Array of Things project
plus of course the Arduino family.
The Microduino looks very interesting and we will order some to evaluate (2015-05-30).
We will look at the TinyDuino and its shield design further.
Looking at the London bus stop/shelter possibilities for the IoT Launchpad project there are ~19k bus stops in London of which ~13k have shelters (and ~1000 of those are managed by local authorities rather than centrally). The current design for new shelters being deployed is the London Landmark, which is likely in many of the places that we would want to do our ~50 trial deployments mainly in and around Shoreditch.
Note also that the are stops that have no shelters, just 'flags', at which we may try to deploy units possibly on top of the poles, or in the timetable displays, or even conceivably in an Array of Things style unit!
Assuming initially that we work to something like the REV2 OpenTRV PCB size (5cm by 5cm) and allow stacking of some sensor boards on a variant of the IC2EXT connector/board, and that all of our sensors stay within whatever enclosure we use, and that we are battery powered for these deployments, then some plausible (waterproof) enclosures might be:
(Waterproof because apparently the shelter voids can often fill with rain!)
Attaching the boxes to the shelter structure might be as easy as with self-adhesive hook-and-loop tape, implying (say) an extra 5mm or so on one axis to still fit into a void at most, depending on void shape. Easy non-destructive installation and removal is valuable.
Note that for observing footfall there are a number of issues to bear in mind:
Related constraints apply to environmental monitoring such as:
A number of locations may work for different sensor combinations and target users (eg those around the stop versus people actually in the shelter) for footfall/presence:
Environmental monitoring, eg particulates, NOX, temperature, sound pressure, may work best on the top of a shelter or flag, with air flow, natural or forced. (Forced implies fans and much-increased power consumption.)
Some locations, eg higher from the ground, may experience better (more reliable, lower-power) radio comms for backhaul.
Bruno's (EnergyDeck CTO) 2015-06-07 D13 note:
Research on physical enclosures and connectors for metering equipment. This is based on the same use cases as D11. ## General ## General requirements: - High gain antenna connector to make it possible to plug in an external antenna in areas where wireless communication is difficult. - Programming connector (optional): USB or similar connector to allow the device to be re-programmed on site. If present, this connector should be hidden behind a flap that is closed with a screw to ensured that it is only accessed by people who know what they are doing. - Mains power: in general, it is better if the devices work on battery and do not needs mains power. This could be provided as an option but is not essential. ## Office ## General requirements: - No special treatment, - Should be relatively unobtrusive and neutral in design and colour, - Wall mounting option is useful, - Higher quality enclosure if device is supposed to be on desk top. ## Hotel and social housing ## General requirements: - No external connectors, - Simple neutral enclosure in sturdy material, - External aspect of enclosure is important: it does not need to be high-tech but should be reasonably appealing to the eye (see Switchee enclosure), - Size of enclosure is important too: it shouldn't be too bulky, - Wall mounting essential, - Protection against accidental object intrusion: e.g. light sensors need to be protected while able to receive light, - Battery compartment needs additional protection against access, e.g. single screw in addition to keep lid in place (see standards for young children's toys). Additional requirement for bathrooms: - Weather sealed (does not need to be completely waterproof but should be able to withstand high humidity and light splashing) ## Industrial ## General requirements: - No external connectors, - Ruggedised enclosure, - Wall mounting essential.
Shape and size can vary so both the stacked shield design or the flat design may be appropriate depending on use case. Wall mounted are probably better as a larger flat design to avoid protruding off the wall too much.
Initially we will probably work with a derivation of OpenTRV's 50mm x 50mm board profile starting with the OpenTRV V0p2 REV2 or REV4 design, and the I2CEXT outline sensor/programming 'shield' connector, using vertical stacking to keep I2C/SPI lines short. However, switching to an (open) third-party base design, or mixing deployments with third-party designs, is on the cards if the most cost-effective way to achieve target results. In particular we will look further at the Microduino and TinyDuino further.
It might be useful to keep power and radio on separate connectors, eg to avoid it being possible to accidentally add more than one of them and more than one MCU. If so, then the XBee pinout may be of interest for a non-stackable radio module slot.
We have identified a preliminary possible set of indoors (R30-3217, R30-3226) and outdoors (see below) cases/enclosures, by default resistant to water ingress for outdoor/exterior implementations, though that seal may have to be forgone in order to monitor sound, RH%, gases, etc.
Box size 1: Evatron DE01S-A-TG-0 80 x 73 x 53 Transparent Grey R30-5000 Box size 2: Evatron DE02S-A-TG-0 106 x 80 x 53 Transparent Grey R30-5004 Box size 3: Evatron DE03S-A-TG-0 139 x 80 x 53 Transparent Grey R30-5009 Box size 4: Hammond 1555HF17GY ABS 180 120 37 IP67 UL94-HB R30-5963 Box size 5: HAMMOND 1551KGY CASE, ABS, GREY, 80X40X20MM Note: IP54 only F3536464 Box size 6: HAMMOND 1551LGY CASE, ABS, GREY, 80X40X15MM Note: IP54 only F1877312 Note: R Rapid Online, F Farnell Standard attachment: industrial hook and loop
2015/09/29: boxes 3 and 4 were physically tested in preferred voids. Results: