
Dataflow Acceleration of scikit-learn Gaussian
Process Regression

Abstract—Big data revolution has sparked the widespread
use of predictive data analytics based on sophisticated machine
learning tasks. Fast data analysis have become very important,
and this fact stresses software developers and computer architects
to deliver more efficient design solutions able to address the in-
creased performance requirements. Dataflow computing engines
from Maxeler has been recently emerged as a promising way
of performing high performance computation, utilizing FPGA
devices. In this paper, we focus on exploiting Maxeler’s dataflow
computing for accelerating Gaussian Process Regression from
scikit-learn Python library, one of the most computationally
intensive and with poor scaling characteistics machine learning
algorithm. Through extensive analysis over diverse datasets,
we point out which NumPy and SciPy functions forms the
major performance bottlenecks that should be implemented in
a dataflow acceleration engine and then we discuss the mapping
decisions that enable the generation of parameterized dataflow
engines. Finally, we show that the proposed acceleration solution
delivers significant speedups for the examined datasets, while it
also reports good scalability in respect to increased dataset sizes.

I. INTRODUCTION

Nowadays, organizations collect data from a variety of
sources, including business transactions, social media and
sensors. Big data is a term that describes this large volume
and high throughput data, which can be analysed to make
intelligent predictions/decisions based on patterns. Big data
analytics helps organisations exploit their data and use it to
identify smarter business moves, more efficient operations,
better services and achieve higher profits.

Data analytics are heavily depend on machine learning (ML)
techniques, a field of computer science that evolved from
the study of pattern recognition and computational learning
theory in artificial intelligence. Machine learning explores the
study and construction of algorithms that can learn from and
make predictions on data. Such algorithms operate by building
a model from example inputs in order to make data-driven
predictions or decisions. Machine learning has found major
applications in finance, healthcare, entertainment, robotics,
and many more. Although machine learning has been around
for decades, two relatively recent trends have sparked its
widespread use, i.e. (i) data availability due to the huge amount
of digital data being generated from smart devices and Internet
of Things and ii) computation and storage capabilities offered
by modern hardware that enables intelligent decisions and
deliver value proposition.

A commonly used machine learning library is scikit-learn
[1], which is a free software library for the Python program-
ming language. It features various classification, regression
and clustering algorithms and is designed to interoperate with
the Python numerical and scientific libraries NumPy [2] and
SciPy [3]. We focus our attention on Gaussian processes
[4] that provide a principled, practical, probabilistic approach
to learning in kernel machines. This gives advantages with
respect to the interpretation of model predictions and provides
a well-founded framework for learning and model selection.

Theoretical and practical developments of over the last decade
have made Gaussian processes a serious competitor for real
supervised learning applications. However, its time complexity
and the fact that it loses computational efficiency in high di-
mensional spaces are its main disadvantages. In this paper, we
target the acceleration of Gaussian processes kernels, focusing
on Gaussian Process Regression (GPR), which among scikit-
learns’ classification and regression algorithms appear to be
some of the most time demanding.

For accelerating scikit-learn’s GPR we exploit the ef-
ficiency of dataflow computing engines (DFE) introduced
by Maxeler Technologies [5]. By carefully instrumenting,
profiling and analysing the GPR’s performance characteris-
tics for model fitting and prediction, we extract the most
computationally demanding kernels amenable for acceler-
ation. Specifically, through extensive performance analy-
sis we show that, the NumPy and SciPy Python func-
tions: i) scipy.linalg.cholesky() performing Cholesky fac-
torization, ii) scipy.linalg.cho solve() implementing the
Cholesky solver, iii) scipy.spatial.distance.pdist() and
scipy.spatial.distance.cdist() performing matrices distance
calculation and iv) numpy.dot() implementing matrix multi-
plication, are forming the performance dominant functions in
GPR. To the best of our knowledge, this is one of the first
papers that are either targeting to scikit-learn’s GPR accel-
eration or utliizing Maxeler’s dataflow computing technology
for the accelerating the aforementioned functions. Cholesky
factorization and solver are popular linear algebra kernels, thus
their acceleration is actively researched in software [6], [7],
GPU [8] and ASIC [9]. In [10], [11], their FPGA acceleration
is proposed that relies on a direct hardware design solution
in which for large size matrices, the FPGA memory interface
becomes the bottleneck, mainly due to the limited adoption
of the dataflow computing concepts. In this paper, we provide
optimized DFE implementations for the aforementioned func-
tions, not only by exploiting the high ILP traditionally offered
by dataflow engines, but also applying customized data access
and loop-tiling techniques to further improve performance. We
show that the proposed DFE implementations can provide
significant and scaled speedups for each of the examined
kernels, ranging from 2⇥ up to 8⇥. For the overall GPR
fit() and predict() our accelerated solution delivers average
speedup of 2.4⇥ and 5.6⇥, respectively Finally, we note that
the accelerated functions are frequently used for the solution
of many other problems, thus the proposed high performance
dataflow implementations could affect the efficiency of various
applications.

II. GAUSSIAN PROCESSES IN PYTHON’S SCIKIT-LEARN

scikit-learn [1] is a free software machine learning library
for the Python programming language. It features various
classification, regression and clustering algorithms and it is de-
signed to interoperate with the Python numerical and scientific
libraries NumPy and SciPy. Every estimator for classification

Algorithm II.1 scikit-learn GaussianProcessRegressor().fit()
1: procedure FIT(X(inputs), y(targets))
2: X, y check X y(X, y, ...) check if arrays are compatible for computation.
3: y normalize y() y vector normalization
4: self.log marginal likelihood value self.log marginal likelihood()
5: K self.kernel (X) get the kernel matrix K using the method kernel ()
6: K K + �

n

2I the noise �
n

2 has the default value 1e-10
7: self.L cholesky(K)
8: self.alpha cho solve(self.L , y) ↵ = (y/L)/L>

9: procedure LOG MARGINAL LIKELIHOOD()
10: K self.kernel (X)
11: K K + �

n

2I
12: L cholesky(K)
13: alpha cho solve(L , y)

14: log likelihood �
1

2

y> · (alpha)�
P

i

logL
ii

�
n

2

log 2⇡ where
n = training samples

15: return log likelihood

or regression in scikit-learn machine learning library is a
Python class, which implements the methods fit(X, y) and
predict(X⇤), where X is the n ⇥ D training matrix, y is the
n⇥ 1 target vector and X⇤ is the n⇤ ⇥D test matrix.

In this paper, we focus out attention on Gaussian Process
Regression [4], which also heavily share its major algorithmic
constructs with Gaussian Process classification. There are
several ways to interpret Gaussian process (GP) regression
models. One can think of a Gaussian process as defining a
distribution over functions, and inference taking place directly
in the space of functions, the function-space view. Considering
inference directly in function space, we use a Gaussian process
(GP) to describe a distribution over functions.

By definition, a Gaussian process is a collection of random
variables, any finite number of which have a joint Gaussian
distribution. A Gaussian process is completely specified by
its mean function and covariance function. We define mean
function m(x) and the covariance function k(x, x0) of a real
process f(x) as:

m(x) = [f(x)]
k(x, x0) = [(f(x)�m(x))(f(x0)�m(x0))]

(1)

and write the Gaussian process as

f(x) ⇠ GP(m(x), k(x, x0)) (2)

where, in our case the random variables represent the value of
the function f(x) at location x.

A. Gaussian process regression in scikit-learn
In scikit-learn, a practical implementation of Gaussian pro-

cess regression (GPR) is implemented that uses Cholesky
decomposition, instead of directly inverting the matrix, since
it is faster and numerically more stable. An estimator for
regression is a Python object that implements the methods
fit(X ,y) and predict(X⇤). The estimator that implements Gaus-
sian process regression is the class GaussianProcessRegressor.
The constructor of an estimator may take as arguments the
parameters of the model, e.g. the kernel RBF function.

We briefly analyze the fit() and predict()

methods implemented in scikit-lean of the class
GaussianProcessRegressor(), in order to familiarize
with their algorithmic structure and naming conventions to
be used later in the performance profiling analysis. In the
fit method (Algorithm II.1), the y vector may be normalized
by subtracting the mean of y from every observation. The
log marginal likelihood value is calculated in Line 4,

Algorithm II.2 scikit-learn kernels.RBF()
1: procedure KERNEL RBF(X1(test inputs), X2(training inputs))
2: if X2 = None then when it is called from fit() or predict()
3: dists pdist(X1, metric=’sqeuclidean’)
4: K = np.exp(-0.5 * dists)
5: K = squareform(K)
6: np.fill diagonal(K, 1)
7: else when it is called from predict()
8: dists = cdist(X1, X2, metric=’sqeuclidean’)
9: K = np.exp(-0.5 * dists)

10: return K

Algorithm II.3 scikit-learn GaussianProcessRegressor().predict()
1: procedure PREDICT(X⇤(test inputs))
2: X⇤ check array(X⇤) check the test inputs matrix
3: K⇤ self.kernel (X⇤, X)
4: y

mean

 K⇤· (self.alpha)
5: y

mean

 undo normal(y
mean

) only if we normalized y on fit()
6: v cho solve(self.L , K>

⇤)
7: y

cov

= self.kernel (X⇤) �K⇤ · v
8: return y

mean

(predictions), y
cov

(variance matrix)

using the corresponding method, which is presented below.
The kernel function in Line 5 is the default RBF and the
kernel ()function is demonstrated in Algorithm II.2.
Moreover, the cholesky decomposition in Line 7 is computed
with the scipy.linalg.cholesky() function and alpha value

is calculated from scipy.linalg.cho solve(). The total cost
of fit() method is O(n

3

+ n

2

D) due to the cholesky
factorization.

For the RBF kernel (Algorithm II.2), the kernel function is
k(x, x0) = exp(�1

2

|x � x0|2), where |x � x0|2 =

PD
d=1

(xd �
x

0
d)

2. Therefore, when the kernel is called from fit() for
example with the matrix X as argument, first the euclidean
distance of every vector x with every other vector x0 is calcu-
lated in line 3. Subsequently, in Line 4 every distance in K

matrix passes through the exp() function and Lines 4-5 finalize
K, computing the diagonal elements and the converting K

to a square symmetric matrix. However, when we call the
kernel from predict() ((Algorithm II.3)) with two arguments,
the distance of every x vector of X and every vector x⇤ of
X⇤ is computed in line 8. Next, every distance element in K

is given to the exp() in Line 9. Finally, K is returned. All
distances are calculated from scipy.spatial.distance.pdist()

and scipy.spatial.distance.cdist() functions. The total com-
putational cost is O(n

2

1

D) in the first case and O(n

1

·n
2

D) in
the second case. We note that n

1

is the number of samples in
X

1

, n
2

is the number of samples in X

2

and D is the number
of features.

The dominant functions in predict() (Algorithm II.3) is
cho solve() in Line 6 with a computational cost of O(n

2 ·n⇤)
and the dot() in line 7 with a cost of O(n ·n2

⇤). Additionally,
kernel calculation in Line 3 takes O(n · n⇤ · D) operations,
while kernel in Line 7 has a cost of O(n

2

⇤ ·D) operations.

III. PROFILING ANALYSIS OF GAUSSIAN PROCESS
REGRESSION IN SCIKIT-LEARN

In this section, we perform a detailed performance analysis
of scikit-learn’s Gaussian process fit() and predict() methods
in order to evaluate performance in a finer manner and extract
the computationally intensive code regions to be considered for
acceleration. Our goal is to detect the most time consuming
functions in scikit-learn’s Gaussian process regression Python
implementation. Thus, timers are placed in various code

TABLE I
DATASET CHARACTERIZATION.

Name Num of samples Num of features
CASP 45730 9

Online News Popularity 39797 60
BlogFeedback 60021 280

slices localization 53500 386

segments of fit() and predict() methods, in order to enable
effective performance instrumentation.

For the analysis, we utilise real-datasets, obtained from
UCI Machine Learning Repository [12]. As shown in Table I,
we explore large and diverge datasets with a scaled number
of features, in order to effectively capture the performance
dependency to the feature size, i.e. to ensure that the ”hot”
code regions to be selected for acceleration are not present
only in datasets with small feature space. Specifically, the
datasets used by estimators for regression are:

• Physicochemical Properties of Protein Tertiary Struc-
ture Data Set (CASP): This is a data set of Physic-
ochemical Properties of Protein Tertiary Structure, taken
from CASP 5-9. There are 45730 decoys and size varying
from 0 to 21 armstrong.

• Online News Popularity Data Set: This dataset sum-
marizes a heterogeneous set of features about articles
published by Mashable in a period of two years. The goal
is to predict the number of shares in social networks.

• BlogFeedback Data Set: This dataset contain features
extracted from blog posts. The task is to predict how
many comments the post will receive.

• Relative location of CT slices on axial axis Data Set
(slices localization): The dataset consists of 384 features
extracted from CT images. The class variable denotes the
relative location of the CT slice on the axial axis of the
human body.

In Figure III, the pie charts demonstrate the
percentage breakdown of the execution time in different
functions of the methods. Fit and predict methods
were executed on the four datasets with different
feature sizes and large training and test sample sizes
(n = 5000, n⇤ = 5000). We should note that kernel RBF () :

if consists of scipy.spatial.distance.pdist(),
numpy.exp(), scipy.spatial.distance.squareform() and
numpy.fill diagonal(). Additionally, kernel RBF () : if

consists of scipy.spatial.distance.cdist() and numpy.exp().
As shown, scipy.linalg.cholesky() in the most time
consuming function on fit method, while kernel RBF () : if

execution time increases as the number of features in the
dataset becomes greater. Moreover, scipy.linalg.cho solve()

and numpy.dot() functions are time demanding on predict
method, sharing almost the total time in half. However as
the number of features increases, kernel RBF () : if and
kernel RBF () : else gain a greater percentage of the total
predict execution time.

Selection for acceleration: According to previous discus-
sion, for the acceleration of scikit-learn Gaussian process re-
gression fit() and predict() methods, the following functions
should be implemented in Maxeler’s dataflow computational
model.

• the function scipy.linalg.cholesky(Kn⇥n, ...).
• the function scipy.linalg.cho solve(Ln⇥n, Bn⇥n⇤).

• the function numpy.dot(An⇤⇥n, Bn⇥n⇤).
• the set of functions [scipy.spatial.distance.pdist(An⇥D, ...),

numpy.exp(bn(n+1)/2), scipy.spatial.distance.squareform
(cn(n+1)/2), numpy.fill diagonal(En⇥n)], denoted as
pdist in the rest of the paper.

• the set of functions [scipy.spatial.distance.cdist(An⇤⇥D,

Bn⇥D, ...), numpy.exp(Cn⇤⇥n)], denoted as cdist in
the rest of the paper.

IV. ACCELERATOR DESIGN FOR MAXELER DFES

The aforementioned functions have been accelerated ex-
ploiting Maxeler’s multiscale dataflow computing technology.
Maxelers multiscale dataflow computing [13] is a combina-
tion of traditional synchronous dataflow, vector and array
processors. Loop level parallelism is achieved in a spatial,
pipelined way, where large streams of data flow through a
sea of arithmetic units, connected to match the structure of
the compute task. DFEs provide two basic kinds of memory:
FMem and LMem. FMem (Fast Memory) is on-chip Static
RAM (SRAM) which can hold several MBs of data. Off-
chip LMem (Large Memory) is implemented using DRAM
technology and can hold many GBs of data. The overall system
is managed by MaxelerOS, which sits within Linux and also
within the dataflow engines manager. MaxelerOS manages
data transfer and dynamic optimization at runtime.

Each DFE accelerated program, consists of CPU code writ-
ten in a C programming language and a hardware configuration
file (.max file) generated from MaxJ language. MaxJ code
describes the dataflow datapath for a particular algorithm and
the manager logic that interfaces the DFE accelerator with the
host CPU. All data pre-processing (for example array layout
re-ordering) takes place in the CPU and DFEs are called using
SLiC1 interface to compute the operations on data.

In this paper, we focus on the acceleration of
the i) Cholesky decomposition and ii) Cholesky
solver. For matrix multiplication, we reuse the freely
available implementation found in [14]. The matrix
distance, i.e. scipy.spatial.distance.pdist(A, ...) and
scipy.spatial.distance.cdist(A,B, ...), accelerated functions
have been designed reusing the tiled design of matrix
multiplication DFE and adapting the implemented arithmetic
operators, i.e. calculating (a�b)2 instead of a⇥b. Due to space
limitations, we focus our discussion on the design decisions
that enable tiled and high parallel implementations. All
implementations consider double precision float arithmetic.
A more detailed description, e.g. DFE’s operations , MaxJ
function implementation etc. can be found in [15].

A. Cholesky decomposition acceleration

If A 2 Rn⇥n is a positive-definite symmetric matrix, then
there is a unique Cholesky decomposition that factorises it into
a lower triangular matrix and its transpose

A = LL

> (3)

Analyzing the equation A = LL

>, we obtain the following
formula for the entries of L:

1SLiC (Simple Live CPU) interface is an automatically generated interface
to the dataflow program, to call dataflow engines from attached CPUs

scipy.linalg.cholesky() (85.7 %)

kernel RBF():if (11.5 %)

scipy.linalg.cho solve() (2.6 %)

scipy.linalg.cho solve() (49.7 %)

numpy.dot() (47.7 %)

kernel RBF():if (1.5 %)

kernel RBF():else (1 %)

(a) CASP

scipy.linalg.cholesky() (79.5 %)

kernel RBF():if (17.5 %)

scipy.linalg.cho solve() (2.5 %)

scipy.linalg.cho solve() (48.6 %)

numpy.dot() (47.4 %)

kernel RBF():if (1.8 %)

kernel RBF():else (2.2 %)

(b) Online News Popularity

scipy.linalg.cholesky() (67.5 %)

kernel RBF():if (30.2 %)

scipy.linalg.cho solve() (1.7 %)

scipy.linalg.cho solve() (47.5 %)

numpy.dot() (40.7 %)

kernel RBF():if (4.2 %)

kernel RBF():else (7.4 %)

(c) BlogFeedback

scipy.linalg.cholesky() (56.6 %)

kernel RBF():if (41.1 %)

scipy.linalg.cho solve() (1.7 %)

scipy.linalg.cho solve() (35.5 %)

numpy.dot() (51.6 %)

kernel RBF():if (4.6 %)

kernel RBF():else (8.1 %)

(d) Slices localization

Fig. 1. Distribution analysis of computation latency for the fit() and predict() methods in Python’s scikit-learn GPR.

ljj =

vuut
ajj �

j�1X

k=1

l

2

jk

lij =
1

ljj

aij �

j�1X

k=1

lik · ljk
!
, for i > j.

(4)

Note that since older values of aij are not required for
computing newer elements, they may be overwritten by the
value of lij , hence the algorithm may be performed in place
using the same memory for matrices A and L. Thus, we can
compute the (i, j) entry of L if we know the data dependent
entries to the left and above. The computation is usually
arranged in either of the following orders i) the Cholesky-
Banachiewicz algorithm (Row-Cholesky) starts from the upper
left corner of the matrix L and proceeds to calculate the
matrix row by row, ii) the Cholesky-Crout algorithm (Column-
Cholesky) starts from the upper left corner of the matrix L and
proceeds to calculate the matrix column by column.

The major issue in developing a Maxeler accelerated
Cholesky implementation is how the matrix A should be
transferred to the DFE and where should we place the output
matrix L. Considering the data dependencies, in order to
compute a column of L, a huge part of previously computed
L-values must be accessed. For the computation of each new
element in a column, a whole row of previously calculated L-
values should be fetched to the computational area. The key
to efficient dataflow implementations is to orchestrate the data
movements to maximize the reuse of data while it is in the
chip and minimize movement of data in and out of the chip.
Therefore, in order to compute L elements as fast as possible
without being constrained by the transfer speeds (bandwidth),
we decide to keep L matrix on Fmem. However, Fmem cannot
hold the whole L matrix for big values of n. For this reason
we partition A into blocks so that the corresponding L blocks
will fit in Fmem. A block-partitioned Cholesky algorithm has
been implemented. Initially, A (n ⇥ n matrix) breaks into

ntiles ⇥ ntiles tiles of size nB ⇥ nB , where n = ntiles · nB ,

A =

2

6664

A

1,1 A

>
2,1 A

>
3,1 . . . A

>
n
tiles

,1

A

2,1 A

2,2 A

>
3,2 . . . A

>
n
tiles

,2
...

...
...

. . .
...

An
tiles

,1 An
tiles

,2 An
tiles

,3 . . . An
tiles

,n
tiles

3

7775

(5)
Now in the first stage, we compute L

1,1 passing A

1,1 tile to
the DFE: L

1,1 = cholesky DFE(A
1,1). In the same way we

compute L

2,1, L
3,1... . However those tiles require data from

L

1,1. Therefore, L
2,1 = cholesky DFE(A

2,1 , L
1,1), L

3,1 =

cholesky DFE(A
3,1 , L

1,1) and so on.
At this point, the first column of L tiles has been calculated.

Before moving on to process the second column of tiles we
should calculate the matrix

S

(1)

=

2

664

L

2,1

L

3,1
...

Ln
tiles

,1

3

775 · ⇥L>
2,1 L

>
3,1 . . . L

>
n
tiles

,1

⇤
(6)

which is symmetric. This matrix multiplication is performed
with the corresponding DFE accelerator found in [14]. Now
using S

(1) we can proceed in the second column of tiles of L.
In order to compute L

2,2, Figure 2 shows that for ⇤ element
all light gray previously computed L elements are needed.
Particularly the product of the two light gray rows of L

2,1

must be subtracted from a⇤. This product can be taken directly
from S

(1)

1,1 , which contains all row-to-row products which are
required from the computation of L

2,2. In the same way S

(1)

2,1
contains all row-to-row products for the computation of L

3,2,
S

3,1 for L
4,2 and so on. Finally we store a submatrix of S(1)

S

(1)

acc =

2

64
L

3,1L
>
3,1 . . . L

3,1L
>
n
tiles

,1
...

. . .
...

Ln
tiles

,1L
>
3,1 . . . Ln

tiles

,1L
>
n
tiles

,1

3

75 (7)

In the second stage, we get L

2,2 = cholesky DFE

(A

2,2, S
(1)

1,1) and L

3,2 = cholesky DFE (A
3,2, L2,2, S

(1)

2,1),
L

4,2 = cholesky DFE (A

4,2, L2,2, S
(1)

3,1), ... At this point, the
second column of L tiles has been calculated. Before moving
on the third column of tiles we calculate the matrix S

(2), in
the same way as S

(1) before adding also S

(1)

acc:

predict()

predict()

predict()

predict()

fit()

fit()

fit()

fit()

predict()

predict()

predict()

predict()

fit()

fit()

fit()

fit()

Fig. 2. Tiled Cholesky decomposition. L matrix partitioned into tiles. Data
dependency for ⇤ element.

Fig. 3. Light gray tiles are sent to the DFE. The first dark gray tile is
completely calculated.

S

(2)

=

2

4
L

3,2
...

Ln
tiles

,2

3

5 · ⇥L>
3,2 . . . L

>
n
tiles

,2

⇤
+ S

(1)

acc (8)

Using S

(2) we can proceed in the third column of tiles of
L, repeating the process described above, and finally compute
the whole L.

B. Cholesky solve acceleration
Let A be a symmetric positive definite matrix of size n⇥n

and B an n ⇥ m matrix. In this case the system AX = B

has a unique solution, since A can be factorized using the
Cholesky decomposition to a product LL>. The linear system
can be now written as LL

>
X = B. Setting L

>
X = Y the

system can then be solved by forward-substitution in lower
triangular system LY = B, followed by back-substitution in
upper triangular system L

>
X = Y .

However, L> is an upper triangular matrix and the system
L

>
X = Y can be solved in an analogous way with the lower

triangular system. This is performed, by transforming L

> to L

0

by applying L

0
i,j Ln+1�i,n+1�j and generating the upside-

down Y

0 matrix through Y

0
i,j Yn+1�i,j , we transform the

back-substitution to a forward-substitution. Specifically, we
solve L

0
X

0
= Y

0 and get X 0, which deliver X by applying
the previous upside-down transformation on X

0. In the rest

Algorithm IV.1 DFE Kernel
1: procedure LTS DFE (L, B (which are columns of tiles))
2: for All tiles in column do
3: if first tile then
4: for i 1, TILE SIZE do
5: for j 1, TILE SIZE do
6: Xfirsttile

ij

 Bfirsttile

ij

�
P

i�1
k=1 Lfirsttile

ik

Xfirsttile

kj

7: Xfirsttile

ij

 Xfirsttile

ij

/Lfirsttile

ii

8: else
9: for i 1, TILE SIZE do

10: for j 1, TILE SIZE do
11: Xothertile

ij

 Bothertile

ij

�P
TILE SIZE

k=1 Lothertile

ik

Xfirsttile

kj

12: return X

of the section, we describe the lower triangular solver DFE
utilised for Cholesky solve acceleration.

1) Lower triangular solver DFE: If L is a n ⇥ n lower
triangular matrix and B an n ⇥m matrix, the linear system
LX = B can be solved by forward-substitution. The first
equation l

1,1 · x1,j = b

1,j only involves x

1,j and thus one can
solve for x

1,j directly. The second equation only involves x
1,j

and x

2,j , and thus can be solved once one substitutes in the
already solved value for x

1,j . Continuing in this way, the k-
th equation only involves x

1,j ... xk,j and one can solve for
xk,j using the previously solved values for x

1,j ... xk�1,j . The

resulting formula is: xn,j =
bn,j �

Pn�1
k=1

ln,k · xk,j

ln,n
.

Regarding to Maxeler acceleration, the first step is to split
Ln⇥n and Bn⇥m into tiles, where nt =

n

TILE SIZE

, mt =

m

TILE SIZE

and Li,i will be lower triangular tiles.

L =

2

664

L

1,1 . . . 0
L

2,1 . . . 0
...

. . .
...

Lnt,1 . . . Lnt,nt

3

775 , B =

2

664

B

1,1 . . . B

1,mt

B

2,1 . . . B

2,mt
...

. . .
...

Bnt,1 . . . Bnt,mt

3

775

(9)
Algorithm IV.1 shows the corresponding DFE kernel. For

simplicity let us assume that nt = 4 and mt = 2, though the
algorithm works for every nt and mt size. The first column
of tiles from L and B are transfered to the DFE and perform
one run. The result obtained from the DFE run is a column
of tiles X

(1)

1

which overwrites B. In the second step another
DFE run is performed with inputs shown in Figure 3 in light
gray. This process continues until X(4)

41

is obtained, and at this
point the first column of X tiles is fully calculated. The same
procedure can be repeated for the second column of B tiles,
resulting in the computation of the whole X matrix.

V. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the efficiency of
the proposed design solutions in terms of performance gains.
The original scikit-learn scripts (CPU) ran on of Intel Core i5-
3230M @ 2.60GHz processor, while the accelerated version
(DFE) has been simulated and synthesized for the MAX4
architecture. All the DFE accelerators have been designed/-
coded in MaxJ language and they have parameterized in order
to automatically scale according to the applied tile size. All
accelerators have been synthesized, placed and routed with a
clock frequency of 200 MHz. To achieve best performance,
the DFE have been synthesized to support the maximum

100 2,000

1

8.5 · 10�2

4.73

m = k

Sp
ee

du
p

Speedup =
CPUtime

DFEtime

(a) Matrices Distance pdist

100 2,000

1

8.19

9.62

n = m = k

Sp
ee

du
p

Speedup =
CPUtime

DFEtime

(b) Matrices distance cdist

100 2,000

1

0.6

2.03

8.21

n

Sp
ee

du
p

Speedup =
CPUtime

DFEtime

(c) Cholesky decomposition

100 2,000

1

0.12

6.56

n = m

Sp
ee

du
p

Speedup =
CPUtime

DFEtime

(d) Cholesky solve

Fig. 4. Speedup results of DFE accelerated functions in respect to increasing dataset sizes.

TABLE II
MAXIMUM SUPPORTED TILING AND RESOURCE UTILISATION.

Description Max. Tiling LUTs FFs BRAMs DSPs
Mat. dist. 192⇥192 76.22% 33.02% 60.15% 40.24%
Chol. decomp. 336⇥336 46.69% 37.59% 100.00% 71.73%
Chol. solver 416⇥416 55.85% 37.36% 86.75% 84.97%

Fig. 5. Speedup of scikit-learn fit() and predict() methods for input matrix
size 2000⇥2000.

parallelism. Since the number of parallel computations is
equal to the tile size, this equates to maximising the tile size.
However, the maximum tile size is limited due to Fmem size,
DSPs for computing multiplications, LUTs and FFs. Table II
shows the maximum tile size as well as the FPGA’s resource
utilisation for each DFE.

Figure IV-A shows the speedup achieved by the designed
DFEs for each accelerated function, in respect to software
execution. We note that software execution utilizes both the
CBLAS [6] and LAPACK [7] libraries for optimized imple-
mentation of targeted functions. We evaluate the performance
gains considering scaled matrices sizes. It is important to men-
tion that the achieved speedup increases as moving towards
larger dataset sizes, showing that the proposed designs forms
a scalable solution. Matrices distance report a speedup of 4.7⇥
for pdist and 8.2⇥ for cdist, cholesky decomposition 2⇥ while
the Cholesky solver speedup reaches 6.5⇥ for 2000⇥2000
input matrices. In cholesky decomposition it can be observed
that there is a region where DFE implementation is not so
efficient in respect to the software implementation, due to the
fact that data movement to the DFE dominates the computation
acceleration. However, as shown this effect is eliminated for
larger dataset sizes, while the speedup slope remains positive,
i.e. larger speedup gains are expected for larger datasets.
Finally, Figure 5 reports the speedup achieved for the overall
fit() and predict() of scikit-learn methods considering the
datasets of section III. Average speedup of 2.4⇥ and 5.6⇥
for fit() and predict(), respectively. We note that in the
examined fit() and predict() implementations DFE-to-DFE
communication has been performed through the host CPU,

thus extra speedup gains are expected for designs utilising
the MaxRing interconnection for high bandwidth DFE-to-DFE
communication.

VI. CONCLUSIONS

This paper focused on the acceleration of Gaussian Process
Regression, one of the most expressive and time-demanding
predictive model in machine learning, exploiting Maxeler’s
dataflow computing technology. Our solution targets Python’s
scikit-learn package, in which a set of high demanding soft-
ware functions have been accelerated delivering a measured
average speedup of 8⇥ in respect to software solution, and
showing good scalability for increased dataset sizes. It is
worth mentioning that the accelerated scikit-learn functions
are frequently used for the solution of many other problems,
thus the proposed high performance dataflow implementations
could affect the efficiency of various applications.

REFERENCES

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[2] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy
array: A structure for efficient numerical computation. Computing in
Science and Engg., 13(2):22–30, March 2011.

[3] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed 2016-09-09].

[4] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian
Processes for Machine Learning (Adaptive Computation and Machine
Learning). The MIT Press, 2005.

[5] Maxeler Technologies. http://www.maxeler.com, 2016.
[6] CBLAS library. http://www.netlib.org/clapack/cblas/, 2016.
[7] LAPACK library. http://www.netlib.org/lapack/, 2016.
[8] Vasily Volkov and James W. Demmel. Benchmarking gpus to tune dense

linear algebra. In Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, SC ’08, pages 31:1–31:11, Piscataway, NJ, USA, 2008.
IEEE Press.

[9] Ardavan Pedram, Andreas Gerstlauer, and Robert A. van de Geijn.
Algorithm, architecture, and floating-point unit codesign of a matrix
factorization accelerator. IEEE Trans. Computers, 63(8):1854–1867,
2014.

[10] Antonio Roldao and George A. Constantinides. A high throughput
fpga-based floating point conjugate gradient implementation for dense
matrices. ACM Trans. Reconfigurable Technol. Syst., 3(1):1:1–1:19,
January 2010.

[11] Depeng Yang, Gregory D. Peterson, and Husheng Li. High performance
reconfigurable computing for cholesky decomposition. In in Proceedings
of the Symposium on Application Accelerators in High Performance
Computing (UIUC 09, 2009.

[12] UCI Machine Learning Repository. http://www.archive.ics.uci.edu/ml/,
2016.

[13] Oliver Pell and Vitali Averbukh. Maximum performance computing with
dataflow engines. Computing in Science and Engg., 14(4):98–103, July
2012.

[14] Maxpower library. https://www.github.com/maxeler/maxpower, 2016.
[15] Suppressed for blind review.

