
Performance-Power Exploration of
Software-Defined Big Data Analytics:

The AEGLE Cloud Backend
Georgios Zervakis, Sotirios Xydis and Dimitrios Soudris

National Technical University of Athens, 9 Heroon Polytechneiou, Athens Greece
{zervakis, sxydis, dsoudris}@microlab.ntua.gr

Abstract—In this paper, we present the design and analyze the
performance-energy characteristics of a software-defined infras-
tructure targeting Big Data analytics workloads. This software-
defined Big Data framework forms the data analytic platform
adopted in AEGLE1, an European H2020 funded project for
healthcare analytics. The developed framework utilizes state-of-
art open source solutions and it is very flexible to enable the
definition and automatic deployment of differing SPARK over
Hadoop cluster configurations as analytics engines. In this paper,
we exploit this flexibility of our software defined infrastructure to
explore the performance-energy trade-offs of Big Data analytics
under variable resource allocation scenarios. Specifically, we
show that with respect to our local infrastructure, i.e., two Intel
Xeon E5-2658A servers with 128GB RAM each, virtual cluster
configurations with many nodes achieve the highest performance,
while virtual cluster with high available RAM memory are more
power efficient, exhibiting higher instructions per cycle (IPC) per
kilojoule values.

I. INTRODUCTION

Modelling biological phenomena is typically very complex
and has always been understood to be a computationally
intensive process. However, the applicability of Big Data
techniques on biological and health-based data, naturally quite
complicated and difficult to collect, is still limited. In order
to draw meaning from the exponentially increasing quantity
of healthcare data, a shift towards a big data perspective is
proposed, utilizing technologies capable of processing mas-
sive amounts of data efficiently and securely. Collecting and
aggregating anonymous data from geographically dispersed
locations makes it possible to construct statistically mean-
ingful databases, based on which macroscopic reasoning can
be made, rather than solely focusing on the individual and
associated pathology.

Nowadays, there is an obvious gap in the area of big
data analytics for Health Bio-data. Data-driven services are
still needed to cater for the data versatility, volume, velocity
and veracity within the whole data value chain of healthcare
analytics. A true opportunity exists to produce value out of
big data in healthcare with the goal to revolutionize integrated

1This research is partially supported by the E.C. funded program AEGLE
under H2020 Grant Agreement No: 644906, http://www.aegle-uhealth.eu

and personalised healthcare services. Although Information
and Communication Technology (ICT) makes advancements
to give solutions in big data volume and velocity issues,
the healthcare industry has been hesitant in embracing Big
Data. AEGLE is a European funded project under the H2020
programme, targeting to address the aforementioned open
issues by implementing a full data value chain to create
new value out of rich, multi-diverse, big health data. It aims
to generate value from healthcare data with the vision to
improve translational medicine and facilitate personalized and
integrated care services overall improving healthcare at all
levels, to promote data-driven research across Europe and to
serve as an enabler technology platform.

Although AEGLE’s infrastructure is composed of several
software components, described in Section V, in this paper
we focus our attention on the software infrastructure imple-
menting the Big Data analytics engine, on top of which the
specialized analytics and workflows will be executed. The
Big Data analytics engine of AEGLE has been developed as
a software-defined infrastructure, concerning both the com-
puting and networking components, and it targets to cloud
based virtual clusters. It eases its relocation to alternative cloud
provider or virtual clusters in general , as well as it enables
exploration studies to be performed over the infrastructure
characteristics. In this paper, we present the design of the
aforementioned software-defined Big Data infrastructure and
we analyze its performance-energy characteristics.

More specifically, the developed framework utilizes state-of-
art open source solutions and it is very flexible to enable the
definition and automatic deployment of differing SPARK [1]
over Hadoop [2] cluster configurations as analytics engines.
We exploit this flexibility to explore the performance-energy
trade-offs of Big Data analytics under variable resource al-
location scenarios. Through extensive experimentation over a
set of scaled machine learning analytics, originated from the
well known SPARK bench suite [3], we show that for the
specific type of workloads, allocating virtual clusters with a lot
but relatively small sized servers forms efficient configuration
in comparison to utilizing few but bigger in size resources.

Furthermore, by analyzing the behavior of the infrastructure
under scaled data-size configuration, we show the high sen-
sitivity of performance not only on the allocation of the
computational resources but also on the available network
bandwidth, which has to be taken into account during system
design and optimization phase.

The rest of the manuscript is organized as follows: Section
II presents the vision of AEGE, its goals and the expected
impact on the scientific and health-care domain. Section III
briefly describes the uses case scenarios from the medical
domain used in AEGLE, while section IV gives a detailed
description of the AEGLE’s system architecture and its sub-
components. Section V presents the software components
defining AEGLE’s Big Data Framework and the automatic
deployment flows developed in AEGLE implementing a Soft-
ware Defined Big Data Platform. Finally, in Section VI we
experimentally evaluate and characterize the Spark execution
with respect to our physical local infrastructure using the
AEGLE’s virtualization and deployment flows and Section VII
concludes our work.

II. THE VISION OF AEGLE

AEGLE’s mission is to realize an European business ecosys-
tem for health-care stakeholders, industry and researchers for
creating out-of-box knowledge in order to provide cloud and
HPC data services and support new products that will improve
health. The project builds upon the synergy of heterogeneous
High Performance Computing (HPC), Cloud and Big Data
computing technologies for delivering optimized analytic ser-
vices on Big-Bio Data application use cases from the medical
and health-care domain. In this paper, we describe in depth
the three target Big-Bio Data applications as well as the
key technologies to be utilized within AEGLE for delivering
accelerated health-care analytics.

Data driven generation of new medical knowledge premises
the support of personalized medicine, thus effective treatments
for each individual instead of the average patient, forms one of
the missions of big data in health. Several European initiatives
[4] have already pinpointed the importance and usefulness
of health-care big data, e.g. to predict the outbreak of an
epidemic etc. The scope of AEGLE project is to develop and
provide a Big Data analytics infrastructure that will deliver
integrated ICT services for health-care, to enable and promote
research and innovation activities, as well as to serve as
a strategic pillar for business development in the field for
big data analytics for health-care. AEGLE solution targets
to address the whole data value chain for health based on:
cloud computing and Big Data technologies for scalable ICT
services, HPC infrastructures for computational acceleration
and advanced visualization techniques and contribute in the
area of analytics for Health Bio-data.

Specifically, AEGLE’s analytics services will offer an exper-
imental big data research platform to data scientists, workers
and data professionals across Europe. The platform consists

of a large pool of semantically-annotated healthcare data, a
set of libraries implementing state-of-the-art big data analytics
methods including the local level big data analytics AEGLE
services and APIs for federating with public and private data
sets. Advanced visualization tools will be implemented by
AEGLE as an instrument for gaining new knowledge and
expertise, advancing the European know-how in health-care
big data analytics, by allowing data scientists to steer the cloud
level analytics mechanisms with their own insights. Large
industries and SMEs across Europe will be given the ability
to use AEGLE in order to deploy and assess the validity of
their innovative data analytics solutions which aim at creating
new value in the field of healthcare.

III. BRIEF DESCRIPTION OF AEGLE USE CASES

AEGLE system will target to and be validated over the
following use case scenarios:

• Chronic Lymphocytic Leukemia (CLL): CLL is a
chronic, incurable disease, leading to great distress for
patients and their families as well as huge costs for the
health care system. Integrative analysis will be performed
to address complex clinical questions and scenarios as-
sociating phenotypic data with personal genetic profiles
derived from both conventional but also, critical to the
mandate and objectives of AEGLE, high-throughput ap-
proaches. In addition, AEGLE will offer the possibility
of proposing and evaluating health interventions towards
the goal of personalized medicine e.g. identifying groups
with specific profiles that will be considered as eligible
or ineligible for certain treatments and, at the same time,
evaluating the cost of this intervention.

• Intensive Care Unit (ICU): In an ICU context, pa-
tient biosignals are continuously monitored and displayed
towards recognizing alerting events. The recordings of
clinical, laboratory data and physiologic waveforms could
be analysed and displayed in an easy-to understand
manner for clinicians. AEGLE aims to provide a set
of scalable and automated analysis of the fast changing
multi-dimensional functions of variables for the detection
of unusual, unstable or deteriorating states in patients.
In this respect, early and personalized treatment will be
feasible using AEGLE technology for higher survival in
ICUs around European Hospitals.

• Type 2 Diabetes (T2D): The risk of developing T2D
can be increased by various factors; usually a mixture of
modifiable and non-modifiable elements of age, weight,
genetics and ethnicity. The AEGLE system will focus on
analysing the inter-dependences of the factors including
medication that are known to have a detrimental effect
in type 2 diabetes to give a prediction on the potential
deterioration. This would enable intervention to enable
reduction of mortality, complications and hospitalization
that would all lead to reduction in overall health costs.

IV. AEGLE ARCHITECTURE

AEGLE starts from real life conditions in the three medical
cases, which include clinical and biomedical research. It is thus
important to recognize not only the data that are produced
at each organization, but also the procedures and analysis
pipelines that are in place. Therefore AEGLE infrastructure
defines the local and the cloud domain, as well as a loose
coupling between them. The local domain refers to the orga-
nizational private space, where routine use of data takes place,
as well as analysis without privacy concerns. The latter refers
to the cloud space, where data from multiple organizations
are uploaded to common storage and analysis infrastructure
that can be shared, combined and analyzed, providing the
necessary access and privacy-related pre-processing. The cloud
domain will provide more sophisticated data management,
applying robust and scalable data management techniques that
are potentially lacking at the local domain, due to organiza-
tional issues among others. More specifically: The AEGLE’s
local level implements the data generation, the anonymization
for data privacy, the interfaces for data uploading to cloud, as
well as a set of analytics services/applications. The latter are
either specialized for local use or exhibiting strict real-time
constraints, processing of large volumes of fast generated and
multiple-formatted raw data originating from patient monitor-
ing services deployed within a healthcare unit, complemented
with dedicated medical databases. The stakeholders of the
local level analytics are healthcare units/systems and of course
the patients are ultimate the beneficiaries that will benefit from
the advanced treatment modalities enabled by adopting the
local analytics services. For example, in the ICU scenario, a
prompt reaction to detected instabilities or abnormal behaviour
of the patient’s status could significantly help to save the
lives of patients being treated within the ICU. The AEGLE’s
cloud level analytics services will offer an experimental big
data research platform to data scientists, workers and data
professionals across Europe. The cloud platform consists of
a large pool of anonymized healthcare data, a set of libraries
implementing state-of-the-art big data analytics methods in-
cluding the local level big data analytics AEGLE services and
APIs and the corresponding visualization tools.

A. AEGLE subsystem description

The cloud sub-system (CSB) components of AEGLE are
the following:

• CSB1. Identity management services: This subsystem
implements all the user authentication and authorization
services for accessing the AEGLE cloud services. It
operates at the front-end of AEGLE cloud portal and
enables users to link with the requested cloud resources,
data and analytics in a secure and authorized manner.

• CSB2. User interaction services: This subsystem im-
plements all the logic and user interfaces for users to
navigate to AEGLE cloud services and setup their data,

analysis and workflows. It is in a close cooperation
with the rest of AEGLE cloud subsystems acting as a
controller of the requested functionalities.

• CSB3. Anonymization service and cloud data storage:
This cloud service includes all the functionality and
interfaces for enabling the setup of local anonymization
services to be installed to the local sites and configure
the data mapping according to the structure of the local
databases. It also implements the cloud data storage
mechanisms of the anonymized data uploaded to the
AEGLE cloud platform

• CSB4. Analytics libraries Analytics libraries subsystem
implements all the tools and specialized algorithms for
Big Data analytics at the cloud level. All the analytics
will be available both as customized pipelines and in the
next version of AEGLE cloud platform also as standalone
operators able to be combined for structuring more com-
plex analytic pipelines on demand. Specialized analytics
fitting to the requirements of each of the AEGLE’s use
case, i.e. CLL. ICU and DII, will be included as modular
components in this subsystem. The analytics will be
integrated and work in close cooperation with both the
data visualization libraries, the acceleration engines as
well as the underlying Big Data framework in order to
exploit the performance and scalability advancements and
features of the latter subsystems.

• CSB5. Data visualization libraries: This subsystem
includes the visualization functions for the analytic algo-
rithms defined in the previous subsystem. The user will be
able to setup and configure the desired visualizations on a
dashboard manner. Except from specialized visualization
formats, it will also implement some basic data visu-
alization primitives usually employed in data analytics
frameworks.

• CSB6. Accelerated analytics: This subsystem includes
all the compiler, system level tools and drivers as well
as the computing platforms for supporting a cluster
installation based on Maxeler acceleration machines [5].
On top of this infrastructure, it will implement the accel-
erated versions of algorithms found in the cloud analytics
libraries.

• CSB7. Cloud and Big Data infrastructure: This sub-
system implements all the mechanisms for the AEGLE
cloud virtual cluster configuration and deployment. The
deployed virtual clusters will be automatically configured
to support and instantiate AEGLE’s Big Data framework
for supporting scalable analytics and efficient resource
management of the underlying infrastructure. The specific
component will expose a rich set of interfaces to enable
application programmers, i.e. analytics, data visualization
and acceleration engineers to efficiently map their appli-
cations on the cloud infrastructure exploiting its build-in
scalability primitives. It focuses mainly on the storage and

Fig. 1. AEGLE architecture and subsystems.

computation resources of the AEGLE cloud platform and
their effective interaction

B. AEGLE’s Information Flow

Fig. 1 shows the overall AEGLE system architecture aggre-
gated with the local and cloud domains and annotated with the
previously described subsystems. A typical information flow
is also depicted starting from the local AEGLE infrastructure,
passing to AEGLE cloud and vice versa. The local user is
able either to upload data to AEGLE cloud, passing through
the anonymization modules or to directly perform cloud level
analyses on data already available online. Each time a local
user is connecting to AEGLE’s portal his/her credentials are
authenticated in order to acquire access to AEGLE online
services. Then through the user interaction subsystem, the
user can select through a set of options, e.g. uploading data,
perform analytics on existing cloud data etc. In case of data
upload, a configurable anonymizer will be installed at the local
infrastructure, enabling the generation of a local anonymized
copy of the data that will be safe for upload in the AEGLE
cloud. Data upload will then instruct the AEGLE cloud
storage to accommodate the new data. Cloud level workflows
(analytics and visualization) are invoked on the AEGLE’s Big
Data infrastructure, which consists of the analytics libraries,
the data storage nodes, the computation and acceleration nodes
and software (SW) layer to enable an automatic deployable
cluster with scalable execution engines. According to the
requested analytic, e.g. accelerated on Maxeler nodes or pure
SW implementation, SQL based or file based etc., a set of
appropriate cluster nodes and mechanisms will be allocated
to perform the analytic workflow. After completion, the data
to be visualized are returned to the corresponding subsystem
that depicts them according to the requested format and the
analysis results are delivered to the user.

V. SOFTWARE DEFINED BIG DATA INFRASTRUCTURE

Fig. 2 depicts the main SW modules/components defining
the AEGLE’s Big Data framework. Specifically, it consists of

www.aegle-uhealth.eu

info@aegle-uhealth.euBig	Data	Framework	Software	Stack

6/3/16Periodic ReviewMeeting 43

HDFS2
virtual cluster distributed file system

VM
Node

VM
Node

VM
Node

VM
Node

VM
Node

VM
Node

VM
Node

YARN
virtual cluster resource manager

SPARK
distributed engine for fast in-memory processing

HADOOP MAPREDUCE
distributed engine for batch jobs processing

HIVE
hadoop sql api

PIG
scripting

workflow mgnt

SPARK SQL
sql api for spark

MLlib
machine learning library

SQ
O

O
P

da
ta

 tr
an

sf
er

 to

H
D

FS

Pydoop
Pyhton hadoop

api

WebHDFS
HDFS REST API

LIVY
SPARK REST API

RM RT
YARN REST API

Fig. 2. AEGLE’s Big Data framework: SW components and hierarchy.

the following components:

• HDFS2: It implements the Hadoop distributed file system
efficient data storage, access and resilience in AEGLE’s
cloud.

• YARN: It implements the actual resource manager of the
HDFS cluster [6] .

• Hadoop MapReduce: It implements the Hadoop frame-
work implementing the map-reduce programming model
for parallel and scalable data processing [7] .

• Pig: It implements a scripting interface for describ-
ing workflow utilizing the scalable Hadoop MapReduce
framework [8].

• Hive: It implements the SQL API for querying HDFS
stored data exploiting the parallelization primitives ex-
posed by the Hadoop MapReduce [9].

• Sqoop: It implements an API for efficiently transferring
data in/out HDFS from third party data sources, e.g.
external SQL databases [10] .

• SPARK: It implements a scalable execution engine sup-
porting data caching, also implementing the map-reduce
programming model, for data intensive workloads, more
specialized for iterative applications [1].

• SPARK SQL: Same as HIVE, it implements the SQL
API for querying HDFS stored data exploiting SPARK’s
execution engine [1].

• MLlib: SPARK’s library exposing efficient and scalable
implementations of machine learning algorithms [1].

• WebHDFS REST API : The HTTP REST API supports
the complete FileSystem interface for HDFS [11].

• ResourceManager REST API: It allows the user to submit
jobs to YARN and get information about the cluster -
status on the cluster, metrics on the cluster, scheduler
information, information about nodes in the cluster, and
information about applications on the cluster [12].

• Livy : Livy is an open source REST interface for inter-
acting with Spark from anywhere. It supports executing
snippets of code or programs in a Spark context that
runs locally or in YARN. It supports i) Interactive Scala,

Python and R shells, ii) batch submissions in Scala, Java,
Python, iii) multi users can share the same server (imper-
sonation support), iv) job submission from anywhere with
REST [13].

The implemented Big Data framework supports two scal-
able execution engines, i.e. Hadoop MapReduce and SPARK.
While Hadoop MapReduce exhibits good scalability w.r.t.
data volume and underlying resources, it is more efficient for
batch workloads that perform large analyses defined by several
chained map-reduce phases. On the other hand, SPARK engine
exhibits higher performance figures, up to 100x for iterative
workloads [1]. Deploying SPARK over HDFS enables most
of the beneficial scalability features present in Hadoop to be
utilized also in SPARK-based applications. In addition, it pro-
vides a richer API with respect to the supported programming
languages. The existence of both execution frameworks in
the deployed Big Data framework enables high flexibility for
AEGLE applications to be customized according to their needs
to the API provided by both frameworks. In the next sections,
we describe in more details the cloud infrastructure along with
its automation primitives as well as the components defining
the Big Data framework.

A. AEGLE’s Automatic Deployment Flows

Two automatic deployment flows are implemented within
AEGLE targeting software defined big data infrastructures.
The fist flow creates a virtual cluster of Virtual Machines
(VMs) on a given number of physical host machines. The
AEGLE’s Virtual Cluster Flow takes as input arguments the
desired cluster size n, the numbers of cores and RAM memory
of the VMs, the number of the host servers k, and the IPs
of the latter ones. Moreover, the selection of different disk
sizes is provided for generated the VMs. For the generation
of the VMs, VirtualBox [14] is used. The VMs run Linux
flavor Ubuntu server and their network adapter is set to
bridged, enabling the communication of guest VMs running
in different host computers. The Virtual Cluster Flow detects
the network interfaces (Ethernet network adapters) of each host
and creates n/k VMs in each host. Assuming that a host has e

network interfaces, n/k/e VMs are connected to each network
interfaces. Detecting the network interfaces and binding the
VMs to different host Ethernet ports, leverages the hardware
capabilities of the host machines as it enables balancing the
network traffic passing from each interface and reduce the

HOST 1

eth0 eth1 ethe

VM #1 VM #2 VM #n/k

HOST 2

eth0 eth1 ethe

VM #1 VM #2 VM #n/k

HOST k

eth0 eth1 ethe

VM #1 VM #2 VM #n/k

Local Network

Fig. 3. Example of automatic virtual cluster creation using the Virtual Cluster
Flow. n VMs are created in k host servers with e network interfaces each.

Select
Services

and
Topology

Hadoop Y/N?

Spark Y/N?

Pydoop Y/N?…

Build &
Export
Docker
Image

ANSIBLE Engine

dockerimage.zip

Start
Services

Create/Reload
Docker

Containers

Copy
Docker
Image

Hosts IPs

Cluster Topology

Generate
Docker

File
Livy Y/N?

Dockerfile

Fig. 4. AEGLE’s Cloud Deployment Flow

communication latency of the VMs. Note that e may not be
the same in the different hosts. If only one network adapter is
available, then all the VMs are connected to that adapter. Fig.
3 depicts an example of a n-size virtual cluster creation on k

host machines.
The second of the two flows developed in AEGLE is

the Cloud Deployment Flow that automatically deploys the
AEGLE’s Big Data Framework on a given number of host
machines. The hosts may be either physical machines or VMs
and more than one Hadoop cluster nodes can be deployed
in every host. Ansible [15] and Docker [16] are used for
the cluster deployment. Ansible is used to setup accordingly
the host machines, transfer, and start the Docker images.
Docker is used to create user specific images containing
the desired SW modules. Ansible enables the automation
of the cluster deployment and the configuration of the host
machines. Docker offers lightweight sand-boxed virtualization,
portability through platform independent deployment, efficient
host resource usage, and fast infrastructure reconfiguration.
The Cloud Deployment Flow is depicted in Fig. 4. The user
selects the desired SW modules, i.e., Hadoop, Spark, Hive,
Sqoop, REST APIs etc., and the corresponding Docker image
is generated. Then the user defines the desired cluster topology,
i.e., cluster size, number of docker images per host, and the
hosts of the Hadoop name node and resource manager, sets
some cluster specific parameters, i.e., Hadoop, YARN, and
Spark specific configurations, and provides the IPs of the host

(a) Performance variation with respect to the number of executors for a fixed
cluster configuration.

(b) Performance variation with respect to different cluster sizes for fixed
number of executors.

(c) Performance variation with respect to different cluster configurations. In
every virtual cluster the number of executors is set to be equal the number of
the cluster nodes.

(d) Performance comparison of two different cluster configurations for increas-
ing input sizes. The first cluster features many nodes and executors, while the
second high executor memory.

Fig. 5. Exploration of Spark performance for different virtual cluster configurations.

machines for the cluster deployment. Finally, using Ansible
the flow, sets up the hosts accordingly, transfers the docker
images to the hosts and starts their services. For the networking
between the Docker containers running the AEGLE’s Big Data
Framework Weave [17] is used. Weave provides a software
defined network, creating a virtual network that connects
Docker containers across multiple hosts and enables their
automatic discovery.

VI. EXPERIMENTAL ANALYSIS

In this section, through extensive experimentation, we exam-
ine the Spark’s sensitivity on differing cluster configurations
and execution parameters in order to optimal tune the AE-
GLE’s Big Data platform. Given a physical platform (server,
cluster, etc.) we explore which is the optimal virtual cluster
configuration, i.e., number of VMs, RAM and cores per VM,
for running Spark applications. In this analysis, Spark runs
over HDFS in YARN-cluster mode, as in the AEGLE system.
Virtual Clusters with different configurations are created using
AEGLE’s Virtual Cluster Flow and then using AEGLE’s
Cloud Deployment Flow, a Hadoop cluster with the Spark
execution engine is deployed on the created virtual cluster.
Our experimental setup consists of two Supermicro servers
featuring two Intel Xeon E5-2658A v3 processors (12 cores,

24 threads per processor), 128 GB of RAM memory and two
network controllers each. The virtual clusters are deployed on
these two servers and in total 40 virtual cores and 240 GB of
RAM can be assigned to the VMs (we reserve some resources
for the host machine). Three benchmarks are considered for
our evaluation: the Decision Tree, the Linear Regression
and the KMeans benchmarks from the Spark Bench suite
[3]. The evaluation metrics, used in this analysis, are the
time (in minutes) required to execute the benchmarks and
the energy consumption (in kJ) of their execution. These
metrics depend on the virtual cluster topology and are used
to define the optimal virtual cluster configuration with respect
to the physical platform that is deployed on. For the energy
consumption measurements, the energy consumed in each
server is measured and then these measurements are summed
to obtain the total energy consumption of the virtual cluster
for the benchmark’s execution. Finally, for every benchmark
an input size of 30GB is used, unless is specified differently.

Table I summarizes all the examined configurations. For
every configuration it is specified the number of the VMs,
i.e., the number of the Hadoop cluster data nodes. In every
configuration an additional VM serving as Name Node and
Resource Manager is also created. Moreover, the cores and
the RAM memory of the VMs are presented, as well as the

TABLE I
THE DIFFERENT CONFIGURATIONS USED FOR OUR EVALUATION

#VMs VM Cores VM RAM #Executors Executor Memory (GB)
(GB) (SPARK) (SPARK)

1 32 120 1 90
4 8 60 4 50
8 8 30 4,8 20

16 4 15 4,8,16 10

Spark configuration values: number of executors and executor
memory that are used for the execution of the benchmarks. The
Spark’s driver memory is set to 4GB for all the configurations
and the number of executors is set to be less or equal to the
number of the available VMs. The Spark executor cores are set
equal to the number of the VM cores in every configuration.
Finally, note that the memory that can be assigned to every
Spark executor must be (considerably) smaller than the RAM
memory of the VMs.

In Fig. 5a the sensitivity of Spark’s performance with
respect to the allocated executors is examined. The virtual
cluster configuration of Fig. 5a consists of 16VMs with 15GB
RAM and 10GB memory allocated for every Spark executor.
It is shown that as the number of the executors increase the
Spark performance increases. More specifically, the Decision
Tree and the Linear Regression are highly benefited from
the Spark executors increase. Doubling the executors speeds
ups the execution of the Decision Tree by 2.4x and that of
the Linear Regression by 3.9x and quadrupling the executors
offers 5.3x and 6.9x higher performance, respectively. On the
other hand, for the KMeans benchmark, doubling the executors
speeds up its execution only by 1.5x, while increasing the
executors from 8 to 16 does not offer any significant speed
up. The Kmeans speed up is limited due to its interaction with
the HDFS as the input data are clustered and then they are
written back to the HDFS. In Fig. 5b the number of executors
is fixed (equal to 4) and the influence of the cluster size on
the Spark performance is examined. In this figure different
cluster sizes are examined. However, as we are limited from
our physical platform, increasing the number of the VMs
decreases their RAM memory and as a result the Spark’s
executors memory. Fig. 5b shows that increasing the cluster
nodes from 4 to 8 speeds up the execution of the benchmarks
by 3x on average. On the other hand, increasing the nodes
from 8 to 16 decreases their performance. As the number of
executors is fixed to 4, in the 16 nodes cluster the memory
allocated for the Spark executors is only 40GB. This value is
significantly smaller than the 80GB available in the 8 nodes
cluster. As a result, having large clusters but limited number
of executors is not performance efficient. From Fig. 5a-5b the
Spark performance benefits from the executors and cluster size
increase but is limited by the available memory. In Fig. 5c,
we examine virtual clusters with similar memory capacity but
different cluster-size. In the cluster configurations examined in

(a) Processor and DRAM energy consumption for increasing input sizes.

(b) IPC per kilojoule for different different cluster configurations

Fig. 6. Exploration of Spark energy consumption for different virtual cluster
configurations and input sizes.

Fig. 5c, the number of Spark executors is set to be equal to
the cluster size (one executor per VM). Therefore, increasing
the cluster size increases the Spark executors. As presented
in Fig. 5c, the bigger the cluster size (and thus the available
executors), the bigger the performance increase. For example,
moving from a 4 node cluster size with 200GB memory (in
total) allocated for the Spark executors, to a 16 nodes cluster
with 160GB total executors memory speeds up the benchmarks
execution by 7.5x on average. In order to verify the behavior
exhibited in Fig. 5c, we examine if it is valid for different
input sizes. The Linear Regression benchmark is used and two
cluster configuration are tested. The optimal one resulted in
Fig. 5c (16 node virtual cluster) and a 4 node cluster with high
executor memory (50GB per executor). As depicted in Fig. 5c,
even for large inputs, the Spark’s performance is influenced
more by the number of the executors and the cluster size
increase rather than the available memory increase.

Concerning the energy consumption, for the optimal con-
figuration of Fig. 5c and the data sizes examined in Fig.
5d, we examine in Fig. 6a the energy consumption of the
processors and the RAM memory for the execution of Linear
Regression and KMeans benchmarks. From Fig. 5c, the energy
spent for computations highly dominates the energy spent for
memory accesses. On average, the energy consumption of the
processors is 6.7x higher than the respective of the RAM
memory. Finally, Fig. 6b depicts the instructions per cycle

(IPC) per kilojoule of the host servers for the configurations
examined in Fig. 5c. It is shown that the configuration with
4 nodes and 50GB executor memory achieves the highest
IPC/kJ values. This is also confirmed from Fig. 6a where we
deduced that the Spark energy consumption is little affected
from the energy consumption due to memory accesses. The
configuration with 4 nodes uses less executors and more
memory comparing with the other presented configurations
leading to higher IPC per kilojoule ratio. The configuration
with one node and 90GB of executor memory exhibit the worst
IPC/kJ. Although this configuration features a lot of memory,
the existence of only one executor significantly slows down
the Spark execution, increasing, thus, the execution time and
the consumed energy.

VII. CONCLUSION

In this paper, we presented the design and analysis of a
software-defined Big Data analytics framework that forms the
cloud backend infrastructure of AEGLE system. In addition,
we present an integrated tool that enables the automatic con-
figuration and deployment of the developed Big Data analytics
framework, thus exploiting the internal configurability of the
proposed software-defined infrastructure. Through a rich set
of experimental results, we explore and analyse the perfor-
mance and energy trade-offs of real-life workload scenarios
on Big Data analytics platforms, showing that optimal system
configurations are amenable to complex interactions between
resource and memory allocations.

REFERENCES

[1] “Apache spark.” [Online]. Available: http://spark.apache.org
[2] “Apache hadoop.” [Online]. Available: http://hadoop.apache.org
[3] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: A

comprehensive benchmarking suite for in memory data analytic platform
spark,” in Proceedings of the 12th ACM International Conference on

Computing Frontiers, 2015, pp. 53:1–53:8.
[4] “Big data: What is it and why is it important?” [Online]. Available:

http://ec.europa.eu/digital-agenda/en/news/ big-data-what-it-and-why-it-
important

[5] “Maxeler.” [Online]. Available: http://www.maxeler.com/
[6] “Yarn.” [Online]. Available:

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html

[7] “Hadoop mapreduce.” [Online]. Available:
https://hadoop.apache.org/docs/current/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/MapReduceTutorial.html

[8] “Apach hive.” [Online]. Available: https://hive.apache.org
[9] “Apache sqoop.” [Online]. Available: http://sqoop.apache.org

[10] “Apache pig.” [Online]. Available: https://pig.apache.org
[11] “Webhdfs rest api.” [Online]. Available:

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-
hdfs/WebHDFS.html

[12] “Resourcemanager rest api.” [Online]. Available:
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/ResourceManagerRest.html

[13] “Livy rest api.” [Online]. Available:
https://github.com/cloudera/hue/tree/master/apps/spark/java

[14] “Virtual box.” [Online]. Available: https://www.virtualbox.org
[15] “Ansible.” [Online]. Available: https://www.ansible.com
[16] “Docker.” [Online]. Available: https://www.docker.com
[17] “Weave.” [Online]. Available: https://github.com/weaveworks/weave

