• this file has been update 20220811 with the >47 donors for all comparisons.
  • this file has been update 20220819 with the >=47 donors for all comparisons. and use the new updated v5 data.
  • this file is the updated one on 0824 with no adjustment to pathway analysis
#library(GEOquery)  ## go to https://github.com/seandavi/GEOquery for installation details
#library(R.utils)
library(reshape2)
library(ggplot2)
library(limma)
library(dplyr)
library(tidyverse)
#library(DMwR)
library(readxl)
library(MultiAssayExperiment)
library(S4Vectors)
library(SummarizedExperiment)
library(DT)
library(randomForest)
library(e1071)
library("bnstruct")
library(rminer)
library(ggpubr)
setwd("~/Dropbox (Sydney Uni)/Diabetic cardiomyopathy/YUNWEI USE THIS/clean_up_folder/analysis")
# install.packages("VANData_1.0.0.tgz", repos=NULL,type="source")
# install.packages("VAN_1.0.0.tgz", repos=NULL,type="source") 

library(R.utils)
library(reshape2)
library(ggplot2)
library(limma)
library(dplyr)
library(tidyverse)
library(DMwR)
library(readxl)
library(magrittr)
library(tidyverse)
library(gage)
library(knitr)
library(DT)
library(janitor)
library(KEGGREST)
library(MASS)
library("AnnotationDbi")
library("org.Hs.eg.db")
library(dplyr)
library(reshape)
library(ggplot2)
library(plyr)
library(gtable)
library(grid)
library(pheatmap)
library(reshape2)
library(plotly)
library(UpSetR)
library(MatchIt)
require(pathview)
library(STRINGdb)
## Kegg sets data
require(gage)
require(gageData)
# kegg = kegg.gsets(species = "hsa", id.type = "kegg")
# kegg.sets.hsa = kegg$kg.sets

# go.hs=go.gsets(species="human")
# go.bp=go.hs$go.sets[go.hs$go.subs$BP]
# go.mf=go.hs$go.sets[go.hs$go.subs$MF]
# go.bpmf=go.hs$go.sets[go.hs$go.subs$BP&go.hs$go.subs$MF] #not equal, wired
# go.bpmf2=append(go.bp,go.mf)
require(gage)
require(gageData)
library(clusterProfiler)
library(enrichplot)

1 IHD-DM VS Donor

1.1 DE analysis and standard pipeline

## [1] 155 107
## [1] 42 14
## [1] 30 14
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "94_LV_Donor_No_47_M" 
## [16] "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F" 
## [19] "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F"
## [22] "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F"
## [25] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [28] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 155  30
## [1] 155  30
## [1] 154  30
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "94_LV_Donor_No_47_M" 
## [16] "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F" 
## [19] "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F"
## [22] "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F"
## [25] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [28] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 2.129634
## [1] 154  10
## [1] 154  10
## [1] 154
## [1] 154   9
## [1] 154   9
## [1] 137
## [1] 143

2 IHD-NO DM VS Donor

2.1 DE analysis and standard pipeline

## [1] 155 107
## [1] 44 14
## [1] 32 14
##  [1] "15_LV_IHD_No_41_M"    "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"   
##  [4] "18_LV_IHD_No_45_M"    "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"   
##  [7] "21_LV_IHD_No_49_F"    "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"   
## [10] "24_LV_IHD_No_54_M"    "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"   
## [13] "27_LV_IHD_No_62_F"    "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"   
## [16] "30_LV_IHD_No_66_M"    "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [19] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [22] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [25] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [28] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [31] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 155  32
## [1] 155  32
## [1] 154  32
##  [1] "15_LV_IHD_No_41_M"    "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"   
##  [4] "18_LV_IHD_No_45_M"    "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"   
##  [7] "21_LV_IHD_No_49_F"    "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"   
## [10] "24_LV_IHD_No_54_M"    "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"   
## [13] "27_LV_IHD_No_62_F"    "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"   
## [16] "30_LV_IHD_No_66_M"    "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [19] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [22] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [25] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [28] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [31] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 2.093422
## [1] 154  10
## [1] 154  10
## [1] 154   9
## [1] 154   9
## [1] 137
## [1] 143

3 Figure3B

## [1] 71 11
## [1] 71 11
common_name=c(ihddm_dt2$Description,ihdnodm_dt2$Description)
plotmerge=merge(ihddm_dt2,ihdnodm_dt2,by="Description")
plotmerge$pvalue.x=-log10(as.numeric(plotmerge$pvalue.x))
plotmerge$pvalue.y=-log10(as.numeric(plotmerge$pvalue.y))
# annotation=read_excel("/Users/yzha0247/Dropbox (Sydney Uni)/Diabetic cardiomyopathy/YUNWEI USE THIS/Yunwei202110/IHD-DM paper figure 3a pathways to annotate.xlsx")
# plotmerge$mito=as.character(ifelse(plotmerge$Description%in% ben_mito$Description,1,0))
# plotmerge$annotation=as.character(ifelse(plotmerge$Description%in% annotation$`Amino acid metabolism`,1,0))
# ggplotly(ggplot(plotmerge,aes(pvalue.x,pvalue.y,label=Description,color=mito))+geom_point()+ggtitle("kegg+mito pathways ihd-dm vs ihd-no dm")+xlab("neg_log10_pval in ind-dm vs donor")+ylab("neg_log10_pval in ind-no dm vs donor")+theme_bw())

library(ggrepel)
gg=ggplot(plotmerge,aes(pvalue.x,pvalue.y,label=Description))+geom_point()+ggtitle("kegg+mito pathways ihd-dm vs ihd-no dm")+xlab("neg_log10_pval in ind-dm vs donor")+ylab("neg_log10_pval in ind-no dm vs donor")+theme_bw()+theme(aspect.ratio = 1)
#gg=ggplot(plotmerge,aes(pvalue.x,pvalue.y,label=Description,color=mito))+geom_point()+ geom_text_repel(aes(x=pvalue.x,y=pvalue.y,label=Description),subset(plotmerge,plotmerge$annotation==1), size=3)+ggtitle("kegg+mito pathways ihd-dm vs ihd-no dm")+xlab("neg_log10_pval in ind-dm vs donor")+ylab("neg_log10_pval in ind-no dm vs donor")+ scale_color_manual(values=c("black", "seagreen"))+theme_bw()+theme(aspect.ratio = 1)
ggplotly(gg)