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The rapid progress in human-genome sequencing is leading to a high availability of genomic data. These
data is notoriously very sensitive and stable in time, and highly correlated among relatives. In this article,
we study the implications of these familial correlations on kin genomic privacy. We formalize the problem
and detail efficient reconstruction attacks based on graphical models and belief propagation. With our
approach, an attacker can infer the genomes of the relatives of an individual whose genome or phenotype are
observed by notably relying on Mendel’s Laws, statistical relationships between the genomic variants, and
between the genome and the phenotype. We evaluate the effect of these dependencies on privacy with respect
to the amount of observed variants and the relatives sharing them. We also study how the algorithmic
performance evolves when we take these various relationships into account. Furthermore, to quantify the
level of genomic privacy as a result of the proposed inference attack, we discuss possible definitions of
genomic privacy metrics, and compare their values and evolution. Genomic data reveals Mendelian disorders
and the likelihood of developing severe diseases, such as Alzheimer’s. We also introduce the quantification
of health privacy, specifically, the measure of how well the predisposition to a disease is concealed from an
attacker. We evaluate our approach on actual genomic data from a pedigree and show the threat extent by
combining data gathered from a genome-sharing website as well as an online social network.
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1. INTRODUCTION

Thanks to the plummeting costs of molecular profiling, biomedical researchers have
access to an increasing amount of genomic data, a key enabler toward a more personal-
ized, precise, and predictive medicine. In addition to research purposes, genomic data
is being used by individuals to learn about their (genetic) predispositions to diseases
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or their ancestries. This biomedical data revolution has spawned the emergence of
health-related websites and online social networks (OSNs), in which individuals share
their genomic data. Thus, currently, tens of thousands of genomes are available online.

A major issue stemming from this increasing availability of genomic data is pri-
vacy. First, it has been shown that, even if genomic data is anonymized, it is possi-
ble to reidentify their owners by various means [Gymrek et al. 2013; Humbert et al.
2015b; Sweeney et al. 2013]. Second, there is an increasing number of individuals who
share their genomes online, sometimes with their real identifiers (e.g., on OpenSNP.org
[Greshake et al. 2014]). Access to such sensitive data can lead to discrimination in ac-
cess to insurance and employment [Ayday et al. 2015].

These concerns are exacerbated by the fact that genomic data of family members
is highly correlated, leading to interdependent privacy risks. These risks have been
publicized by the story of the Lacks family.1 However, given the trend on genomic-data
sharing, the Lacks family is by far not the only family whose privacy is threatened by
these interdependent risks. We have shown the extent of this threat by using an OSN
as a side channel to gather familial information [Humbert et al. 2013].

In this work, we quantify the interdependent risks stemming from familial cor-
relations in genomic privacy. Focusing on the most common variant in the human
population, single nucleotide polymorphism (SNP), and considering the intragenome
statistical correlations (referred to as linkage disequilibrium), we quantify the loss in
genomic privacy of individuals when one or more of their family members’ genomes are
(either partially or fully) revealed. To achieve this goal, we design efficient inference
algorithms that mimic the adversarial reconstruction attack. We present a Bayesian
network model that takes into account the statistical relationships between the rela-
tives’ genomes, and between the genome and the phenotype. We further extend this
model to a factor graph representation in order to include intragenome correlations
into our model. In order to infer the values of the unknown SNPs in linear complexity,
we make use of the belief propagation algorithm, run either on a junction tree (which
is a transformation of the Bayesian network that removes its loops), or on the factor
graph. In the latter case, as the factor graph contains loops; the algorithm is carried
out multiple times until the probability distributions converge to a stable state. Then,
using various metrics, we quantify the genomic privacy of individuals and show the
decrease in their level of genomic privacy caused by the published genomes of their
family members. We also quantify the health privacy of the individuals regarding their
(genetic) predisposition to certain serious diseases given current medical knowledge.
We evaluate the proposed inference attacks and show their efficiency and accuracy by
using real genomic data of a pedigree. More important, by using genomic and pheno-
typic data and pedigree information collected from a genome-sharing website and an
OSN, we show that inference attacks do not threaten just the Lacks family.

This article is a revised and extended version of our paper [Humbert et al. 2013],
and contains the following additional contributions:

—We present a new framework for the inference attack that considers only the genomic
correlations between familial members. We show that this new framework enables
performance of an exact inference in a single iteration of our belief propagation
algorithm. We also include analytic and empirical evaluations of its computational
complexity.

—We add a new layer to this new framework that enables taking additional information
about relatives’ phenotypes into account to improve the inference attack.

1http://www.nytimes.com/2013/03/24/opinion/sunday/the-immortal-life-of-henrietta-lacks-the-sequel.html?
pagewanted=all.
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Fig. 1. Reproduction and SNP. Each parent produces gametes that are derived from one’s genome. The
offspring’s genome is the combination of these two gametes. As an example, the SNP circled on the offspring’s
genome is homozygous-minor for the offspring but heterozygous for the parents.

—We update the results of the inference attack by conducting several new experiments.
—We thoroughly evaluate the relation between various metrics, and draw conclusions

about the most appropriate metric in different settings.
—We carry out new experiments by making use of phenotypic information disclosed by

OpenSNP users in combination with their genomic data.
—We include a performance evaluation, and a discussion about the potential improve-

ments of the proposed inference attacks.

2. BACKGROUND

In this section, we briefly introduce the relevant genetic principles, as well as some
important tools for modeling data dependencies and running inference efficiently.

2.1. Genomics 101

DNA is a double-helix structure that consists of two complementary polymer chains.
Genetic information is encoded on the DNA as a sequence of nucleotides (A, T, G, C);
human DNA includes around 3 billion nucleotide pairs. With the decreasing cost of DNA
sequencing, genomic data is currently being used mainly in the following two areas:
(i) clinical diagnostics, for personalized genomic medicine and genetic research (e.g.,
genomewide association studies), and (ii) direct-to-consumer genomics, for genetic risk
estimation of various diseases or for recreational activities such as ancestry search.
In the following, we briefly introduce some concepts about the human genome and
reproduction that we use throughout this article.

2.1.1. Single Nucleotide Polymorphism. Human beings have 99.9% of their DNA in com-
mon. Thus, there is no need to focus on the whole DNA structure, but rather on the
variants. SNP is the most common DNA variation in human population. An SNP oc-
curs when a nucleotide (at a specific position on the DNA) varies between individuals
of a given population (as illustrated in Figure 1). There are approximately 50 million
SNP positions in the human population.2 Recent discoveries show that the suscepti-
bility of an individual to several diseases can be computed from the individual’s SNPs
[Johnson and O’Donnell 2009]. For example, it has been reported that two partic-
ular SNPs (rs7412 and rs429358) on the Apolipoprotein E (ApoE) gene indicate an

2http://www.ncbi.nlm.nih.gov/projects/SNP/.
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Table I. Mendelian Inheritance Probabilities FR(Xi
M , Xi

F , Xi
C)

for a SNP gi , Given the Genotypes of the Parents

Father

Xi
F = 0 Xi

F = 1 Xi
F = 2

M
ot

h
er Xi

M=0 (1,0,0) (0.5,0.5,0) (0,1,0)

Xi
M=1 (0.5,0.5,0) (0.25,0.5,0.25) (0,0.5,0.5)

Xi
M=2 (0,1,0) (0,0.5,0.5) (0,0,1)

Note: The probabilities of the child’s genotype is represented in
parentheses. Each table entry represents (P(Xi

C = 0|Xi
M, Xi

F ),
P(Xi

C = 1|Xi
M, Xi

F ), P(Xi
C = 2|Xi

M, Xi
F )).

(increased) risk for Alzheimer’s disease. SNPs carry privacy-sensitive information
about individuals’ health; thus, we will quantify health privacy focusing on individ-
uals’ published (or inferred) SNPs and the diseases that they reveal.

Two different nucleotides (called alleles) can usually be observed at a given SNP
position: (i) the major allele is the most frequently observed nucleotide, and (ii) the
minor allele is the rare nucleotide.3 For each SNP position, we represent the major
allele as B and the minor allele as b (where both B and b are in {A, T , G, C}).

Furthermore, each SNP position contains two nucleotides (one inherited from the
mother and one from the father, as we will discuss next). Thus, the content of an SNP
position can be in one of the following states: (i) BB (homozygous-major genotype), if
an individual receives the same major allele from both parents; (ii) Bb (heterozygous
genotype), if an individual receives a different allele from each parent (one minor and
one major); or (iii) bb (homozygous-minor genotype), if an individual inherits the same
minor allele from both parents. For simplicity of presentation, in the rest of the article,
we encode BB with 0, Bb with 1, and bb with 2. Finally, each SNP gi is assigned a minor
allele frequency (MAF), pi

maf, which represents the frequency at which the minor allele
b of the corresponding SNP occurs in a given population (typically, 0 < pi

maf < 0.5).

2.1.2. Reproduction. Mendel’s First Law states that alleles are passed independently
from parents to children for different meioses (the process of cell division necessary
for reproduction). For each SNP position, a child inherits one allele from the mother
and one from the father, as shown in Figure 1. Each allele of a parent is passed on to
a child with equal probability of 0.5. Let FR(Xi

M, Xi
F , Xi

C) be the function modeling the
Mendelian inheritance for an SNP gi, where M, F, and C represent mother, father, and
child, respectively. We illustrate the Mendelian inheritance probabilities in Table I.

Based on FR(Xi
M, Xi

F , Xi
C), we can say that, given both parents’ genomes, a child’s

genome is conditionally independent of all other ancestors’ genomes.

2.1.3. Linkage Disequilibrium. As we discussed before, DNA sequences are highly corre-
lated between close relatives, but there also exist correlations between different SNPs
in the DNA. Linkage disequilibrium (LD) [Falconer and Mackay 1996] defines a correla-
tion that appears between any pair of SNP in the whole genome due to the population’s
genetic history. Because of LD, the content of an SNP can be inferred from the contents
of other SNPs.

For example, assume that gi and gj are in LD with each other. Let (A1, A2) and (B1, B2)
be the potential alleles for SNP gi and gj , respectively. Further, let (p1, p2) and (q1, q2)
be the allele probabilities of (A1, A2) and (B1, B2), respectively, provided by population
statistics. That is, the probability that an individual in a given population will have

3The two alleles for the SNP position highlighted in Figure 1 are G and A.
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Table II. Linkage Disequilibrium (LD) between two SNPs gi and gj with
Potential Alleles (A1, A2) and (B1, B2), Respectively

A1, P(A1) = p1 A2, P(A2) = p2

B1, (P(B1) = q1 P(A1 B1) = p1q1 + D P(A2 B1) = p2q1 − D
B2, (P(B2) = q2 P(A1 B2) = p1q2 − D P(A2 B2) = p2q2 + D

allele A1 at SNP gi is p1, and so on. If there were no LD (i.e., if gi and gj were indepen-
dent), the probability that an individual would have both A1 and B1 at gi and gj would be
p1q1. However, due to correlations between gi and gj , this probability is in reality equal
to p1q1 + D, where D represents the discrepancy between the probability computed
under independence assumption between the two SNPs and the probability in a given
population. In Table II, we illustrate this LD relationship for all possible combinations
of (A1, A2) and (B1, B2). We note that D can be either negative or positive, depending on
the LD values. Another relevant metric to capture LD is the correlation coefficient r,
expressed as r = D/

√
p1 p2q1q2, where r = 1 represents the strongest LD relationship.

2.2. Probabilistic Inference

In this section, we introduce the mathematical models and algorithms that form the
basis of efficient inference methods.

2.2.1. Probabilistic Graphical Models. Probabilistic graphical models are very appropriate
models to represent dependencies between random variables [Koller and Friedman
2009]. Such graph-based models can express conditional dependencies (e.g., Bayesian
networks), joint dependencies (e.g., Markov random fields), or both (e.g., chain graphs).
In graphical models, each node represents a random variable and arrows represent the
dependencies between them. Such models are very useful to represent the factorization
of the joint distribution of a large set of random variables, then dramatically reduce the
complexity of, for example, the computation of marginal probabilities. If the graphical
model contains loops or cycles,4 it is possible to eliminate these by clustering variables
into single nodes (called cliques) and building a maximum spanning tree (called
junction or clique tree [Jensen and Jensen 1994]) of cliques. A more generic model that
can represent both directed and undirected graphs is the factor graph. Contrary to the
junction tree, it enables finding approximate solutions in situations in which exact in-
ference is computationally intractable. A factor graph is a bipartite graph with one set
of vertices representing the random variables and the other set representing the (local)
functions that factor the (global) joint probability function (based on the dependencies
between the variables). A variable node is connected to a factor node if and only if the
variable is an argument of the local function corresponding to the factor node.

2.2.2. Belief Propagation. Belief propagation [Pearl 1988] is a message-passing algo-
rithm for performing inference on graphical models. It is also known as the sum-
product algorithm [Kschischang et al. 2001]. It is typically used to compute marginal
distributions of unobserved variables conditioned on observed variabled. Computing
marginal distributions is hard in general, as it might require summing over an ex-
ponentially large number of terms. The belief-propagation algorithm applies on var-
ious types of graphical models, such as Bayesian networks or Markov random fields.
If the underlying graphical model contains no (directed or undirected) cycle, the
belief-propagation algorithm leads to exact inference, that is, exact posterior marginal

4There exists a cycle between X1 and Xk in a graph if X1 = Xk and, for every i = 1, . . . , k − 1, we have
either a directed or undirected edge between Xi and Xi+1 with, for at least one i, a directed edge. A loop is
defined similarly except that it also allows for a reverse-directed edge between Xi and Xi+1 (i.e., directed
edge between Xi+1 and Xi). See Section 2.2 of Koller and Friedman [2009] for further details.
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probabilities given the observed variables. If the graphical model is not a tree or poly-
tree (not cycle-free), we can either transform it into a junction tree and then run
belief propagation on it and get the exact solution or perform loopy belief propaga-
tion, which yields an approximate solution [Murphy et al. 1999]. The second approach
is typically used when the junction-tree approach is computationally intractable, and
often gives good approximate results. Belief propagation is commonly used in arti-
ficial intelligence and information theory. It has demonstrated empirical success in
numerous applications, including LDPC codes [Pishro-Nik and Fekri 2004], reputation
management [Ayday and Fekri 2012a, 2012b], and recommender systems [Ayday et al.
2012].

As factor graphs are the most generic representation of graphical models, we will
explain the generic belief-propagation algorithm on them.5 We assume that the joint
distribution g(x1, . . . , xn) factors into a product of several local functions, or factors,
fa(xa):

g(x1, . . . , xn) =
∏
a∈A

fa(xa), (1)

where A is a discrete index set (of factor nodes), and xa is a subset of {x1, . . . , xn} rep-
resenting the set of variable nodes connected to factor node a. The belief-propagation
algorithm simply works by passing messages between the |A| factor nodes (represent-
ing the factors f1(x1) to f|A|(x|A|)) and the n variable nodes (representing the random
variables x1 to xn) on the bipartite factor graph. The message ma→i(xi) from the factor
node a to the variable node i can be interpreted as a statement about the relative prob-
abilities that i is in its different states based on the function fa. The message ni→a(xi)
from the variable node i to the factor node a can be interpreted as a statement about the
relative probabilities that node i is in different states based on all the information node i
has except for that based on the function fa. The messages are updated according to
the following rules [Pearl 1988; Kschischang et al. 2001]:

ni→a(xi) = 1
Z

∏
c∈N(i)\a

mc→i(xi) (2)

and
ma→i(xi) =

∑
xa\xi

fa(xa)
∏

j∈N(a)\i

nj→a(xj). (3)

Here, N(i)\a denotes all the nodes that are neighbors of node i except for node a.
Further,

∑
xa\xi

denotes a sum over all the variables xa that are arguments of fa,
except xi. Z is a normalization factor that is needed so that the resulting messages
represent probability mass functions. At the beginning, messages are initialized as
follows: ni→a(xi) = 1 and ma→i(xi) = fa(xi). Then, at the end of the algorithm, after
convergence, the (estimated) marginal distribution of xi is given by the product of the
messages received by the variable nodes:

P(xi) = 1
Z

∏
c∈N(i)

mc→i(xi), (4)

where Z is such that
∑

xi
P(xi) = 1. Note that, if the underlying graphical model is a

tree, convergence can be reached after computing each message only once (for every

5Interested readers can check Kschischang et al. [2001] to see how it applies to other graphical models, such
as Bayesian networks.
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Fig. 2. Overview of the proposed framework to quantify kin genomic privacy. SNP gi of relative rj is
represented by xi

j ∈ {0, 1, 2}. The set of SNPs of individual rj is represented by vector x j . Given its health
and genomic privacy, the family should ideally decide whether to reveal less or more of their genomic data
via the genomic-privacy preserving mechanism (GPPM).

factor and variable node). Otherwise, there is no guarantee of convergence to the true
marginal in the general case, but there exist sufficient conditions for convergence [Mooij
and Kappen 2007]. Neither is there any fixed convergence or error rates in general. We
describe how many iterations of message computation for every node are needed in our
context in Sections 3.4 and 6.1. Finally, note that exact and approximate marginaliza-
tion is NP-hard in general, but, in our genomic setting, it can be solved in linear time
in the number of factor nodes (or variable nodes). We refer the reader to Section 3.4 for
more details on the computation complexity in our setting.

3. THE PROPOSED FRAMEWORK

In this section, we formalize our approach and present the different components that
will allow us to quantify kin genomic privacy. Figure 2 gives an overview of the
framework.

3.1. Notations and Definitions

The SNPs of all relatives are represented by the random variable X that takes values
in the set X = {0, 1, 2}n×m, where n is the number of relatives in the targeted family,
m is the number of SNPs in a single DNA sequence, and 0, 1, 2, encode the number
of minor alleles at every considered SNP. Moreover, the hidden SNPs are represented
by the random variable XH (that takes value in the set XH), and the SNPs observed
by the adversary by the random variable XO (that takes value in the set XO). We
define R = {r1, r2, . . . , rn} to be the set of relatives in the targeted family (whose family
tree, showing the familial connections between the relatives, is denoted as T ) and
G = {g1, g2, . . . , gm} to be the set of SNPs (i.e., positions in the DNA sequence). Let
Xi

j , respectively, xi
j ∈ {0, 1, 2}, denote the random variable representing SNP gi of

individual rj , respectively, its value. Furthermore, we let xi = [x1
i x2

i · · · xm
i ] represent

the values of the SNPs of individual ri and let x ∈ X be the n × m matrix representing

ACM Transactions on Privacy and Security, Vol. 20, No. 1, Article 3, Publication date: February 2017.
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the values of the SNPs of all relatives:

x =

⎡
⎢⎢⎢⎣

x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

...
...

. . .
...

x1
n x2

n · · · xm
n

⎤
⎥⎥⎥⎦ (5)

FR(Xi
M, Xi

F , Xi
C) is the function representing the Mendelian inheritance probabilities

(in Table I), where M, F, and C represent mother, father, and child, respectively. The
m× m matrix l represents the pairwise LD values between the SNPs in G, which can
be expressed by the correlation coefficient r; lij refers to the matrix entry at row i and
column j. lij > 0 if i and j are in LD, and lij = 0 if these two SNPs are independent (i.e.,
there is no LD between them). The m-size vector pmaf = [p1

maf p2
maf · · · pm

maf] represents
the minor allele probabilities/frequencies (MAFs) of the SNPs in G. Finally, note that,
for any rk ∈ R, gi ∈ G, and gj ∈ G, the joint probability P(Xi

k, X j
k) can be derived from

lij , pi
maf, and pj

maf.
The adversary carries out a reconstruction attack to infer the value xH ∈ XH by

relying on background knowledge, FR(Xi
M, Xi

F , Xi
C), l, pmaf, and on the adversary’s ob-

servation xO ∈ XO.6 After carrying out this reconstruction attack, we evaluate genomic
and health privacy of the family members based on the adversary’s success and cer-
tainty about the targeted SNPs and the predispositions to diseases that they reveal.
Finally, we discuss some ideas to preserve the individuals’ genomic and health privacy.

3.2. Adversary Model

An adversary is defined by the adversary’s objective(s), capabilities, and knowledge.
The objective of the adversary is to compute the values of the targeted SNPs for one
or more members of a targeted family by using (i) the available genomic data of one
or more family members, (ii) the familial relationships between the family members,
(iii) the rules of reproduction (in Section 2.1.2), (iv) the MAFs of the nucleotides, and
(v) the population LD values between the SNPs. We note that (i) and (ii) can be gathered
online from genome-sharing websites and OSNs, and that (iii), (iv), and (v) are publicly
known information. Note that, in the future, the increasing possibility to accurately
sequence as well as impute the actual haplotypes carried by an individual in each of the
copies of the diploid genome will allow a more accurate inference of relatives’ genotype
than relying on population LD patterns only.

Various attacks can be launched, depending on the adversary’s interest. The adver-
sary might want to infer one particular SNP of a specific individual (targeted-SNP-
targeted-relative attack) or one particular SNP of multiple relatives in the targeted
family (targeted-SNP-multiple-relatives attack) by observing one or more other rela-
tives’ SNP at the same position. Furthermore, the adversary might also want to infer
multiple SNPs of the same individual (multiple-SNP-targeted-relative attack) or mul-
tiple SNPs of multiple family members (multiple-SNP-multiple-relatives attack) by
observing SNPs at various positions of different relatives. The statistical inference
model presented in this article applies to all these attacks.

3.3. Inference Attack

We formulate the reconstruction attack (on determining the values of the targeted
SNPs) as finding the marginal probability distributions of the random variable xH rep-
resenting the hidden SNPs, given the observed values xO, familial relationships T , and

6xo is constructed by replacing hidden SNPs in x by ⊥.
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the publicly available statistical information. We represent the marginal distribution
of an SNP gi for an individual rj as P(Xi

j = xi
j |XO = xO).

These marginal probability distributions could traditionally be extracted from
P(XH = xH|XO = xO,FR(Xi

M, Xi
F , Xi

C), l, T , pmaf), which is the joint probability dis-
tribution function of the hidden SNPs, given the available side information and the
observed SNPs. Then, clearly, each marginal probability distribution could be obtained
as follows:

P
(
Xi

j = xi
j |XO = xO

) =
∑

xH′ ∈XH\X i
j

P
(
XH′ = xH′ , Xi

j = xi
j |XO = xO,FR, l, T , pmaf

)
, (6)

where XH′ is the random variable representing all hidden SNPs except SNP gi of rel-
ative rj . However, the number of terms in Equation (6) grows exponentially with the
number of variables, making the computation infeasible considering the scale of the
human genome (which includes tens of million of SNPs). In the worst case, the com-
putation of the marginal probabilities has a complexity of O(3nm). Thus, we propose to
factorize the joint probability distribution function into products of simpler local func-
tions, each of which depends on a subset of variables. These local functions represent
the dependencies (due to LD and reproduction) between the different SNPs in X. Then,
by running the belief-propagation algorithm on graphical models, we can compute the
marginal probability distributions in linear complexity (with respect to both n and m).

We present first the inference attack that takes only the familial correlations into
account, which enables efficient performance of an exact inference, and then present
the model for which both familial and LD correlations are considered. The former attack
is typically sufficient if the adversary has access to the full set of SNPs of interest of the
target’s relatives, whereas the latter can improve the attack’s accuracy if the adversary
does not observe all SNPs of interest in the genomes of the target’s family members.
For the second inference attack, due to the number and type of correlations, and the
subsequent complexity of performing an exact inference, we make use of loopy belief
propagation, which provides an approximate solution.

3.3.1. Inference Attack Without LD Correlations. Under the assumption that there is no LD
correlation between SNPs, the random variables Xis representing a column of matrix
x are pairwise mutually independent, that is, Xi ⊥ X j , ∀gi, gj ∈ G, gi �= gj . We can then
express the marginal distribution of Xi

j in Equation (6) as

P
(
Xi

j = xi
j |Xi

O = xi
O

) =
∑

xi
H′ ∈X i

H′ \X i
j

P
(
Xi

H′ = xi
H′ , Xi

j = xi
j |Xi

O = xi
O,FR, T , pmaf

)
, (7)

where the set X i
H′ is of maximal size 3n−1, which can still be computationally intractable

if we deal with a large family. However, contrary to the general case, we can here com-
pute the exact marginal distributions in linear time by modeling the various depen-
dencies with a Bayesian network framework and applying the junction tree algorithm
on it. In general, due to Mendelian inheritance laws, the joint distribution P(Xi) can
be factored as follows:

P
(
Xi) =

∏
rj∈founders

P
(
Xi

j

) ∏
rk∈R\founders

P
(
Xi

k|Xi
m(k), Xi

f (k)

)
, (8)

where the founders are the relatives who have no ancestor in the family tree T , and
m(k), f (k) are the indices of the mother, respectively, the father, of rk. P(Xi

j) is given
by the MAFs pmaf, and P(Xi

k|Xi
m(k), Xi

f (k)) by the Mendelian inheritance probabilities
FR(Xi

M, Xi
F , Xi

C) in Table I. Figure 3 shows an example of a trio (mother, father, and
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Fig. 3. Graphical models representing familial dependencies. (a) Bayesian network representing a trio
(mother, father, and child). (b) Bayesian network with two parents and two siblings. (c) Junction tree (made
of two cliques) corresponding to the Bayesian network in (b).

child), which is also the main basic building block of our Bayesian-network repre-
sentation of familial genetic dependencies. In this example, the joint distribution in
Equation (8) can be factored as P(Xi) = P(Xi

1)P(Xi
2)P(Xi

3|Xi
1, Xi

2). As mentioned in
Section 2.2, we can efficiently compute the exact marginal distributions on polytrees
by using belief propagation. However, as soon as sibling relationships appear in the
family tree T , the underlying Bayesian network is no longer a polytree7 and the belief
propagation does not necessarily converge to the exact marginal probabilities. In this
case, in order to perform exact inference, we first need to transform the Bayesian net-
work into a junction tree. Figures 3(b) and 3(c) show a simple example of a Bayesian
network with undirected cycles and its corresponding junction tree.

The procedure to construct the junction tree is as follows. First, we have to trans-
form the directed graph into an undirected one, and moralize it, that is, connect all
unconnected parents (nodes that have outgoing edges connecting the same node in
the directed graph). Second, we triangulate the resulting undirected graph, meaning
that we remove all cycles containing four nodes or more by connecting some of these
nodes together. More precisely, for any given cycle in the undirected graph, this step
creates an edge between any two nonsuccessive nodes in the cycle. This step is not
needed in our genetic case because all cycles are already of length 3. Third, we remove
cycles by clustering nodes belonging to the same cycle into cliques. In this process, it
is important to build cliques with the smallest number of variables8 to minimize the
inference computational burden. In our case, all cliques will be of size 3 (representing
mother–father–child). Then, all cliques sharing the same variables are still connected
by edges, which usually yields a loopy graph. In order to remove these cycles, we form
a maximum spanning tree of cliques and ensure that if a variable is in two cliques,
then it is in every clique along the path connecting the two cliques. If this property
holds, local propagation of information will lead to global consistency. Finally, we apply
the belief-propagation algorithm on the resulting junction tree, first passing messages9

upward, from the leaves to the root, and then downward, from the root to the leaves,
which eventually provides the marginal probabilities of all cliques. If we are interested
in the marginal probability of a given variable in a clique, we simply sum all other
variables in the clique out.

3.3.2. Inference Attack With Phenotypic Information. It could also happen that the adversary
gets access to phenotypic data, such as physical traits or diseases. Such data can
be found online, on health-related OSNs (such as PatientsLikeMe or OpenSNP) or

7Its underlying undirected graph is not a tree (it contains a loop made of the siblings and their parents).
8Note that the size of the largest clique is called the treewidth and determines the complexity of the algorithm
(which is exponential in the treewidth).
9The messages are constructed similarly to rule (3) depicted in Section 2.2.2.
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Fig. 4. Bayesian network representing a trio (mother, father, and child), and two SNPs gi and gk influencing
a disease l.

traditional OSNs. We show here how the Bayesian network framework can be easily
expanded to take this type of information into account in our inference attack.

Figure 4 illustrates how phenotypic nodes can be included in the Bayesian network
of Figure 3(a) that represents a single SNP. This updated Bayesian network shows two
SNPs, gi and gk of a trio, and a single phenotype l. Here, it is assumed that two SNPs
influence directly the phenotype, but there could be from one to many depending on
the phenotype. The new layer of phenotypic information adds a number of nodes in
the Bayesian network equal to n times the total number of phenotypic traits/diseases.
Assuming that a single phenotype is observed, influenced by two SNPs, the general
joint distribution presented in Equation (8) is updated as follows:

P
(
Xi, Xk, Yl) =

∏
rp∈ f ounders

P
(
Xi

p

)
P

(
Xk

p

) ∏
rc∈R\ f ounders

P
(
Xi

c|Xi
m(c), Xi

f (c)

)
P

(
Xk

c |Xk
m(c), Xk

f (c)

)

×
∏
rj∈R

P
(
Yl

j |Xi
j, Xk

j

)
P

(
Yl

j |Xi
j, Xk

j

)
. (9)

The resulting Bayesian network is not a polytree if it includes sibling relationships or
phenotypes influenced by more than an SNP. In this case, as explained in Section 3.3.1,
we have to first transform the Bayesian network into a junction tree. The process is
the same as in the case without phenotypic data. After the moralization step (in which
graphical parents are connected), all cycles are also of length 3, including those induced
by the phenotype nodes. We evaluate this framework with real user data in Section 5.2.

3.3.3. Inference Attack With LD Correlations. Once we take into account correlations within
the same genomic sequence, the Bayesian network representation does not fit well as
it cannot represent undirected dependencies, such as the pairwise joint probabilities
given by LD. Also, constructing a junction tree from a Bayesian network containing
many cycles because of new nodes representing LD correlations would become un-
tractable. A factor graph model is better suited, as it can take both conditional and
joint local probabilities into account. It is a bipartite graph that consists of variable
nodes, representing random variables, and factor nodes, representing functions that
factor the global joint probability. Following Kschischang et al. [2001], we form a factor
graph by setting a variable node for each SNP xi

j for each random variable Xi
j (gi ∈ G

and rj ∈ R). We use two types of factor nodes:10 (i) the familial factor node, representing

10For the sake of clarity, we do not include the variable and factor nodes related to phenotypic information,
but the model also applies to them.
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Fig. 5. The factor graph representation of a trio (mother, father, and child) and 3 SNPs per family member.
The square, circle, and hexagonal nodes represent the familial factor nodes, variable nodes, and LD factor
nodes, respectively. The message passing described in the main text is between the nodes x1

1 , f 1
3 , and h1,2

1 ,
highlighted in the graph.

the familial relationships and reproduction, and (ii) the LD factor node, representing
the LD relationships between the SNPs. Our factor graph contains loops because of LD
nodes and sibling relationships (if any). We summarize the connections between the
variable and factor nodes here (Figure 5):

—Each variable node xi
j has its familial factor node f i

j to which it is connected. Fur-
thermore, xi

k (k �= j) is also connected to f i
j if k is the mother or father of j (in T ).

Thus, the maximum degree of a familial factor node is 3.
—Variable nodes x j

i and xm
i are connected to an LD factor node hj,m

i if SNP gj is in LD
with SNP gm. Since the LD relationships are pairwise between the SNPs, the degree
of an LD factor node is always 2.

Given the conditional dependencies caused by reproduction and LD, the global distri-
bution P(XH = xH|XO = xO,FR(Xi

M, Xi
F , Xi

C), L, T , pmaf) can be factored into products
of several local functions, each having a subset of variables from x as arguments:

P
(
XH = xH|XO = xO,FR(Xi

M, Xi
F , Xi

C), l, T , pmaf
)

= 1
Z

⎡
⎣∏

gi∈G

∏
rj∈R

f i
j

(
xi

j, xi
m( j), xi

f ( j),FR
(
Xi

M, Xi
F , Xi

C

)
, pmaf

)
⎤
⎦×

⎡
⎢⎢⎣

∏
ri∈R

∏
( j,m) s.t.

ljm�=0

hj,m
i

(
x j

i , xm
i , ljm

)
⎤
⎥⎥⎦,

(10)

where Z is the normalization constant, and xi
m( j), respectively, xi

f ( j), are the SNPs gi of
the mother, respectively, father, of ri (if they exist in T ).

Next, we introduce the messages between the factor and the variable nodes to com-
pute the marginal probability distributions using belief propagation. We denote the
messages from the variable nodes to the factor nodes as μ. We also denote the mes-
sages from familial factor nodes to variable nodes as λ, and from LD factor nodes to
variable nodes as β. Let X(ν) = {xi

j
(ν) : rj ∈ R, gi ∈ G} be the collection of variables

representing the values of the variable nodes at the iteration ν of the algorithm. The
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message μ
(ν)
i→k(xi

j
(ν)) denotes the probability of xi

j
(ν) = � (� ∈ {0, 1, 2}) at the νth iteration.

Furthermore, λ
(ν)
k→i(x

i
j
(ν)) denotes the probability that xi

j
(ν) = �, for � ∈ {0, 1, 2} at the

νth iteration given xi
m( j), xi

f ( j), FR(Xi
M, Xi

F , Xi
C), and pmaf. Finally, β

(ν)
k→i(x

i
j
(ν)) denotes the

probability that xi
j
(ν) = �, for � ∈ {0, 1, 2}, at the νth iteration given the LD relationships

between the SNPs.
For clarity of presentation, we choose a simple family tree consisting of a trio (i.e.,

mother, father, and child) and 3 SNPs (i.e., |R| = 3 and |G| = 3). In Figure 5, we
show how the trio and SNPs are represented on a factor graph, where r1 represents
the mother, r2 represents the father, and r3 represents the child. Furthermore, the 3
SNPs are g1, g2, and g3. We describe the message exchange between the variable node
representing the first SNP of the mother (x1

1 ), the familial factor node of the child ( f 1
3 ),

and the LD factor node h1,2
1 . The belief propagation algorithm iteratively exchanges

messages between the factor and the variable nodes in Figure 5, updating the beliefs on
the values (in xH) of the targeted SNPs at each iteration, until convergence. We denote
the variable and factor nodes x1

1 , f 1
3 , and h1,2

1 with the letters i, k, and z, respectively.
The variable nodes generate their messages (μ) and send them to their neighbors.

Variable node i forms μ
(ν)
i→k(x1

1
(ν)) by multiplying all information it receives from its

neighbors excluding the familial factor node k.11 Therefore, the message from variable
node i to the familial factor node k at the νth iteration is given by

μ
(ν)
i→k

(
x1

1
(ν)) = 1

Z
×

∏
w∈(∼k)

λ
(ν−1)
w→i

(
x1

1
(ν−1)) ×

∏

y∈{z,h1,3
1 }

β
(ν−1)
y→i

(
x1

1
(ν−1))

, (11)

where Z is a normalization constant, and the notation (∼k) means all familial factor
node neighbors of the variable node i, except k. This computation is repeated for every
neighbor of each variable node. It is important to note that the message in Equation (11)
is valid if the value of x1

1 is hidden to the adversary. However, the value of x1
1 can also be

observed by the adversary. In this case, if x1
1 = ρ (ρ ∈ {0, 1, 2}), then μ

(ν)
i→k(x1

1
(ν) = ρ) = 1

and μ
(ν)
i→k(x1

1
(ν)) = 0 for other potential values of x1

1 (regardless of the values of the
messages received by the variable node i from its neighbors).

Next, the factor nodes generate their messages. The message from the familial factor
node k to the variable node i at the νth iteration is formed using the principles of belief
propagation as

λ
(ν)
k→i

(
x1

1
(ν)) =

∑

{x1
2 ,x1

3 }
f 1
3

(
x1

1 , x1
m(1), x1

f (1),FR
(
Xi

M, Xi
F , Xi

C

)
, pmaf

) ∏

y∈{x2
1 ,x3

1 }
μ

(ν)
y→k

(
x1

1
(ν))

. (12)

Note that f 1
3 (x1

1 , x1
m(1), x1

f (1),FR(Xi
M, Xi

F , Xi
C), pmaf) ∝ P(x1

1 |x1
m(1), x1

f (1),FR(Xi
M, Xi

F , Xi
C)),

and this probability is computed using Table I. Furthermore, if the degree of the familial
factor node is 1 for a particular SNP, then the local function corresponding to the
familial factor node depends only on the MAF of the corresponding SNP. For example,
the degree of f 1

1 (in Figure 5(c)) is 1; thus, f 1
1 (x1

1 , x1
m(1), x1

f (1),FR(Xi
M, Xi

F , Xi
C), pmaf) ∝

P(x1
1 |p1

maf). This computation must be performed for every neighbor of each familial
factor node.

11The message μ
(ν)
i→z(x

1
1

(ν)
) from the variable node i to the LD factor node z is constructed similarly.
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Similarly, the message from the LD factor node z to the variable node i at the νth

iteration is formed as

β
(ν)
z→i

(
x1

1
(ν)

)
=

∑

x2
1

g1,2
1

(
x1

1 , x2
1 , l12

) ∏

y∈{x2
1 }

μ(ν)
y→z

(
x1

1
(ν)

)
. (13)

As before, this computation is performed for every neighbor of each LD factor node. We
further note that h1,2

1 (x1
1 , x2

1 , l1,2) ∝ P(x1
1 , x2

1 ), which is derived from l1,2, p1
maf, and p2

maf.
The algorithm proceeds to the next iteration in the same way as the νth iteration.

The algorithm starts at the variable nodes. Thus, at the first iteration of the algorithm
(i.e., ν = 1), the variable node i sends messages to its neighboring factor nodes based
on the following rules: (i) If the value of x1

1 is hidden from the adversary, μ
(1)
i→k(x1

1
(1)) = 1

for all potential values of x1
1 and (ii) if the value of x1

1 is observed by the adversary and

x1
1 = ρ (ρ ∈ {0, 1, 2}), μ

(1)
i→k(x1

1
(1) = ρ) = 1 and μ

(1)
i→k(x1

1
(1)) = 0 for other potential values of

x1
1 . The iterations stop when all variable nodes have converged to stable distributions.

The marginal probability of each variable in XH is given by multiplying all incoming
messages at each variable node representing an unobserved SNP, as in Equation (4).
Note that the factor graph could also embed phenotypic information by adding one
factor node and one variable node per phenotype and individual. We do not present it
here for the sake of clarity and conciseness.

3.4. Computational Complexity

The computational complexity of the inference without LD correlations is linear in the
number of nodes n (i.e., number of family members) in the original Bayesian network,
the number of SNPs m, and exponential in the treewidth, that is, the maximum number
of variables in cliques. In our case, the treewidth is 3, which is negligible compared
to n and m. We can thus state that the computational complexity is O

(
nm

)
. Note that,

in general, finding an optimal triangulation ordering to construct the junction tree is
NP-hard, but, in our case, all the cycles are already of size 3 after the moralization
step; thus, there is no need to triangulate the graph. The same analysis applies for
the inference with phenotypic information. Therefore, the computational complexity
increases linearly with the number of phenotypes times the number of SNPs influencing
each phenotype times the number of family members sharing each phenotype.

The computational complexity of the inference with LD correlations is proportional
to the number of factor nodes. In our setting, there are nm familial factor nodes and
a maximum of nm(m− 1)/2 LD factor nodes. Thus, the worst-case computational com-
plexity per iteration is O

(
nm2

)
. However, as each SNP is in LD with a limited number

of other SNPs, the matrix L is sparse and the number of LD factor nodes grows with m
rather than with m(m−1)/2, especially if we focus on SNPs in strong LD only. Thus, the
average computational complexity per iteration is O

(
nm

)
. Based on our experiments,

we can state that the number of iterations before convergence is a small constant,
between 7 and 15. Note, finally, that this complexity can be further reduced by using
similar techniques developed for message-passing decoding of LDPC codes (e.g., work-
ing in log domain [Chen et al. 2002]). We implement the proposed attack and evaluate
its performance in practice in Section 6.1.

3.5. Privacy Metrics

A crucial step toward protecting kin genomic privacy is to quantify the privacy
loss induced by the release of genomic information. Through the inference attack,
the adversary infers the targeted SNPs belonging to the members of a targeted
family by using background knowledge and observed genomic data (of the family
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members). The inferred information can be expressed as the posterior distribution
P(XH = xH|XO = xO,FR, L, T , pmaf). Moreover, each posterior marginal probability
distribution is represented as P(Xi

j = x̂i
j |XO = xO), ∀rj ∈ R, gi ∈ G.12 We propose to

quantify kin genomic privacy by measuring the expected estimation error (incorrect-
ness) and the uncertainty of the adversary.13

Correctness was already proposed in the context of location privacy [Shokri et al.
2011]. In our scenario, correctness quantifies the adversary’s success in inferring the
targeted SNPs. That is, it quantifies the expected distance between the adversary’s
estimate of the value of an SNP, x̂i

j , and the true value of the corresponding SNP, xi
j .

This distance can be expressed as the expected estimation error as follows:

Ei
j =

∑

x̂i
j∈{0,1,2}

P
(
Xi

j = x̂i
j |XO = xO

) ∥∥xi
j − x̂i

j

∥∥. (14)

Note that ‖.‖ can be any norm, such as the L1 or L2 (Euclidean) norms. We select the
L1 norm in our evaluation as it is the most intuitive and most representative of the
discrepancy that we want to measure. If we rely on the Hamming distance14 instead,
the expected estimation error becomes equal to 1 − P(x̂i

j = xi
j), that is, 1 minus the

probability of success (or success rate). We discuss this further in Section 4.2.
Privacy can also be represented as the adversary’s uncertainty [Diaz et al. 2003;

Serjantov and Danezis 2003], that is, the ambiguity of P(Xi
j = x̂i

j |XO = xO). This
uncertainty is generally considered to be maximum if the posterior distribution is
uniform. This definition of uncertainty can be quantified as the (normalized) entropy
of P(Xi

j = x̂i
j |XO = xO) as follows:

Hi
j =

−∑
x̂i

j∈{0,1,2} P(Xi
j = x̂i

j |XO = xO) log P(Xi
j = x̂i

j |XO = xO)

log(3)
:= H(Xi

j |XO)

log(3)
. (15)

The higher the entropy, the higher the uncertainty.
Finally, we propose another entropy-based metric that quantifies the mutual de-

pendence between the hidden genomic data that the adversary is trying to recon-
struct and the observed data. This is quantified by mutual information I(Xi

j ; XO) =
H(Xi

j) − H(Xi
j |XO) [Agrawal and Aggarwal 2001]. As privacy decreases with mutual

information, we propose the following (normalized) privacy metric:

Ii
j = 1 − H(Xi

j) − H(Xi
j |XO)

H(Xi
j)

= H(Xi
j |XO)

H(Xi
j)

. (16)

We can then evaluate the genomic privacy of an individual rj by computing the
average of the per-SNP values over all SNPs gi ∈ G, for any of the three aforementioned
metrics. We can also compute the average over all SNPs of all family members to get
the global privacy level of a whole family.

If we are interested in a more tangible privacy, we can also convert the per-SNP
genomic-privacy metrics into health-privacy metrics. To quantify an individual’s health
privacy, we focus on the individual’s predisposition to different diseases. Let Sd be the
set of SNPs that are associated with a disease d. Then, a metric quantifying the health

12We use here x̂i
j to refer to the estimate of xi

j .
13These metrics are not specific to the proposed inference attack; they can be used to quantify genomic
privacy in general.
14‖xi

j − x̂i
j‖ = 0 if x̂i

j = xi
j and ‖xi

j − x̂i
j‖ = 1 otherwise.
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Fig. 6. Family tree of CEPH/Utah Pedigree 1463 consisting of the 11 family members that were considered.
The symbols � and � represent the male and female family members, respectively.

privacy for an individual ri regarding the disease d can be defined as follows:

Dd
i = 1∑

k:gk∈Sd
ck

∑
k:gk∈Sd

ckGk
i , (17)

where Gk
i is the genomic privacy of an SNP gk for individual ri, computed using

Equation (14), (15), or (16), and ck is the contribution of SNP gk to disease d.15 Other
health-privacy metrics based on nonlinear combinations of genotypes or combinations
of alleles will be defined in future work. Note that health-privacy metrics are valid
at a given time, and cannot be used to evaluate future privacy provision, as genome
research can change knowledge on the contribution of SNPs to diseases.

4. EVALUATION

In this section, we first evaluate the performance of the proposed inference attack, then
compare the entropy-based metrics with respect to the expected estimation error, and
finally evaluate the accuracy of the inference attack with and without considering the
LD between SNPs.

For this evaluation, we use the CEPH/Utah Pedigree 1463 that contains the partial
DNA sequences of 17 family members (4 grandparents, 2 parents, and 11 children)
[Drmanac et al. 2010]. We note in Figure 6 that we use only 5 (out of 11) children for
our evaluation because (i) 11 is much above the average number of children per family,
and (ii) we observe that the strength of the adversary’s inference does not increase
further (due to the children’s revealed genomes) when more than 5 children’s genomes
are revealed. As the SNPs related to important diseases, such as Alzheimer’s, are not
included in this dataset, we quantify health privacy in Section 5 by using the data
collected from a genome-sharing website.

To quantify the genomic privacy of the individuals in the CEPH family, we focus on
their SNPs on chromosome 1 (which is the largest chromosome). We make use of the
three base metrics introduced in Section 3.5, and rely on the L1 norm to measure the
distance between two SNP values in Equation (14), meaning that the distance for a sin-
gle SNP can go from 0 to 2. We aggregate the per-SNP metrics by averaging them over
all considered SNPs. We study the relationship between these metrics in Section 4.2.

15These contributions are determined as a result of medical studies. Some SNPs might increase (or decrease)
the risk for a disease more than others.
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Note that, for the inference without LD, we made use of the MATLAB implementa-
tion of the junction tree algorithm provided in the Bayes Net Toolbox [Murphy et al.
2001] and, for the inference with LD, we implemented our own factor graph and loopy
belief-propagation algorithm in Python.

4.1. Inference Without LD Correlations

First, we assume that the adversary targets one family member and tries to infer
SNPs by using the published SNPs of other family members without considering the
LD between the SNPs. We select an individual from the CEPH family and denote
that person as the target individual. We construct G, the set of SNPs that we consider
for evaluation, from all 81,899 available SNPs on chromosome 1. Thus, the random
variable XH represents the hidden 81,899 SNPs of the target individual that we want
to infer. Furthermore, the random variable XO represents the 81,899 SNPs of each of
the other observed family members. That is, we sequentially reveal all 81,899 SNPs
on chromosome 1 of all family members (excluding the target individual). The exact
sequence of the family members (whose SNPs are revealed) is indicated on the figure
of each evaluation. Note that we changed the order compared to the conference pa-
per [Humbert et al. 2013] in order to convey new and complementary messages. In this
endeavor, we also included Table III.

In Figure 7, we show the evolution of the genomic privacy of three target individuals
from the CEPH family (in Figure 6): (i) grandparent (GP1), (ii) parent (P5), and (iii)
child (C7). We note that all entropy-based metrics for each target individual start from
the same values. This is logical, as these do not depend on the actual SNP values,
but rather only on the MAFs given by population statistics. We also observe that the
parent’s genomic privacy decreases to a lower level than the child’s genomic privacy,
which itself degrades more than the grandparent’s (e.g., the adversary’s error for the
grandparent’s genome does not go below 0.3). Compared to the graphs in [Humbert
et al. 2013], the observation of GP3’s, GP4’s, and P6’s genomes has an impact on GP1’s
and P5’s privacy. This is due to the fact that, here, we reveal the children’s genomes
first, which creates a conditional probabilistic dependence between the genomes on the
P5 and P6 sides of the pedigree tree.

We observe in Figure 7(a) that the grandparent’s genomic privacy is mostly affected
by the SNPs of the first revealed children (C7, C8), as well as by those of the spouse
(GP2) and the child (P5). Table III also shows that the observation of only P5 already
decreases considerably the genomic privacy of GP1, and the observation of both P5 and
GP2 decreases it to its minimal value. Thus, in some scenarios, it is not necessary to
observe many relatives to threaten an individual’s genomic privacy. We also observe (in
Figure 7(b)) that, by revealing all family members’ SNPs (expect P5), the adversary can
almost reach an estimation error of 0 about P5’s genome. The target parent’s genomic
privacy significantly decreases ones essentially with the observation of the children’s
and spouse’s SNPs. GP1 and GP2 do not have so much influence, also because of the
fact that they are observed in the end. Table III shows that, if we observe only GP1
and GP2, we can reduce the genomic privacy of P5 by 50%, which is more than with
the observation of two children (40%), or one child and the spouse (35%) .

We observe in Figure 7(c) that C7’s genomic privacy decreases already significantly
with the observation of one parent (P5) and two siblings (C8 and C9). We also notice
that, once P5 is known, the disclosure of GP1 and GP2’s genomes has no impact on C7’s
privacy. In the same way, we observe that once both parents’ genomes are revealed,
the knowledge of an additional child’s genome does not help the attacker. Indeed, as
each new offspring is created independently of another (except in the case of twins),
each sibling’s genomic inheritance is independent of the others given his/her parents’
genetic background. This is confirmed by Table III, where we see that the observation
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Fig. 7. Metrics for measuring personal genomic privacy. Evolution of the average genomic privacy measured
with our three base metrics defined in Section 3.5 for the (a) grandparent (GP1), (b) parent (P5), and (c) child
(C7) by gradually revealing other relatives’ genomes. We reveal all 81,899 SNPs on chromosome 1 of other
family members while inferring the 81,899 SNPs of the targeted individual (GP1, P5, or C7). The x-axis
represents the cumulative disclosure sequence. The order of disclosure has been chosen such that the results
provide new insights on how relatives affect personal genomic privacy compared to previous work. We note
that x = 0 represents the prior distribution, when no genomic data is observed by the adversary. (d) Per-SNP
comparison of the two entropy-based metrics with regard to the expected estimation error, with data points
taken from the same scenario as (c). Each point in the two plots represents the expected estimation error
(x-axis) and the normalized entropy (y-axis, top) or 1-mutual information (y-axis, bottom) for a single SNP of
child C7 for a different amount of observed kin genomic information (from 0 to 10 relatives, as for (c)). The
closer to the x = y line the points are, the more correlated two metrics are.

of C8 in addition of P5 and P6 does not change C7 privacy. Like for the other cases,
Table III tells us that we can infer a lot of genomic information by knowing only a few
relatives’ genomes. For instance, P5’s observation already reduces the privacy by 30%.
Moreover, the observation of the two parents provides the minimal privacy level that
C7 can expect in this scenario.

Instead of averaging the privacy levels over the whole set of SNPs in G, Figure 8
depicts the cumulative distribution function (CDF) of the per-SNP privacy levels under
five different settings of Figure 7(b). In addition to the three base metrics, we also plot
the success rate, that is, P(x̂i

j = xi
j) (Figure 8(a)). We first note that the success rate

and the expected estimation error CDFs are very symmetric around the diagonal. We
also observe that when no relative is observed, around half of the SNPs have a success
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Fig. 8. Empirical cumulative distribution function (CDF) of (a) the success rate, and our three base metrics:
(b) expected estimation error, (c) normalized entropy, and (d) 1- (normalized) mutual information. We plot
here the CDF of the per-SNP privacy levels of parent P5. We selected 5 out of the 11 disclosure scenarios of
Figure 7(b), specifically, (i) no disclosure (“prior”); disclosure (ii) of C7 only; (iii) of C7, C8, GP3, GP4; (iv) of
C7, C8, C9, C10, GP3, GP4; and (v) of C7, C8, C9, C10, P6, GP1, GP3, GP4.

rate greater than 0.5, whereas, once C7’s SNPs are observed, half of the SNPs have a
success rate higher than 0.7. Moreover, under no observation, only 20% of the SNPs
can be guessed with success higher or equal to 0.9, whereas this percentage goes up to
65% when six of P5’s relatives are observed and 87% when nine of P5’s relatives are
revealed. We also show the percentage of SNPs with success higher than or equal to
0.9 for different scenarios in Table III. We notice that, for example, by observing only
the two parents of P5 (GP1 and GP2), the percentage of SNPs inferred with 0.9 success
increases to 57%.

4.2. Metrics Comparison

First, we compare the success rate, a metric proposed in Wagner [2015], with the
expected estimation error. As mentioned in Section 3.5, if we use the Hamming distance
between xi

j and xi
j in our estimation error metric, the expected estimation error is simply

equal to 1 minus the success rate. By comparing Figures 8(a) and 8(b), we note that
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Table III. Absolute and Relative Levels of Genomic Privacy of the Grandparent (GP1),
Parent (P5), and Child (C7) Given the Observation of 0 to 3 of Their Relatives

H\O ∅ P5 P5, GP2 C7, GP2 C7, C8, GP2
G

P
1 E

j 0.446 0.322 0.309 0.404 0.385
100% 72% 69% 91% 86%

∗ 20% 28% 29% 23% 23%

H\O ∅ GP1,GP2 C7,C8 C7,P6 GP1,GP2,C7

P
5 E

j 0.48 0.242 0.286 0.312 0.203
100% 50% 60% 65% 42%

∗ 20% 57% 38% 29% 57%

H\O ∅ P5 P5, C8 P5, P6 P5, P6, C8

C
7 E

j 0.489 0.344 0.301 0.182 0.182
100% 70% 62% 37% 37%

∗ 20% 28% 40% 64% 64%
Note: We use here the expected estimation error Ej to measure the genomic privacy
of GP1, P5, and C7 (first two rows for each individual, second row representing the
relative error with respect to the error without observations) but also the success rate
(third row, denoted with ∗). Here, we represent the percentage of SNPs for which the
success rate is higher than 0.9, that is, P(xi

j = x̂i
j ) > 0.9.

these metrics are really symmetric and opposite, even if we use the L1 norm for the
estimation error. This leads us to conclude that the estimation error is as intuitive as
the success rate and that it is a suitable privacy metric as it increases monotically with
privacy, whereas the success rate decreases with privacy.

In Figure 7(d), we compare both our entropy-based metrics with the estimation error,
point by point, over all 81899 SNPs of chromosome 1 and for all values aggregated in
Figure 7(c) to measure C7’s privacy evolution. Apart from the fact that normalized
entropy slightly overestimates the expected estimation error, it is growing quite simi-
larly to the estimation error, especially in the estimation error range [0, 0.5], where the
majority of the points are located. We also observe that the third metric, 1- (normal-
ized) mutual information, is worse than the normalized entropy in approximating the
estimation error. This is corroborated by Figure 8, which shows that the normalized
entropy empirical CDFs are closer to those of the estimation error than the empirical
CDFs of the mutual information-based metric. This motivates us to rely on the nor-
malized entropy to quantify privacy in Section 5 when we do not know the ground
truth.

4.3. Inference With LD Correlations

Next, we include the LD relationships and observe the change in the inference power of
the adversary using the LD values. We construct G from 1000 SNPs on chromosome 1.
Among these 1000 SNPs, each SNP is in LD with 13 other SNPs, on average. Fur-
thermore, the strength of the LD varies between 0.5 and 1 (where r = 1 represents
the strongest LD relationship, as discussed before). As before, we define a target in-
dividual from the CEPH family, construct the set XH from the individual’s SNPs, and
sequentially reveal other family members’ SNPs to observe the decrease in the genomic
privacy of the target individual. We observe that individuals do not always reveal all
their genome, or disclose different parts of their genomes (e.g., different sets of SNPs).
Thus, we assume that, for each family member (except for the target individual), the
adversary does not observe the full set of 1000 SNPs of the individuals, but rather only
a fraction of them. We instead assume that people reveal 25%, 50%, or 75% of their
genomic data, and that they reveal different subsets of their SNPs. Figure 9(a) shows
the evolution of genomic privacy (measured by the expected estimation error) of parent
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Fig. 9. Evaluation of the impact of LD correlations on genomic privacy. (a) Evolution of parent P5’s privacy
with and without considering LD. For each family member, we reveal 250, 500, or 750 randomly picked SNPs
(among the 1000 SNPs in G), following the same order of familial disclosure as in Figure 7(b). Privacy level
in measured using the expected estimation as base metric. Note that x = 0 represents the prior distribution,
when no genomic data is revealed. (b) Evolution of the global privacy of a family by gradually revealing 10%
of its SNPs.

P5 with and without making use of LD correlations. First, we observe that LD clearly
improves the inference attack, thus decreases genomic privacy compared to the case
when LD is not used. We also note that the smaller the percentage of observed SNPs,
the higher the effect of LD correlations on P5’s privacy. This is due to the fact that LD
correlations help fill the missing SNPs. We also observe that the more relatives reveal
their SNPs, the smaller the gap between the privacy with and without LD.

Finally, we also evaluate the global inference power of the adversary when inferring
multiple SNPs among all family members, given a subset of SNPs belonging to some
family members and considering the LD correlations between SNPs. That is, we eval-
uate the inference power of the adversary for different fractions of observed data for
the family members. Using a set of 100 SNPs for every family member, we construct
XH from (κ × 100 × n) SNPs, randomly selected from all family members, where n
is the number of family members in the family tree (n = 11 for this scenario), and
κ ∈ {0, 0.1, . . . , 0.9, 1}. We assume that the SNPs that are not in XH are observed by
the adversary (i.e., in XO), and we evaluate the inference power of the adversary for
the SNPs represented by XH, for different values of κ. In Figure 9(b), we observe a very
fast decrease in the global genomic privacy (privacy of all family members), showing
that the observation of a small portion of the family’s SNPs can have a huge impact on
genomic privacy. For instance, the estimation error is decreased by almost a factor of 3
by observing only the first 10% of the SNPs.

5. EXPLOITING GENOME-SHARING WEBSITES

We present here two concrete attacks that can be carried out using existing genome-
sharing websites and OSNs.

5.1. Cross-Website Attack with Online Social Networks

In order to show that the proposed inference attack threatens not only the Lacks family,
but potentially all families, we collected publicly available data from a genome-sharing
website and familial information from an OSN, and evaluated the decrease in genomic
and health privacy of people caused by the observation of their relatives’ data.
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Fig. 10. Attacker’s uncertainty about all SNP values on chromosome 1 for two different families, without
using LD. A stands for aunt, N for niece/nephew, GC for grandchild, M for mother, C for child, and U for
uncle. The same notations are used in Figures 11 and 12.

We gathered individuals’ genomic data from OpenSNP, a website on which people can
publicly share sets of SNPs. Then, we identified the owners of some gathered genomic
profiles by using their names and sometimes profile pictures. Among these identified
individuals, we managed to find family relationships of 6 of them (who publicly reveal
the names of some of their relatives) on other Web resources, such as Facebook. We
expect this number to increase in the future, as more health-related OSNs (which
let people share their genomic profiles, such as 23andMe) emerge. Furthermore, we
anticipate that the current widely used health-related OSNs (e.g., PatientsLikeMe16)
will let users upload and share their genomic data. Note that, at the time of this
study, the number of OpenSNP users were around 500. Today, this number is 2297,
which shows the rapid increase in the number of users who are susceptible for such
attacks. For each of the 6 OpenSNP users sharing their SNPs on OpenSNP, we could
retrieve several of their relatives publicly exposed on their OSN profiles. Out of these 6
families, we could identify, in total, 29 relatives whose genomic privacy was indirectly
threatened by the OpenSNP users sharing some of their relatives’ identities on OSNs.

We focus on 2 individuals, I1 and I2, out of these 6 identified OpenSNP individuals
and evaluate their impact on the genomic and health privacy of their family members.
We observed that both I1 and I2 publicly disclosed around 1 million of their SNPs.
Furthermore, we identified the names of (i) 1 mother, 2 sons, 2 daughters, 1 grandchild,
1 aunt, 2 nieces, and 1 nephew of I1; and (ii) 1 sibling, 1 aunt, 1 uncle, and 6 cousins of
I2 on Facebook. We compute the genomic and health privacy of these target individuals
using the (normalized) entropy in Equation (15) as the base metric, and average over
all targeted SNPs for each individual. We cannot use the expected estimation error in
Equation (14) here, as we do not have the ground truth for the genomes of the target
individuals. Thus, privacy is quantified as the uncertainty of the adversary in this
section.

To quantify the genomic privacy of the target individuals (i.e., family members of
I1 and I2), we first construct G from all SNPs on chromosome 1 (from the observed
genomes of I1 and I2). The set of observed SNPs includes the observed SNPs of I1
(respectively, I2) for the inference of family members of I1 (respectively, I2). The set
of targeted SNPs includes 77k SNPs for I1’s family and 79k for I2’s family (from G)
for each evaluation. In Figure 10, we show the decrease in the genomic privacy for
different family members of I1 (aunt, niece/nephew, grandchild, mother, child) and I2
(cousin, aunt/uncle, sibling) as a result of our proposed inference attack, first without

16http://www.patientslikeme.com/.
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Fig. 11. Attacker’s uncertainty about values of 100 SNPs on chromosome 1 for two families, by observing
(i) all 100 SNPs of the relative that reveals his or her genome, and (ii) only 50 SNPs, but using LD.

considering the LD dependencies (similarly to the previous section). We observe that,
as expected, the decrease in the genomic privacy of close family members is signifi-
cantly higher than that of more distant family members. However, as we have seen in
Section 4, the observation of one (or more) additional family member(s) has often much
more impact on the target’s privacy than the observation of only one relative.

In Figure 11, we display the decrease of genomic privacy with respect to 100 SNPs
of chromosome 1.17 We first show the different privacy levels by using all 100 SNPs of
the observed relative (i.e., I1 or I2), then show the same by using only 50 SNPs of the
observed relative and LD values. We note that the use of LD decreases privacy slightly
more for the first family than for the second family. This is because we randomly picked
50 different SNPs for both families, and those picked in the second family had weaker
LD relationships with other SNPs. We finally observe that the difference between the
two observation cases (50 SNPs with LD and 100 SNPs without LD) is higher for close
relatives (mother, child, or sibling) than for others.

We also evaluate the health privacy of the family members of I1 and I2 considering
their predispositions to various diseases. We first noticed that almost all important
SNPs for privacy-sensitive diseases affected by genomic factors—such as Alzheimer’s,
ischemic heart disease, or macular degeneration—were revealed by I1 and I2. Due to
lack of space, we focus on Alzheimer’s, as it is one of the most important diseases that
are mainly attributable to genetic factors. Having two ApoE4 alleles (SNP rs7412 being
equal to CC and rs429358 equal to CC as well) dramatically increases an individual’s
probability of having Alzheimer’s by the age of 80 years. Thus, the contents of these
two SNPs carry privacy-sensitive information for individuals. We use the metric in
Equation (17) to quantify the health privacy of family members for Alzheimer’s disease.
We assign equal weights to both associated SNPs (as their combination determines the
predisposition to Alzheimer’s disease). In Figure 12, we show the attacker’s uncertainty
about the predisposition to Alzheimer’s disease for the family members of I1 and I2.
We observe a decrease of around 0.2 (from 0.5 to 0.3) in uncertainty between close
relatives. Clearly, the knowledge of the SNPs of more relatives would further worsen
the situation.

5.2. Inference Attack with Phenotypic Information

We also rely on publicly available data shared by OpenSNP users to evaluate the impact
on privacy of having additional phenotypic information. In particular, we noticed that
tens of OpenSNP users share both their SNPs and a specific phenotypic information
by answering the following question: “Do you have a parent who was diagnosed with

17We consider only 100 SNPs here for the same reason as in Section 4.
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Fig. 12. Health privacy regarding Alzheimer’s disease for 2 families, quantified using Dd
i as defined in Equa-

tion (17), with normalized entropy as base metric, that is, Gk
i = Hk

i .

Alzheimer’s disease?”. Among those, 11 users answered that either their mother or
father was diagnosed with this disease. Then, we build a Bayesian network of a trio
(child and two parents), two SNPs X1

� and X2
� per person representing the APOE gene

(rs7412 and rs429358), and a phenotypic node Y AD
i of one of the parents ri representing

that parent’s Alzheimer’s disease status (set as an evidence, as that parent’s child –
OpenSNP user – reported his or her status), connected to both APOE SNPs X1

� and X2
� .

We derive the conditional probability P(Y AD
i |X1

i , X2
i ) from the risks presented in the

23andMe technical report on the APOE variants.18

Now, we evaluate how this evidence changes the inference of the APOE SNPs of the
child (i.e., of the OpenSNP user). In this case, we can rely on the expected estimation
error, for 7 of the 11 OpenSNP users who also publicly disclose both their APOE SNPs.
Note that among those 7 individuals, all have their rs7412 SNP equal to CC, and 6 have
their rs429358 SNP equal to TT. These values are the most common variants, leading
to normal risk for Alzheimer’s disease. However, having one or two C at rs429358 in
combination with a C at rs7412 substantially increases the risk of getting Alzheimer’s
by 85%. Only one out of the 7 OpenSNP users has CT at rs429358, leading to an
increased risk. As Alzheimer’s disease is linked to the C allele at both SNPs, knowing
the Azheimer’s status of the users’ parents increases the posterior probabilities of these
users carrying the C allele. For rs7412, knowing the phenotype leads to a decrease of
privacy (estimation error) from 0.15 to 0.13 for all 7 users (sharing all the CC value
at this SNP). However, for rs429358, observing the phenotype increases the genomic
privacy from 0.3 to 0.47 for the 6 users who have nonrisky SNP values (TT). This is due
to the fact that observing that parents have been diagnosed with Alzheimer’s disease
misleads the adversary who believes that it is more likely that the OpenSNP user
carries at least one risky allele (i.e., SNP being either CT or CC). On the contrary, for
the single OpenSNP user taking SNP value CT at rs429358, the genomic privacy after
observing the parent’s phenotype value decreases from 0.75 to 0.63.

Note that the relationship between the APOE SNPs and Alzheimer’s disease is highly
probabilistic and it could also well be that the parent who was diagnosed had normal
alleles at these SNPs. If the observed phenotypic trait is more deterministically linked
to the genotype, for example, blood type, the observation of such a phenotype will surely

18It can be found here: https://www.23andme.com/en-ca/health/i_alzheimers/techreport/.
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help improve the inference on the genotype. We take SNP rs7853989 as an example. If
there is at least one minor allele C at this SNP, the blood type of the owner contains
most likely a B (thus is either B or AB). By collecting data of OpenSNP users publicly
sharing this SNP and their blood types, we could compute the expected estimation
error prior and posterior to the observation of their blood types. The prior error was
equal to 0.76 for all of those having a B in their blood type, and the posterior error (i.e.,
genomic privacy) was equal to 0.1. For those not having a B in their blood type, the
prior error was equal to 0.28 (because the SNP then takes the two major alleles GG,
thus is easier to infer only with the allele frequencies), and the posterior error became
0 (because observing the phenotype tells us that it is impossible that the user carries
the C allele).

6. DISCUSSION

In this section, we study the performance of the proposed attack, and discuss potential
improvements of the investigated attack.

6.1. Performance

We evaluated the real-time computational performance of our inference algorithms
without and with LD correlations. All experiments were carried out on machines with
Intel Xeon processors E3-1270 v3 of 3.5GHz and 32GB of RAM. For the case without
LD, the average runtime of our inference attack is 2023s ≈ 34min for one observation
scenario and the inference of all family members’ targeted SNPs. The average time is
computed over all scenarios plotted in Figure 7. As we were dealing with around 82,000
SNPs, we can derive that the inference time for one SNP is equal to around 0.025s. Note
that the most computationally demanding task here is the belief-propagation step and
not the construction of the junction tree, which is quite straightforward when having
a family tree.

The inference with LD correlations is more computationally expensive: 3210s ≈
53min, on average (with a standard deviation equal to 144s) for one observation
scenario and the inference of all family members’ targeted SNPs. The average time
is computed over all scenarios plotted in Figure 9(a). As in this case, we are infer-
ring 1,000 SNP/family member, the inference time per SNP is equal to around 3.2s.
This is approximately two orders of magnitude more computationally expensive than
the scenario without LD correlations. This overhead can be explained by two factors:
the number of iterations and the number of LD factor nodes. First, as mentioned in
Section 3.4, we have to run 7 to 15 iterations before reaching a stable state of posterior
distributions. Second, we derive that the asymptotic complexity is equal to O

(
nm

)
, but

the constant number of factor nodes per SNP is equal to 13 in our practical case, which
explains the second order of magnitude.

6.2. Potential Improvements

One technique that we do not consider in the proposed inference attack is genetic
imputation via identity by descent (IBD) [Burdick et al. 2006; Li et al. 2009], which can
make the inference more powerful. IBD is a case in which a DNA segment (of around
hundreds of thousands of base pairs) is directly transferred from the ancestors to the
descendants (e.g., from the grandfather to the father, then from the father to the son).
For instance, consider two relatives, grandparent (GP) and child (C), both of whom
share some of their SNPs in public platforms (e.g., OpenSNP). Assume that GP and
C both release all SNPs in a 1Mb (megabase) region X. Additionally, GP releases an
SNP at locus L, which is about 100kb (kilobase) away from X, but C does not. Using
the proposed algorithm (in Section 3), knowledge of SNPs in region X reveals nothing
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about L since linkage disequilibrium is typically not observed at distances of 100kb
(which is roughly 30 SNPs away from region X). However, suppose that GP and C have
an IBD relationship in region X. Then, with probability close to 1, this shared segment
extends to region L as well (IBD segments are typically tens of megabases). This means
that the adversary can impute one of C’s alleles at L with near certainty.

Furthermore, in the proposed framework, we considered pairwise correlations (LD)
between the SNPs, because, to the best of our knowledge, public LD data is always
provided pairwise. However, higher-order correlations between the SNPs can make the
inference more powerful, as shown in Samani et al. [2015]. Such higher-order correla-
tions are typically learned from a large reference dataset (of a particular population).

7. RELATED WORK

Stajano et al. [2008] were among the first to raise the issue of kin privacy in genomics.
Cassa et al. [2008] provide a framework for measuring the risks to siblings of someone
who reveals one’s SNPs. They show that the inference error is substantially reduced
when the sibling’s SNPs are known compared to when only the population frequencies
are used. We push this work further by considering any kind of family member and
LD relationship between SNPs by proposing and evaluating different privacy metrics,
and by presenting a real attack scenario using publicly available data. Our generic
framework considers any observation of a family’s genomic data and the adversary’s
background knowledge.

Several algorithms for inference on graphical models have been proposed in the
context of pedigree analysis. Exact inference techniques on Bayesian networks are
used in order to map disease genes and construct genetic maps [Fishelson and Geiger
2002; Lauritzen and Sheehan 2003; Jordan 2004]. Monte Carlo methods (Gibbs sam-
pling) were also proved to be efficient for genetic analyses in the case of complex
pedigrees [Jensen et al. 1995; Thomas et al. 2000; Sheehan 2000]. All these methods
aim to infer specific genotypes given phenotypes (such as diseases). Another work re-
lies on Gibbs sampling in order to infer haplotypes (used in association studies) from
genotype data [Kirkpatrick et al. 2010]. Genotype imputation [Li et al. 2009] is another
technique used by geneticists to complete missing SNPs based on given genotyped data.
A similar approach has been recently used to infer high-density genotypes in pedigrees
by relying notably on low-resolution genotypes and identity-by-descent regions of the
genome [Burdick et al. 2006]. Neither of these contributions address privacy, nor have
they been applied to large pedigrees (such as our Utah family).

We also briefly summarize the most relevant research on privacy of genomic data
in the following. Homer et al. [2008] prove that deidentification is an ineffective way
to protect the privacy of genomic data, which is also supported by other works [Wang
et al. 2009a; Gitschier 2009; Zhou et al. 2011]. Most recently, Gymrek et al. [2013] show
how they identified DNAs of several individuals who participated in scientific studies.
Fienberg et al. [2011] propose using differential privacy to protect participants’ privacy
in studies releasing statistics such as MAFs, p values, and the top-k most relevant SNPs
for a particular phonotype. Yu et al. [2014] extend this work to compute differentially
private statistics for an arbitrary number of cases and controls. Johnson and Shmatikov
[2013] propose an exponential mechanism called a distance-score mechanism to add
noise to the output. Three papers related to differential privacy have been published
in the framework of the iDASH genomic privacy workshop in 2014 [Jiang et al. 2014].
In order to retain data utility, Wang et al. [2014] propose an algorithm that splits
raw genome sequences into blocks before adding Laplace noise to them. Yu and Ji
[2014] adapt the methods of Yu et al. [2014] and show new results about the Hamming
distance score, notably its sensitivity. However, a major drawback of these approaches
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is that they reduce the accuracy of the research results. Fredrikson et al. [2013] have
recently confirmed this finding in their study of privacy in pharmacogenetics. They
show that, given the model and some demographic information and drug dosage about
a patient, an attacker can predict the patient’s genetic markers. They also show that
differentially private mechanisms can only improve genomic privacy at the cost of
increased risk of stroke, bleeding events, and mortality.

Some works also focus on protecting the privacy of genomic data and on preserv-
ing utility in medical tests, such as (i) search of a particular pattern in the DNA
sequence [Troncoso-Pastoriza et al. 2007; Blanton and Aliasgari 2010], (ii) compar-
ing the similarity of DNA sequences [Jha et al. 2008; Bruekers et al. 2008; Baldi
et al. 2011], (iii) performing statistical analysis on several DNA sequences [Kantar-
cioglu et al. 2008; Xie et al. 2014], and (iv) using genomic data in clinical settings for
health care [Ayday et al. 2013b; Danezis and De Cristofaro 2014; Djatmiko et al. 2014].
Furthermore, Ayday et al. [2013c] propose privacy-preserving schemes for medical
tests and personalized medicine methods that use patients’ genomic data. For privacy-
preserving clinical genomics, a group of researchers propose to outsource some costly
computations to a public cloud or semi-trusted service provider [Wang et al. 2009b;
Chen et al. 2012]. Ayday et al. [2013a] propose techniques for privacy-preserving man-
agement of raw genomes. Karvelas et al. [2014] present a flexible framework based on
oblivious RAM that allows for the private processing of whole-genome sequences while
supporting any query, and that also hides the access patterns. Other similar privacy-
preserving mechanisms for GWAS based on homomorphic encryption [Lu et al. 2015;
Kim and Lauter 2015; Zhang et al. 2015b] or secure multiparty computation [Constable
et al. 2015; Zhang et al. 2015a] have recently been proposed in the context of the iDASH
challenge of 2015.

In contrast with these contributions, in this article, we propose an original and effi-
cient inference attack in order to reconstruct genomic data of individuals given observed
genomic and phenotypic data of their family members and special characteristics of
genomic data. Furthermore, we quantify the genomic and health privacy of individuals
as a result of this attack using different metrics, and show the real threat by using the
data collected from genome-sharing websites and OSNs.

We have built on the framework initially proposed in [Humbert et al. 2013] and
extended in this article for enabling family members to share their genomic data
while respecting their relatives’ privacy preferences [Humbert et al. 2014]. We have
also evaluated the interplay of rational, fully selfish, or partially altruistic relatives
by using a game-theoretic framework based on graphical models [Humbert et al.
2015a].

8. CONCLUSION

In this article, we have proposed and studied a novel reconstruction attack for infer-
ring the genomic data of individuals from the observed genomes and phenotypes of
their relatives. We have studied its computational complexity both theoretically and
practically, have compared several metrics to quantify genomic and health privacy,
and have carried out a real-world cross-website attack by notably making use of a
popular OSN. From our performance evaluation, we observe a trade-off between time
efficiency and inference power. If the attacker is interested only in a subset of targeted
SNPs or cannot observe the full set of SNPs of the target’s relatives, the attacker could
use the inference method, which includes LD correlations without incurring too much
computational cost. From a policymaker’s viewpoint, the inference method without LD
correlations gives essentially an upper bound on the actual level of genomic privacy of
the family members.
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