Higgs. ‘Optimal Explicit Strong Stability Preserving
Runge-Kutta Methods with High Linear Order and optimal Nonlinear Order’. In: ArXiv
e-prints (2014). eprint: 1403.6519.

[30] S. Gottlieb and C.-W. Shu. ‘Total variation diminishing Runge-Kutta schemes’. In: Math-
ematics of Computation of the American Mathematical Society 67.221 (1998), pp. 73–
85.

[31] H. Grad. ‘On the kinetic theory of rarefied gases’. In: Communications on Pure and Applied
Mathematics 2.4 (1949), pp. 331–407.

http://www.dune-project.org/
http://www.dune-project.org/
1403.6519

References 82

[32] K. P. Hadeler. ‘Reaction transport systems in biological modelling’. In: Mathematics
Inspired by Biology. Ed. by V. Capasso. Lecture Notes in Mathematics. Springer Berlin
Heidelberg, 1999.

[33] E. Hairer, G. Wanner and S. P. Nørsett. Solving Ordinary Differential Equations I: Nonstiff
Problems. Second Revised Edition. Vol. 8. Springer Series in Computational Mathematics.
Springer-Verlag Berlin Heidelberg, 1993.

[34] A. Harten. ‘High resolution schemes for hyperbolic conservation laws’. In: Journal of
Computational Physics 49.3 (1983), pp. 357–393.

[35] C. D. Hauck. ‘High-order entropy-based closures for linear transport in slab geometry’. In:
Communications in Mathematical Sciences 9.1 (2011), pp. 187–205.

[36] C. D. Hauck, C. D. Levermore and A. L. Tits. ‘Convex Duality and Entropy-Based
Moment Closures: Characterizing Degenerate Densities’. In: SIAM Journal on Control
and Optimization 47.4 (2008), pp. 1977–2015.

[37] M. Henk, J. Richter-Gebert and G. M. Ziegler. ‘Basic Properties Of Convex Polytopes’. In:
Handbook of discrete and computational geometry. Ed. by J. E. Goodman and J. O’Rourke.
Boca Raton, USA: CRC Press, 1997, pp. 243–270.

[38] H. Hensel, R. Iza-Teran and N. Siedow. ‘Deterministic model for dose calculation in photon
radiotherapy’. In: Physics in Medicine and Biology 51.3 (2006), p. 675.

[39] K. Heun. ‘Neue Methoden zur approximativen Integration der Differentialgleichungen
einer unabhängigen Veränderlichen’. In: Zeitschrift für Mathematik und Physik 5 (1900),
pp. 23–38.

[40] T. Hillen. ‘M5 mesoscopic and macroscopic models for mesenchymal motion’. In: Journal
of mathematical biology 53.4 (2006), pp. 585–616.

[41] T. Hillen and K. J. Painter. ‘Transport and Anisotropic Diffusion Models for Movement
in Oriented Habitats’. In: Dispersal, Individual Movement and Spatial Ecology. Ed. by
M. A. Lewis, P. K. Maini and S. V. Petrovskii. Vol. 2071. Lecture Notes in Mathematics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 177–222.

[42] S. Jin. ‘Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations:
a review’. In: Rivista di Matematica della Università di Parma. New Series 2.2 (2010).

[43] S. Jin. ‘Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equa-
tions’. In: SIAM Journal on Scientific Computing 21.2 (1999), pp. 441–454.

[44] M. Junk. ‘Maximum entropy for reduced moment problems’. In: Mathematical Models and
Methods in Applied Sciences 10.07 (2000), pp. 1001–1025.

[45] D. S. Kershaw. Flux limiting nature‘s own way – A new method for numerical solution of
the transport equation. Lawrence Livermore National Lab., 1976.

References 83

[46] D. I. Ketcheson, S. Gottlieb and C. B. Macdonald. ‘Strong Stability Preserving Two-step
Runge-Kutta Methods’. In: SIAM Journal on Numerical Analysis 49.6 (2011), pp. 2618–
2639.

[47] Kraaijevanger, J. F. B. M. ‘Contractivity of Runge-Kutta methods’. In: BIT 31.3 (1991),
pp. 482–528.

[48] D. Kröner. Numerical schemes for conservation laws. Wiley-Teubner series, advances in
numerical mathematics. Chichester, New York and Stuttgart: Wiley and Teubner, 1997.

[49] A. G. Kulikovskii, N. V. Pogorelov and A. Y. Semenov. Mathematical aspects of numerical
solution of hyperbolic systems. Vol. 118. Chapman & Hall/CRC monographs and surveys
in pure and applied mathematics. Boca Raton: Chapman & Hall/CRC, 2001.

[50] W. Kutta. ‘Beitrag zur näherungsweisen Integration totaler Differentialgleichungen’. In:
Zeitschrift für Mathematik und Physik 46 (1901), pp. 435–453.

[51] J. D. Lambert. Numerical methods for ordinary differential systems: The initial value
problem. Chichester and New York: Wiley, 1991.

[52] K. Lanckau. ‘Cercignani, C., The Boltzmann Equation and Its Applications.’ In: ZAMM -
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik
und Mechanik 69.11 (1989), p. 423.

[53] J. B. Lasserre. ‘Bounds on measures satisfying moment conditions’. In: The Annals of
Applied Probability 12.3 (2002), pp. 1114–1137.

[54] J. B. Lasserre. ‘Global Optimization with Polynomials and the Problem of Moments’. In:
SIAM Journal on Optimization 11.3 (2001), pp. 796–817.

[55] P. D. Lax. ‘Weak solutions of nonlinear hyperbolic equations and their numerical com-
putation’. In: Communications on Pure and Applied Mathematics 7.1 (1954), pp. 159–
193.

[56] R. J. LeVeque. Finite volume methods for hyperbolic problems. Vol. 31. Cambridge university
press, 2002.

[57] C. D. Levermore. ‘Moment closure hierarchies for kinetic theories’. In: Journal of Statistical
Physics 83.5-6 (1996), pp. 1021–1065.

[58] Z. Li et al. ‘Convergence proof of the DSMC method and the Gas-Kinetic Unified Algorithm
for the Boltzmann equation’. In: Science China Physics, Mechanics and Astronomy 56.2
(2013), pp. 404–417.

[59] F. D. Lora-Clavijo et al. ‘Exact solution of the 1D Riemann problem in Newtonian and
relativistic hydrodynamics’. In: Rev. Mex. Fis. E 59 (2013).

[60] MathWorks. Answers. https://www.mathworks.com/matlabcentral/answers/95958-

which-matlab-functions-benefit-from-multithreaded-computation.

https://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
https://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation

References 84

[61] R. Milk, S. Rave and F. Schindler. ‘pyMOR - Generic Algorithms and Interfaces for Model
Order Reduction’. In: ArXiv e-prints (June 2015). eprint: 1506.07094.

[62] R. Milk and F. Schindler. dune-stuff. https://github.com/wwu-numerik/dune-stuff.

[63] G. N. Minerbo. ‘Maximum entropy Eddington factors’. In: Journal of Quantitative Spec-
troscopy and Radiative Transfer 20.6 (1978), pp. 541–545.

[64] P. Monreal. ‘Moment Realizability and Kershaw Closures in Radiative Transfer’. PhD
thesis. Aachen: RWTH Aachen, 2012.

[65] H. Nessyahu and E. Tadmor. ‘Non-oscillatory central differencing for hyperbolic conserva-
tion laws’. In: Journal of Computational Physics 87.2 (1990), pp. 408–463.

[66] S. P. Parker. McGraw-Hill Encyclopedia of Physics. 2nd ed. New York: McGraw-Hill, 1993.

[67] W. Ren, H. Liu and S. Jin. ‘An asymptotic-preserving Monte Carlo method for the
Boltzmann equation’. In: Journal of Computational Physics 276 (2014), pp. 380–404.

[68] C. Runge. ‘Über die numerische Auflösung von Differentialgleichungen’. In: Mathematische
Annalen 46 (1895), pp. 167–178.

[69] S. J. Ruuth and R. J. Spiteri. ‘Two Barriers on Strong-Stability-Preserving Time Discret-
ization Methods’. In: Journal of Scientific Computing 17.1/4 (2002), pp. 211–220.

[70] F. Schindler. dune-gdt. https://github.com/pymor/dune-gdt.

[71] F. Schindler. dune-hdd. https://github.com/pymor/dune-hdd.

[72] F. Schneider et al. ‘Higher order mixed moment approximations for the Fokker-Planck
equation in one space dimension’. In: SIAM Journal on Applied Mathematics 74.4 (2014),
pp. 1087–1114.

[73] B. Seibold and M. Frank. ‘StaRMAP - A second order staggered grid method for spherical
harmonics moment equations of radiative transfer’. In: ArXiv e-prints (Nov. 2012). eprint:
1211.2205.

[74] J. Shohat and J. D. Tamarkin. The problem of moments. [Rev. ed.] Vol. no. 1. Mathematical
surveys. Providence, R.I.: American Mathematical Society, 1963.

[75] C.-W. Shu. A Survey of Strong Stability Preserving High Order Time Discretizations.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.4711. 2001.

[76] C.-W. Shu and S. Osher. ‘Efficient implementation of essentially non-oscillatory shock-
capturing schemes’. In: J. Comput. Phys. 77.2 (Aug. 1988), pp. 439–471.

[77] J. Singh. Modern Physics for Engineers. Weinheim, Germany: Wiley-VCH Verlag GmbH,
1999.

[78] G. A. Sod. ‘A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws’. In: Journal of Computational Physics 27.1 (1978), pp. 1–31.

1506.07094
https://github.com/wwu-numerik/dune-stuff
https://github.com/pymor/dune-gdt
https://github.com/pymor/dune-hdd
1211.2205
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.4711

References 85

[79] R. J. Spiteri and S. J. Ruuth. ‘A New Class of Optimal High-Order Strong-Stability-
Preserving Time Discretization Methods’. In: SIAM Journal on Numerical Analysis 40.2
(2002), pp. 469–491.

[80] G. Strang. ‘On the Construction and Comparison of Difference Schemes’. In: SIAM Journal
on Numerical Analysis 5.3 (1968), pp. 506–517.

[81] J. C. Strikwerda. Finite difference schemes and partial differential equations. 2nd ed.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 2004.

[82] H. Tang and G. Warnecke. ‘A note on (2K+1)-point conservative monotone schemes’. In:
ESAIM: Mathematical Modelling and Numerical Analysis 38.2 (Mar. 2010), pp. 345–357.

[83] Thomas Hillen. http://www.math.ualberta.ca/~thillen/research.html.

[84] R. Turpault et al. ‘Multigroup half space moment approximations to the radiative heat
transfer equations’. In: Journal of Computational Physics 198.1 (2004), pp. 363–371.

[85] B. van Leer. ‘Towards the ultimate conservative difference scheme. IV. A new approach to
numerical convection’. In: Journal of Computational Physics 23.3 (1977), pp. 276–299.

[86] Z.-A. Wang, T. Hillen and M. Li. ‘Mesenchymal Motion Models in One Dimension’. In:
SIAM Journal on Applied Mathematics 69.2 (2008), pp. 375–397.

http://www.math.ualberta.ca/~thillen/research.html

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Mario Ohlberger for giving me the
chance to work on this interesting and challenging project and for guidance throughout the
whole thesis.

Moreover, I thank all members of the workgroup for their support and the nice working
atmosphere.

Special thanks to Felix Schindler who introduced me to the world of DUNE and always helped
me when I had questions, even if that meant writing plenty of long emails from Switzerland.
Thanks for constant motivation and also for helpful comments on this thesis.

Thanks to René Milk for assistance on profiling and parallelization and solving several problems
with DUNE and C++ .

Thanks to Julia Brunken and Barbara Verfürth for good company in the office, helpful discussions
and proofreading of this thesis.

Finally, I want to thank my family and friends for always supporting and motivating me
throughout my whole studies.

Plagiatserklärung

Hiermit versichere ich, dass die vorliegende Arbeit mit dem Titel Numerical methods for kinetic
equations selbstständig verfasst worden ist, dass keine anderen Quellen und Hilfsmittel als die
angegebenen benutzt worden sind und dass die Stellen der Arbeit, die anderen Werken – auch
elektronischen Medien – dem Wortlaut oder Sinn nach entnommenen wurden, auf jeden Fall
unter Angabe der Quelle als Entlehnung kenntlich gemacht worden sind.

(Datum, Unterschrift)

Ich erkläre mich mit einem Abgleich der Arbeit mit anderen Texten zwecks Auffindung von
Übereinstimmungen sowie mit einer zu diesem Zweck vorzunehmenden Speicherung der Arbeit
in eine Datenbank einverstanden.

(Datum, Unterschrift)

	Kinetic equations
	Moment methods for kinetic equations
	General idea
	Realizability
	Moment closures
	The P_N closure
	The M_N closure
	The K_N closure
	Half and mixed moment closures

	Hyperbolic systems of first-order equations
	Classical solutions
	Weak solutions and vanishing viscosity
	The Riemann problem

	Numerical methods
	Finite volume methods for hyperbolic balance laws
	Computational grids
	Finite volume schemes and numerical fluxes
	Source terms
	Time step restrictions
	Higher order methods
	Boundary conditions

	Runge-Kutta methods
	Additional considerations for entropy closures
	Preserving Realizability
	Solving the dual problem
	Difficulties near the realizable boundary

	Implementation
	DUNE
	Implementation in dune-stuff
	Periodic boundary conditions
	Time-dependent functions

	Implementation in dune-gdt
	Discrete function spaces
	Operators on discrete function spaces
	Runge-Kutta time stepping
	Parallelization

	Numerical Results
	Convergence tests
	Scalar advection equation
	Sod's shock tube

	Comparison with existing implementations
	Fokker-Planck equation in one spatial dimension
	Validity of results
	Performance comparison
	A two dimensional test for the Boltzmann equation

	Conclusion and outlook
	Example implementation

