Data associated with Hughes and Moum (2024): Imaging thermocline microstructure in 2D with swaths traced by wave-pumped χ pods

Submitted to J. Geophys. Res. Oceans

Ken Hughes, ken.hughes@waikato.ac.nz November 2024

Dataset summary

Location: 0°N, 140°W Depth: 120 m Period: 16-Sep-2014 to 19-Oct-2015 This data archive contains two types of data files: data_yymmdd.mat grid_yymmdd.mat

Each file contains 24 hours of data. There are 394 of each type.

Arrays in data_yymmdd.mat are single precision (except the time array) to keep file sizes small.

Contents of the data files

Each Matlab file contains a single struct. These structs include readmes, which are reproduced on the pages 2 and 3.

Files are grouped into months and zipped to ease downloading.

Reading the data file with Python

Example code to read the files into Python as dictionaries is given on page 4.

Matlab code to produce the processed data

The code to read in raw chipod data and process them is primarily contained in the file swaths_paper_data_preparation.m. This file calls three other files (raw_load_chipod.m, deglitch.m, and bin.m). All of these files are provided for completeness, but we are only archiving the processed outputs (not the raw voltage signals). Please email if more information is needed.

Matlab code for the convolutional neural network

See chipod_swaths_convolutional_neural_network.m.

Readmes

grid_yymmdd.mat

Gridded (swath) data from a 120m-deep chipod at 0, 140W (central equatorial Pacific). The 'grid' struct contains the following variables:

t (decimal days)	(1 x 8640)	Center	of the time grid, UTC, Matlab format
z (m)	(200 x 1)	Center	of the vertical grid
tp1 (decimal days)	(1 x 8641)	Edges o	of the time grid, UTC, Matlab format
zp1 (m)	(200 x 1)	Edges o	of the vertical grid
dt (decimal days)	(1)	1.1574@	e-04 (=10s/86400s)
dz (m)	(1)	0.02	
T (deg C)	(200 x 8640)	Tempera	ature
Tz (deg C/m)	(200 x 8640)	Vertica	al temperature gradient
log_chi (K^2/s)	(200 x 8640)	Dissipa	ation rate of temperature variance
log_eps (W/kg)	(200 x 8640)	Dissipa	ation rate of turbulence kinetic
		energy	
zref (m)	(1 x 8640)	Vertica	al position of an isotherm
		calcula	ated from the swath
t_10min (decimal days)	(1 x 144)	Center	of a 10-minute time grid
Reb_10min (-)	(1 x 144)	Buoyano	cy Reynolds number - eps/(nu N^2)
LO_10min (m)	(1 x 144)	Ozmidov	/ length scale - sqrt(eps/N^3)
eps_10min (W/kg)	(1 x 144)		
chi_10min (W/kg)	(1 x 144)		

Processed by Ken Hughes with his script /home/hugke729/osu/data/swaths_paper/scripts/swaths_paper_data_preparation.m

Notes:

Data come from either

chipod #712 on the TA014 deployment (< March 22, 2015)

chipod #730 on the TA015 deployment (> March 23, 2015)

The differentiated temperature signal on T2 for Chipod 712 was faulty.

Hence, there are no log_chi, log_eps, and 10min turbulence values are calculated from only the upper thermistor for datasets prior to March 22, 2015.'

data_yymmdd.mat

Calibrated data from a 120m-deep chipod at 0, 140W (central equatorial Pacific). The 'data' struct contains the following variables: (All variables are 4,320,000 x 1; i.e., 50Hz data for 24 hours)

time (decimal days)	:	UTC, Matlab format
T1 (deg C)	:	Temperature from the upper thermistor (lowpassed 2Hz)
T2 (deg C)	:	Temperature from the lower thermistor (lowpassed 2Hz)
depth (m):	:	Depth (inferred; lowpassed 2Hz; see Notes)
Tz1 (deg C/m)	:	Vertical temperature gradient calculated with T1 and depth
Tz2 (deg C/m)	:	Vertical temperature gradient calculated with T2 and depth
zref (m)	:	Vertical position of an isotherm calculated from the
		associated swath

Processed by Ken Hughes with his script /home/hugke729/osu/data/swaths_paper/scripts/swaths_paper_data_preparation.m

Notes:

The pressure sensor during this deployment had a low-frequency drift. This drift was removed from "depth" by highpass filtering the initial depth signal (600-s cutoff) and adding back a nominal mean depth of 120m.

Data come from either chipod #712 on the TA014 deployment (< March 22, 2015) chipod #730 on the TA015 deployment (> March 23, 2015)

Python code to read processed files

```
from numpy import squeeze
from hdf5storage import loadmat

date_str = '141001'

grid_filename = 'grid_' + date_str + '.mat'
data_filename = 'data_' + date_str + '.mat'

gmat = loadmat(grid_filename)
dmat = loadmat(data_filename)

data = dict()
for quantity in dmat['data'].dtype.names:
    data[quantity] = squeeze(dmat['data'][quantity][0][0])

grid = dict()
for quantity in gmat['grid'].dtype.names:
    grid[quantity] = squeeze(gmat['grid'][quantity][0][0])
```