• this file is to get supp figures for the paper:

  • using the v5 data object with updated sample info

  • supp figure S2: same as figure2 but use DCM instead, notice the change of donors here: using the designed donors for dcm comparison due to: DCM-DM is a much rarer heart sample. It’s a genetic disease without ischemia but also with diabetes because of that we have few patients and a couple of them are young; 22 and 31 I think. To account for those younger ages, some younger Donor samples were added to the 47yo+ donor group.

  • supp figure S3: same as figure2 but use both IHD and DCM to compare with donors: need to check those donors with Ben in email

  • supp figure S1: some MDS plots with all five groups (ihd-dm, ihd-no dm, dcm-dm, dcm-no dm, donors) and upset plots for those 4 comparisons above (ihd-dm, ihd-no dm, dcm-dm, dcm-no dm compare to corresponding donors in those above analysis), notice those are for multi-omics

  • supp figure S4: check the layout picture Ben sent, but mainly compare male and female donors

1 S2

  • with those 4 young donors for both analysis for S2.

1.1 DCM-DM VS Donor

## [1] 9037  109
## [1] 9037  109
## [1] 4077  109
## [1] 29 14
##  [1] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
##  [4] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
##  [7] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [10] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [13] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [16] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [19] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [22] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [25] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [28] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 9037   29
## [1] 9037   29
## [1] 4051   29
##  [1] "31_LV_DCM_Yes_22_F"   "33_LV_DCM_Yes_53_M"   "37_LV_DCM_Yes_59_M"  
##  [4] "32_LV_DCM_Yes_31_F"   "35_LV_DCM_Yes_56_M"   "39_LV_DCM_Yes_63_F"  
##  [7] "34_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"   "38_LV_DCM_Yes_61_F"  
## [10] "110_LV_Donor_No_65_F" "101_LV_Donor_No_54_M" "91_LV_Donor_No_23_F" 
## [13] "94_LV_Donor_No_47_M"  "98_LV_Donor_No_51_F"  "105_LV_Donor_No_56_M"
## [16] "90_LV_Donor_No_21_M"  "100_LV_Donor_No_53_F" "109_LV_Donor_No_65_M"
## [19] "99_LV_Donor_No_53_M"  "93_LV_Donor_No_25_F"  "97_LV_Donor_No_49_F" 
## [22] "92_LV_Donor_No_23_M"  "108_LV_Donor_No_62_F" "102_LV_Donor_No_54_F"
## [25] "96_LV_Donor_No_48_M"  "106_LV_Donor_No_60_M" "95_LV_Donor_No_47_F" 
## [28] "107_LV_Donor_No_62_M" "104_LV_Donor_No_55_F"
## [1] 2.175502
## [1] 4051   10
## [1] 4037   10
# g1=ggplot2::ggplot(highlight_df, aes(logFC,neglogP_value,label=name))+
#       geom_point(aes(x=logFC,y=neglogP_value,color=colorcode)) +
#       xlab("log2 fold change") + ylab("-log10 p-value")+ggtitle("DCM-DM vs Donor") +
#       theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
# panel.background = element_blank(), axis.line = element_line(colour = "black"),aspect.ratio = 1) +
#       geom_hline(yintercept = adj_to_p(df1), linetype = "dashed", colour = "red")+scale_color_manual(values = c("blue","gray","red"))
# 
# datatable(df1)
# #ggsave(filename="plot1.pdf",g1)
#write.csv(df1,file="dcm_dm vs donor protein.csv")
g1=ggplot(highlight_df, aes(logFC,neglogP_value,label=name))+
      geom_point() +
      xlab("log2 fold change") + ylab("-log10 p-value")+ggtitle("DCM-T2DM vs Donor") +
      theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),aspect.ratio = 1)+geom_text_repel(aes(x=logFC,y=neglogP_value,label=name),subset(highlight_df,(logFC>2.5|-logFC>2.5|neglogP_value>6)))


set1=df1[which(df1$P.Value<0.05),"name"]
set1_relaxed=df1[which(abs(df1$logFC)>1),"name"]
set1_restricted=df1[which(df1$adj.P.Val<0.05),"name"]

# #pathway analysis
# set.seed(202204)
# experiment_data_imputation=knn.impute(t(as.matrix(experiment_data_noimputation)),3)
# experiment_data_pathway=as.data.frame(t(experiment_data_imputation))
# dim(experiment_data_pathway)
#     
# ##With voom for finding pathways
# groupname<-as.factor(experiment_data_noimputation1$y)
# design <- model.matrix(~ groupname + 0)
# log2.cpm <- voom(experiment_data_pathway, design, normalize.method = "quantile")
# fit <- lmFit(log2.cpm, design)
# cont.matrix <- makeContrasts(groupname1-groupname0, levels=design)
# fit2 <- contrasts.fit(fit, cont.matrix)
# fit2 <- eBayes(fit2)
# limma.res=topTable(fit2,n=Inf,sort="p", adjust.method = "fdr")
# fc_new <- limma.res$logFC
# limma.res$entrez = mapIds(org.Hs.eg.db,
#                      keys=row.names(limma.res), 
#                      column="ENTREZID",
#                      keytype=keytypes(org.Hs.eg.db)[2],
#                      multiVals="first")
# names(fc_new) <- limma.res$entrez
# 
# kegg_gene_list<-na.omit(fc_new)
# kegg_gene_list = sort(kegg_gene_list, decreasing = TRUE)
# kk2 <- gseKEGG(geneList     = kegg_gene_list,
#                organism     = "hsa",
#                nPerm        = 10000,
#                minGSSize    = 3,
#                maxGSSize    = 800,
#                pvalueCutoff = 0.05,
#                pAdjustMethod = "BH",
#                keyType       = "ncbi-geneid")
# datatable(as.data.frame(kk2))
# clusterProfiler::dotplot(kk2, showCategory=10, split=".sign") + facet_grid(.~.sign)

load("all_omics_lv_v6.RData")
metabolite_expression=assay(all_omics@ExperimentList$metabolite, "log2_norm")
metabolite_expression1=as.data.frame(metabolite_expression)
metabolite_expression1=apply(metabolite_expression,2,as.numeric)
rownames(metabolite_expression1)=rownames(metabolite_expression)
dim(metabolite_expression1)
## [1] 155 107
## [1] 29 14
##  [1] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
##  [4] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
##  [7] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [10] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [13] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [16] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [19] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [22] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [25] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [28] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 155  29
## [1] 155  29
## [1] 154  29
##  [1] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
##  [4] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
##  [7] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [10] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [13] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [16] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [19] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [22] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [25] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [28] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 2.792392
## [1] 154  10
## [1] 154  10
  #write.csv(df1,file="dcm_dm vs donor metabolite.csv")
  set2=df1[which(df1$P.Value<0.05),"name"]
  set2_relaxed=df1[which(abs(df1$logFC)>1),"name"]
  set2_restricted=df1[which(df1$adj.P.Val<0.05),"name"]
  
  
#       #pathway analysis: name mapping to change the metabolites names
# nameref=read_excel("/Users/yzha0247/Dropbox (Sydney Uni)/Diabetic cardiomyopathy/YUNWEI USE THIS/Yunwei202110/BH 2020 scMerge_impute AMIDE and HILIC 14.12.21_Normalised.xlsx",sheet = 4)
# sum(rownames(df1) %in% nameref$Metabolite)
# 
# df1_new=df1[which(rownames(df1) %in% nameref$Metabolite),]
# df1_new$name=rownames(df1_new)
# df1_new$name[as.numeric(na.omit(match(nameref$Metabolite,df1_new$name,nomatch = NA)))] <- nameref$`KEGG ID`[as.numeric(na.omit(match(df1_new$name,nameref$Metabolite,nomatch = NA)))]
# dim(df1_new)
# df2=df1_new[!is.na(df1_new$name),] #not matching are noted as "-" so that i didnt delete anything
# dim(df2)
# fc=df2$logFC
# names(fc)=df2$name
# fc=sort(fc,decreasing = TRUE)
# 
# #name mapping for pathways
# meta_pathway_name=read_excel("/Users/yzha0247/Dropbox (Sydney Uni)/Diabetic cardiomyopathy/YUNWEI USE THIS/Yunwei202110/2020 Human Heart Metabolomic functionally annotated metabolites.xlsx")
# meta_pathway_name=meta_pathway_name[,c("KEGG pathway","KEGG")]
# sum(meta_pathway_name$KEGG%in% names(fc))
# 
# library(clusterProfiler)
# kk<-GSEA(fc, TERM2GENE=meta_pathway_name,pvalueCutoff = 1,seed = 12,minGSSize=2,pAdjustMethod = "BH")
# datatable(as.data.frame(kk))
# clusterProfiler::dotplot(kk, showCategory=10, split=".sign") + facet_grid(.~.sign)
# kk2<-GSEA(fc, TERM2GENE=meta_pathway_name,pvalueCutoff = 1,seed = 12,minGSSize=2,pAdjustMethod = "none")
# datatable(as.data.frame(kk2))
# clusterProfiler::dotplot(kk2, showCategory=10, split=".sign") + facet_grid(.~.sign)
# #pAdjustMethod one of “holm”, “hochberg”, “hommel”, “bonferroni”, “BH”, “BY”, “fdr”, “none”
# kk3<-GSEA(fc, TERM2GENE=meta_pathway_name,pvalueCutoff = 1,seed = 12,minGSSize=2,pAdjustMethod = "fdr")
# datatable(as.data.frame(kk3))
# clusterProfiler::dotplot(kk3, showCategory=10, split=".sign") + facet_grid(.~.sign)

load("all_omics_lv_v6.RData")
lipid_expression=assay(all_omics@ExperimentList$lipid, "log2")
lipid_expression1=as.data.frame(lipid_expression)
lipid_expression1=lipid_expression1[-which(rownames(lipid_expression1)%in% c('Total PC', 'TOTAL TG','TOTAL SM','TOTAL PI','TOTAL PG','TOTAL LPC', 'TOTAL LPE', 'TOTAL HC' ,'TOTAL DG','TOTAL CL', 'TOTAL ACCA', 'TOTAL PE','TOTAL CER')),]

dim(lipid_expression1)
## [1] 341 105
## [1] 341 105
## [1] 341 105
## [1] 29 14
##  [1] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
##  [4] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
##  [7] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [10] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [13] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [16] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [19] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [22] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [25] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [28] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 341  28
## [1] 341  28
## [1] 341  28
##  [1] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
##  [4] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
##  [7] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [10] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [13] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [16] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [19] "99_LV_Donor_No_53_M"  "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [22] "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M"
## [25] "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M"
## [28] "110_LV_Donor_No_65_F"
## [1] 3.835056
## [1] 341  10
## [1] 341  10

1.2 DCM-no DM VS Donor

## [1] 9037  109
## [1] 9037  109
## [1] 4077  109
## [1] 38 14
##  [1] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
##  [4] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
##  [7] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [10] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [13] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [16] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "90_LV_Donor_No_21_M" 
## [19] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [22] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [25] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [28] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [31] "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [34] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [37] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 9037   36
## [1] 9037   36
## [1] 4037   36
##  [1] "50_LV_DCM_No_55_M"    "46_LV_DCM_No_53_F"    "49_LV_DCM_No_54_M"   
##  [4] "55_LV_DCM_No_62_M"    "44_LV_DCM_No_50_F"    "40_LV_DCM_No_43_F"   
##  [7] "41_LV_DCM_No_43_M"    "54_LV_DCM_No_60_F"    "52_LV_DCM_No_58_F"   
## [10] "48_LV_DCM_No_54_M"    "45_LV_DCM_No_51_M"    "47_LV_DCM_No_53_M"   
## [13] "53_LV_DCM_No_58_M"    "56_LV_DCM_No_52_M"    "43_LV_DCM_No_49_M"   
## [16] "42_LV_DCM_No_45_M"    "110_LV_Donor_No_65_F" "101_LV_Donor_No_54_M"
## [19] "91_LV_Donor_No_23_F"  "94_LV_Donor_No_47_M"  "98_LV_Donor_No_51_F" 
## [22] "105_LV_Donor_No_56_M" "90_LV_Donor_No_21_M"  "100_LV_Donor_No_53_F"
## [25] "109_LV_Donor_No_65_M" "99_LV_Donor_No_53_M"  "93_LV_Donor_No_25_F" 
## [28] "97_LV_Donor_No_49_F"  "92_LV_Donor_No_23_M"  "108_LV_Donor_No_62_F"
## [31] "102_LV_Donor_No_54_F" "96_LV_Donor_No_48_M"  "106_LV_Donor_No_60_M"
## [34] "95_LV_Donor_No_47_F"  "107_LV_Donor_No_62_M" "104_LV_Donor_No_55_F"
## [1] 2.138558
## [1] 4037   10
## [1] 4035   10
#write.csv(df1,file="dcm_nodm vs donor protein.csv")
set4=df1[which(df1$P.Value<0.05),"name"]
set4_relaxed=df1[which(abs(df1$logFC)>1),"name"]
set4_restricted=df1[which(df1$adj.P.Val<0.05),"name"]

# #pathway analysis
# set.seed(202204)
# experiment_data_imputation=knn.impute(t(as.matrix(experiment_data_noimputation)),3)
# experiment_data_pathway=as.data.frame(t(experiment_data_imputation))
# dim(experiment_data_pathway)
#     
# ##With voom for finding pathways
# groupname<-as.factor(experiment_data_noimputation1$y)
# design <- model.matrix(~ groupname + 0)
# log2.cpm <- voom(experiment_data_pathway, design, normalize.method = "quantile")
# fit <- lmFit(log2.cpm, design)
# cont.matrix <- makeContrasts(groupname1-groupname0, levels=design)
# fit2 <- contrasts.fit(fit, cont.matrix)
# fit2 <- eBayes(fit2)
# limma.res=topTable(fit2,n=Inf,sort="p", adjust.method = "fdr")
# fc_new <- limma.res$logFC
# limma.res$entrez = mapIds(org.Hs.eg.db,
#                      keys=row.names(limma.res), 
#                      column="ENTREZID",
#                      keytype=keytypes(org.Hs.eg.db)[2],
#                      multiVals="first")
# names(fc_new) <- limma.res$entrez
# 
# kegg_gene_list<-na.omit(fc_new)
# kegg_gene_list = sort(kegg_gene_list, decreasing = TRUE)
# kk2 <- gseKEGG(geneList     = kegg_gene_list,
#                organism     = "hsa",
#                nPerm        = 10000,
#                minGSSize    = 3,
#                maxGSSize    = 800,
#                pvalueCutoff = 0.05,
#                pAdjustMethod = "BH",
#                keyType       = "ncbi-geneid")
# datatable(as.data.frame(kk2))
# clusterProfiler::dotplot(kk2, showCategory=10, split=".sign") + facet_grid(.~.sign)


load("all_omics_lv_v6.RData")
metabolite_expression=assay(all_omics@ExperimentList$metabolite, "log2_norm")
metabolite_expression1=as.data.frame(metabolite_expression)
metabolite_expression1=apply(metabolite_expression,2,as.numeric)
rownames(metabolite_expression1)=rownames(metabolite_expression)
dim(metabolite_expression1)
## [1] 155 107
## [1] 38 14
##  [1] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
##  [4] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
##  [7] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [10] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [13] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [16] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "90_LV_Donor_No_21_M" 
## [19] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [22] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [25] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [28] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [31] "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [34] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [37] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 155  38
## [1] 155  38
## [1] 154  38
##  [1] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
##  [4] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
##  [7] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [10] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [13] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [16] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "103_LV_DCM_No_44_M"  
## [19] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [22] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [25] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [28] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [31] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [34] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [37] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 2.41218
## [1] 154  10
## [1] 154  10
 # write.csv(df1,file="dcm_nodm vs donor metabolite.csv")
 set5=df1[which(df1$P.Value<0.05),"name"] 
  set5_relaxed=df1[which(abs(df1$logFC)>1),"name"]
  set5_restricted=df1[which(df1$adj.P.Val<0.05),"name"]
  
#         #pathway analysis: name mapping to change the metabolites names
# nameref=read_excel("/Users/yzha0247/Dropbox (Sydney Uni)/Diabetic cardiomyopathy/YUNWEI USE THIS/Yunwei202110/BH 2020 scMerge_impute AMIDE and HILIC 14.12.21_Normalised.xlsx",sheet = 4)
# sum(rownames(df1) %in% nameref$Metabolite)
# 
# df1_new=df1[which(rownames(df1) %in% nameref$Metabolite),]
# df1_new$name=rownames(df1_new)
# df1_new$name[as.numeric(na.omit(match(nameref$Metabolite,df1_new$name,nomatch = NA)))] <- nameref$`KEGG ID`[as.numeric(na.omit(match(df1_new$name,nameref$Metabolite,nomatch = NA)))]
# dim(df1_new)
# df2=df1_new[!is.na(df1_new$name),]
# dim(df2)
# fc=df2$logFC
# names(fc)=df2$name
# fc=sort(fc,decreasing = TRUE)
# 
# #name mapping for pathways
# meta_pathway_name=read_excel("/Users/yzha0247/Dropbox (Sydney Uni)/Diabetic cardiomyopathy/YUNWEI USE THIS/Yunwei202110/2020 Human Heart Metabolomic functionally annotated metabolites.xlsx")
# meta_pathway_name=meta_pathway_name[,c("KEGG pathway","KEGG")]
# sum(meta_pathway_name$KEGG%in% names(fc))
# 
# library(clusterProfiler)
# kk<-GSEA(fc, TERM2GENE=meta_pathway_name,pvalueCutoff = 1,seed = 12,minGSSize=2,pAdjustMethod = "BH")
# datatable(as.data.frame(kk))
# clusterProfiler::dotplot(kk, showCategory=10, split=".sign") + facet_grid(.~.sign)
# kk2<-GSEA(fc, TERM2GENE=meta_pathway_name,pvalueCutoff = 1,seed = 12,minGSSize=2,pAdjustMethod = "none")
# datatable(as.data.frame(kk2))
# clusterProfiler::dotplot(kk2, showCategory=10, split=".sign") + facet_grid(.~.sign)
# kk3<-GSEA(fc, TERM2GENE=meta_pathway_name,pvalueCutoff = 1,seed = 12,minGSSize=2,pAdjustMethod = "fdr")
# datatable(as.data.frame(kk3))
# clusterProfiler::dotplot(kk3, showCategory=10, split=".sign") + facet_grid(.~.sign)


  load("all_omics_lv_v6.RData")
lipid_expression=assay(all_omics@ExperimentList$lipid, "log2")
lipid_expression1=as.data.frame(lipid_expression)
lipid_expression1=lipid_expression1[-which(rownames(lipid_expression1)%in% c('Total PC', 'TOTAL TG','TOTAL SM','TOTAL PI','TOTAL PG','TOTAL LPC', 'TOTAL LPE', 'TOTAL HC' ,'TOTAL DG','TOTAL CL', 'TOTAL ACCA', 'TOTAL PE','TOTAL CER')),]

dim(lipid_expression1)
## [1] 341 105
## [1] 341 105
## [1] 341 105
## [1] 38 14
##  [1] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
##  [4] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
##  [7] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [10] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [13] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [16] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "90_LV_Donor_No_21_M" 
## [19] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [22] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [25] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [28] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [31] "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [34] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [37] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 341  36
## [1] 341  36
## [1] 341  36
##  [1] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
##  [4] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
##  [7] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [10] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [13] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [16] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "90_LV_Donor_No_21_M" 
## [19] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [22] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [25] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [28] "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F"
## [31] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [34] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 3.835056
## [1] 341  10
## [1] 341  10

1.3 venn diagram (adj p<0.05)

library(RColorBrewer)
myCol <- brewer.pal(3, "Pastel2")[c(1, 2)]
library(VennDiagram)
# Chart
v1=venn.diagram(
        x = list(set1_restricted, set4_restricted),
        category.names = c("DCM-T2DM" , "DCM-NO T2DM" ),
        cat.cex = 2,
        cat.default.pos = "text",
        filename = NULL,
        output=TRUE,
        
        # Output features
        height = 14 , 
        width = 15 , 
        resolution = 300,
        compression = "lzw",
        
        # Circles
        lwd = 2,
        lty = 'blank',
        fill = myCol,
        
        # Numbers
        cex = 2,
        fontface = "bold",
        fontfamily = "sans"
        
    
)
display_venn <- function(x, ...){
  library(VennDiagram)
  grid.newpage()
  venn_object <- venn.diagram(x, filename = NULL, ...)
  grid.draw(venn_object)
}
display_venn(x = list(set1_restricted, set4_restricted),
              category.names = c("DCM-T2DM" , "DCM-NO T2DM" ),fill = myCol,lwd = 0,
        lty = 'blank')
# pdf(file="s2protein_venn.pdf")
# grid.draw(v1)
# dev.off()
v2=venn.diagram(
        x = list(set2_restricted, set5_restricted),
        category.names = c("DCM-T2DM" , "DCM-NO T2DM" ),
        cat.cex = 2,
        cat.default.pos = "text",
        filename = NULL,
        output=TRUE,
        
        # Output features
        height = 14 , 
        width = 15 , 
        resolution = 300,
        compression = "lzw",
        
        # Circles
        lwd = 2,
        lty = 'blank',
        fill = myCol,
        
        # Numbers
        cex = 2,
        fontface = "bold",
        fontfamily = "sans"
        
    
)

# pdf(file="s2meta_venn.pdf")
# grid.draw(v2)
# dev.off()

display_venn(x = list(set2_restricted, set5_restricted),
              category.names = c("DCM-T2DM" , "DCM-NO T2DM" ),fill = myCol,lwd = 0,
        lty = 'blank')
set2_restricted
set5_restricted

v3=venn.diagram(
        x = list(set3, set6),
        category.names = c("DCM-T2DM" , "DCM-NO T2DM" ),
        cat.cex = 2,
        cat.default.pos = "text",
        filename = NULL,
        output=TRUE,

        # Output features
        height = 14 ,
        width = 15 ,
        resolution = 300,
        compression = "lzw",

        # Circles
        lwd = 2,
        lty = 'blank',
        fill = myCol,

        # Numbers
        cex = 2,
        fontface = "bold",
        fontfamily = "sans"


)
# pdf(file="supp3lipid_venn2303.pdf")
# grid.draw(v3)
# dev.off()

display_venn(x = list(set3, set6),
              category.names = c("DCM-T2DM" , "DCM-NO T2DM" ),fill = myCol,lwd = 0,
        lty = 'blank')

2 S3

  • all >=21 donors, i.e. with those four young donors

2.1 HF-DM vs donor

## [1] 9037  109
## [1] 9037  109
## [1] 4077  109
## [1] 43 14
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "31_LV_DCM_Yes_22_F"  
## [16] "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"   "34_LV_DCM_Yes_56_M"  
## [19] "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"   "37_LV_DCM_Yes_59_M"  
## [22] "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"   "90_LV_Donor_No_21_M" 
## [25] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [28] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [31] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [34] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [37] "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M"
## [40] "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M"
## [43] "110_LV_Donor_No_65_F"
## [1] 9037   43
## [1] 9037   43
## [1] 4117   43
##  [1] "31_LV_DCM_Yes_22_F"   "2_LV_IHD_Yes_45_M"    "33_LV_DCM_Yes_53_M"  
##  [4] "3_LV_IHD_Yes_46_F"    "4_LV_IHD_Yes_49_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "37_LV_DCM_Yes_59_M"   "5_LV_IHD_Yes_50_M"    "32_LV_DCM_Yes_31_F"  
## [10] "35_LV_DCM_Yes_56_M"   "7_LV_IHD_Yes_51_M"    "14_LV_IHD_Yes_65_M"  
## [13] "39_LV_DCM_Yes_63_F"   "9_LV_IHD_Yes_55_M"    "12_LV_IHD_Yes_59_M"  
## [16] "34_LV_DCM_Yes_56_M"   "13_LV_IHD_Yes_59_M"   "36_LV_DCM_Yes_58_M"  
## [19] "10_LV_IHD_Yes_56_M"   "38_LV_DCM_Yes_61_F"   "11_LV_IHD_Yes_56_M"  
## [22] "8_LV_IHD_Yes_53_M"    "1_LV_IHD_Yes_41_M"    "110_LV_Donor_No_65_F"
## [25] "101_LV_Donor_No_54_M" "91_LV_Donor_No_23_F"  "94_LV_Donor_No_47_M" 
## [28] "98_LV_Donor_No_51_F"  "105_LV_Donor_No_56_M" "90_LV_Donor_No_21_M" 
## [31] "100_LV_Donor_No_53_F" "109_LV_Donor_No_65_M" "99_LV_Donor_No_53_M" 
## [34] "93_LV_Donor_No_25_F"  "97_LV_Donor_No_49_F"  "92_LV_Donor_No_23_M" 
## [37] "108_LV_Donor_No_62_F" "102_LV_Donor_No_54_F" "96_LV_Donor_No_48_M" 
## [40] "106_LV_Donor_No_60_M" "95_LV_Donor_No_47_F"  "107_LV_Donor_No_62_M"
## [43] "104_LV_Donor_No_55_F"
## [1] 1.778046
## [1] 4117   10
## [1] 4108   10
# g1=ggplot2::ggplot(highlight_df, aes(logFC,neglogP_value,label=name))+
#       geom_point(aes(x=logFC,y=neglogP_value,color=colorcode)) +
#       xlab("log2 fold change") + ylab("-log10 p-value")+ggtitle("DCM-DM vs Donor") +
#       theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
# panel.background = element_blank(), axis.line = element_line(colour = "black"),aspect.ratio = 1) +
#       geom_hline(yintercept = adj_to_p(df1), linetype = "dashed", colour = "red")+scale_color_manual(values = c("blue","gray","red"))
# 
# datatable(df1)
# #ggsave(filename="plot1.pdf",g1)

g1=ggplot(highlight_df, aes(logFC,neglogP_value,label=name))+
      geom_point() +
      xlab("log2 fold change") + ylab("-log10 p-value")+ggtitle("HF-T2DM vs Donor") +
      theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),aspect.ratio = 1)+geom_text_repel(aes(x=logFC,y=neglogP_value,label=name),subset(highlight_df,(logFC>2.5|-logFC>2.5|neglogP_value>8)))

#write.csv(df1,file="hf_dm vs donor protein.csv")
set1=df1[which(df1$P.Value<0.05),"name"]
set1_relaxed=df1[which(abs(df1$logFC)>1),"name"]
set1_restricted=df1[which(df1$adj.P.Val<0.05),"name"]


load("all_omics_lv_v6.RData")
metabolite_expression=assay(all_omics@ExperimentList$metabolite, "log2_norm")
metabolite_expression1=as.data.frame(metabolite_expression)
metabolite_expression1=apply(metabolite_expression,2,as.numeric)
rownames(metabolite_expression1)=rownames(metabolite_expression)
dim(metabolite_expression1)
## [1] 155 107
## [1] 43 14
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "31_LV_DCM_Yes_22_F"  
## [16] "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"   "34_LV_DCM_Yes_56_M"  
## [19] "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"   "37_LV_DCM_Yes_59_M"  
## [22] "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"   "90_LV_Donor_No_21_M" 
## [25] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [28] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [31] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [34] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [37] "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M"
## [40] "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M"
## [43] "110_LV_Donor_No_65_F"
## [1] 155  43
## [1] 155  43
## [1] 154  43
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "31_LV_DCM_Yes_22_F"  
## [16] "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"   "34_LV_DCM_Yes_56_M"  
## [19] "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"   "37_LV_DCM_Yes_59_M"  
## [22] "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"   "90_LV_Donor_No_21_M" 
## [25] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [28] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [31] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [34] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [37] "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M"
## [40] "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M"
## [43] "110_LV_Donor_No_65_F"
## [1] 2.169142
## [1] 154  10
## [1] 154  10
## [1] 341 105
## [1] 341 105
## [1] 341 105
## [1] 43 14
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "31_LV_DCM_Yes_22_F"  
## [16] "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"   "34_LV_DCM_Yes_56_M"  
## [19] "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"   "37_LV_DCM_Yes_59_M"  
## [22] "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"   "90_LV_Donor_No_21_M" 
## [25] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [28] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [31] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [34] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [37] "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M"
## [40] "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M"
## [43] "110_LV_Donor_No_65_F"
## [1] 341  42
## [1] 341  42
## [1] 341  42
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "31_LV_DCM_Yes_22_F"  
## [16] "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"   "34_LV_DCM_Yes_56_M"  
## [19] "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"   "37_LV_DCM_Yes_59_M"  
## [22] "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"   "90_LV_Donor_No_21_M" 
## [25] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [28] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [31] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [34] "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F"
## [37] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [40] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 2.658965
## [1] 341  10
## [1] 341  10

2.2 HF-no DM VS Donor

## [1] 9037  109
## [1] 9037  109
## [1] 4077  109
## [1] 54 14
##  [1] "15_LV_IHD_No_41_M"    "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"   
##  [4] "18_LV_IHD_No_45_M"    "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"   
##  [7] "21_LV_IHD_No_49_F"    "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"   
## [10] "24_LV_IHD_No_54_M"    "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"   
## [13] "27_LV_IHD_No_62_F"    "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"   
## [16] "30_LV_IHD_No_66_M"    "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"   
## [19] "42_LV_DCM_No_45_M"    "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"   
## [22] "45_LV_DCM_No_51_M"    "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"   
## [25] "48_LV_DCM_No_54_M"    "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"   
## [28] "51_LV_DCM_No_56_M"    "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"   
## [31] "54_LV_DCM_No_60_F"    "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"   
## [34] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [37] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [40] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [43] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [46] "102_LV_Donor_No_54_F" "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F"
## [49] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [52] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 9037   52
## [1] 9037   52
## [1] 4045   52
##  [1] "110_LV_Donor_No_65_F" "50_LV_DCM_No_55_M"    "17_LV_IHD_No_43_F"   
##  [4] "26_LV_IHD_No_54_F"    "27_LV_IHD_No_62_F"    "46_LV_DCM_No_53_F"   
##  [7] "49_LV_DCM_No_54_M"    "55_LV_DCM_No_62_M"    "24_LV_IHD_No_54_M"   
## [10] "44_LV_DCM_No_50_F"    "101_LV_Donor_No_54_M" "16_LV_IHD_No_42_F"   
## [13] "22_LV_IHD_No_50_M"    "40_LV_DCM_No_43_F"    "21_LV_IHD_No_49_F"   
## [16] "41_LV_DCM_No_43_M"    "91_LV_Donor_No_23_F"  "94_LV_Donor_No_47_M" 
## [19] "98_LV_Donor_No_51_F"  "54_LV_DCM_No_60_F"    "52_LV_DCM_No_58_F"   
## [22] "19_LV_IHD_No_47_F"    "105_LV_Donor_No_56_M" "90_LV_Donor_No_21_M" 
## [25] "20_LV_IHD_No_48_F"    "48_LV_DCM_No_54_M"    "100_LV_Donor_No_53_F"
## [28] "109_LV_Donor_No_65_M" "45_LV_DCM_No_51_M"    "47_LV_DCM_No_53_M"   
## [31] "23_LV_IHD_No_50_M"    "28_LV_IHD_No_62_M"    "99_LV_Donor_No_53_M" 
## [34] "53_LV_DCM_No_58_M"    "15_LV_IHD_No_41_M"    "29_LV_IHD_No_62_M"   
## [37] "18_LV_IHD_No_45_M"    "93_LV_Donor_No_25_F"  "56_LV_DCM_No_52_M"   
## [40] "97_LV_Donor_No_49_F"  "92_LV_Donor_No_23_M"  "108_LV_Donor_No_62_F"
## [43] "102_LV_Donor_No_54_F" "96_LV_Donor_No_48_M"  "30_LV_IHD_No_66_M"   
## [46] "106_LV_Donor_No_60_M" "95_LV_Donor_No_47_F"  "107_LV_Donor_No_62_M"
## [49] "25_LV_IHD_No_54_M"    "104_LV_Donor_No_55_F" "43_LV_DCM_No_49_M"   
## [52] "42_LV_DCM_No_45_M"
## [1] 2.22772
## [1] 4045   10
## [1] 4042   10
## [1] 155 107
## [1] 54 14
##  [1] "15_LV_IHD_No_41_M"    "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"   
##  [4] "18_LV_IHD_No_45_M"    "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"   
##  [7] "21_LV_IHD_No_49_F"    "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"   
## [10] "24_LV_IHD_No_54_M"    "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"   
## [13] "27_LV_IHD_No_62_F"    "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"   
## [16] "30_LV_IHD_No_66_M"    "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"   
## [19] "42_LV_DCM_No_45_M"    "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"   
## [22] "45_LV_DCM_No_51_M"    "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"   
## [25] "48_LV_DCM_No_54_M"    "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"   
## [28] "51_LV_DCM_No_56_M"    "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"   
## [31] "54_LV_DCM_No_60_F"    "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"   
## [34] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [37] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [40] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [43] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [46] "102_LV_Donor_No_54_F" "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F"
## [49] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [52] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 155  54
## [1] 155  54
## [1] 154  54
##  [1] "15_LV_IHD_No_41_M"    "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"   
##  [4] "18_LV_IHD_No_45_M"    "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"   
##  [7] "21_LV_IHD_No_49_F"    "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"   
## [10] "24_LV_IHD_No_54_M"    "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"   
## [13] "27_LV_IHD_No_62_F"    "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"   
## [16] "30_LV_IHD_No_66_M"    "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"   
## [19] "42_LV_DCM_No_45_M"    "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"   
## [22] "45_LV_DCM_No_51_M"    "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"   
## [25] "48_LV_DCM_No_54_M"    "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"   
## [28] "51_LV_DCM_No_56_M"    "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"   
## [31] "54_LV_DCM_No_60_F"    "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"   
## [34] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [37] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [40] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [43] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [46] "102_LV_Donor_No_54_F" "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F"
## [49] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [52] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 2.028964
## [1] 154  10
## [1] 154  10
## [1] 341 105
## [1] 341 105
## [1] 341 105
## [1] 54 14
##  [1] "15_LV_IHD_No_41_M"    "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"   
##  [4] "18_LV_IHD_No_45_M"    "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"   
##  [7] "21_LV_IHD_No_49_F"    "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"   
## [10] "24_LV_IHD_No_54_M"    "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"   
## [13] "27_LV_IHD_No_62_F"    "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"   
## [16] "30_LV_IHD_No_66_M"    "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"   
## [19] "42_LV_DCM_No_45_M"    "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"   
## [22] "45_LV_DCM_No_51_M"    "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"   
## [25] "48_LV_DCM_No_54_M"    "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"   
## [28] "51_LV_DCM_No_56_M"    "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"   
## [31] "54_LV_DCM_No_60_F"    "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"   
## [34] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [37] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [40] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [43] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [46] "102_LV_Donor_No_54_F" "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F"
## [49] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [52] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 341  52
## [1] 341  52
## [1] 341  52
##  [1] "15_LV_IHD_No_41_M"    "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"   
##  [4] "18_LV_IHD_No_45_M"    "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"   
##  [7] "21_LV_IHD_No_49_F"    "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"   
## [10] "24_LV_IHD_No_54_M"    "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"   
## [13] "27_LV_IHD_No_62_F"    "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"   
## [16] "30_LV_IHD_No_66_M"    "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"   
## [19] "42_LV_DCM_No_45_M"    "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"   
## [22] "45_LV_DCM_No_51_M"    "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"   
## [25] "48_LV_DCM_No_54_M"    "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"   
## [28] "51_LV_DCM_No_56_M"    "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"   
## [31] "54_LV_DCM_No_60_F"    "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"   
## [34] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
## [37] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
## [40] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [43] "99_LV_Donor_No_53_M"  "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [46] "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M"
## [49] "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M"
## [52] "110_LV_Donor_No_65_F"
## [1] 2.437116
## [1] 341  10
## [1] 341  10

2.3 venn diagram (adj p<0.05)

library(RColorBrewer)
myCol <- brewer.pal(3, "Pastel2")[c(1, 2)]
library(VennDiagram)
# Chart
v1=venn.diagram(
        x = list(set1_restricted, set4_restricted),
        category.names = c("HF-T2DM" , "HF-NO T2DM" ),
        cat.cex = 2,
        cat.default.pos = "text",
        filename = NULL,
        output=TRUE,
        
        # Output features
        height = 14 , 
        width = 15 , 
        resolution = 300,
        compression = "lzw",
        
        # Circles
        lwd = 2,
        lty = 'blank',
        fill = myCol,
        
        # Numbers
        cex = 2,
        fontface = "bold",
        fontfamily = "sans"
        
    
)
display_venn <- function(x, ...){
  library(VennDiagram)
  grid.newpage()
  venn_object <- venn.diagram(x, filename = NULL, ...)
  grid.draw(venn_object)
}
display_venn(x = list(set1_restricted, set4_restricted),
              category.names = c("HF-T2DM" , "HF-NO T2DM" ),fill = myCol,lwd = 0,
        lty = 'blank')
# pdf(file="s3protein_venn.pdf")
# grid.draw(v1)
# dev.off()
v2=venn.diagram(
        x = list(set2_restricted, set5_restricted),
        category.names = c("HF-T2DM" , "HF-NO T2DM" ),
        cat.cex = 2,
        cat.default.pos = "text",
        filename = NULL,
        output=TRUE,
        
        # Output features
        height = 14 , 
        width = 15 , 
        resolution = 300,
        compression = "lzw",
        
        # Circles
        lwd = 2,
        lty = 'blank',
        fill = myCol,
        
        # Numbers
        cex = 2,
        fontface = "bold",
        fontfamily = "sans"
        
    
)

# pdf(file="s3meta_venn.pdf")
# grid.draw(v2)
# dev.off()

display_venn(x = list(set2_restricted, set5_restricted),
              category.names = c("HF-T2DM" , "HF-NO T2DM" ),fill = myCol,lwd = 0,
        lty = 'blank')
set2_restricted
set5_restricted

v3=venn.diagram(
        x = list(set3, set6),
        category.names = c("HF-T2DM" , "HF-NO T2DM" ),
        cat.cex = 2,
        cat.default.pos = "text",
        filename = NULL,
        output=TRUE,

        # Output features
        height = 14 ,
        width = 15 ,
        resolution = 300,
        compression = "lzw",

        # Circles
        lwd = 2,
        lty = 'blank',
        fill = myCol,

        # Numbers
        cex = 2,
        fontface = "bold",
        fontfamily = "sans"


)
# pdf(file="supp1lipid_venn2303.pdf")
# grid.draw(v3)
# dev.off()

display_venn(x = list(set3, set6),
              category.names = c("HF-T2DM" , "HF-NO T2DM" ),fill = myCol,lwd = 0,
        lty = 'blank')

3 S1

3.1 MDS

  • “>=21” donors are applied, top 500 genes/metabolites/lipid are used in the calculation of the distance matrix (default in limma)
## [1] 9037  109
## [1] 9037  109
## [1] 9037   75
##  [1] "110_LV_Donor_No_65_F" "50_LV_DCM_No_55_M"    "31_LV_DCM_Yes_22_F"  
##  [4] "17_LV_IHD_No_43_F"    "26_LV_IHD_No_54_F"    "27_LV_IHD_No_62_F"   
##  [7] "46_LV_DCM_No_53_F"    "49_LV_DCM_No_54_M"    "55_LV_DCM_No_62_M"   
## [10] "2_LV_IHD_Yes_45_M"    "33_LV_DCM_Yes_53_M"   "3_LV_IHD_Yes_46_F"   
## [13] "24_LV_IHD_No_54_M"    "44_LV_DCM_No_50_F"    "101_LV_Donor_No_54_M"
## [16] "16_LV_IHD_No_42_F"    "22_LV_IHD_No_50_M"    "40_LV_DCM_No_43_F"   
## [19] "4_LV_IHD_Yes_49_M"    "21_LV_IHD_No_49_F"    "41_LV_DCM_No_43_M"   
## [22] "6_LV_IHD_Yes_51_M"    "91_LV_Donor_No_23_F"  "94_LV_Donor_No_47_M" 
## [25] "98_LV_Donor_No_51_F"  "54_LV_DCM_No_60_F"    "52_LV_DCM_No_58_F"   
## [28] "37_LV_DCM_Yes_59_M"   "19_LV_IHD_No_47_F"    "105_LV_Donor_No_56_M"
## [31] "5_LV_IHD_Yes_50_M"    "32_LV_DCM_Yes_31_F"   "90_LV_Donor_No_21_M" 
## [34] "20_LV_IHD_No_48_F"    "35_LV_DCM_Yes_56_M"   "48_LV_DCM_No_54_M"   
## [37] "7_LV_IHD_Yes_51_M"    "100_LV_Donor_No_53_F" "14_LV_IHD_Yes_65_M"  
## [40] "39_LV_DCM_Yes_63_F"   "109_LV_Donor_No_65_M" "45_LV_DCM_No_51_M"   
## [43] "47_LV_DCM_No_53_M"    "23_LV_IHD_No_50_M"    "28_LV_IHD_No_62_M"   
## [46] "99_LV_Donor_No_53_M"  "53_LV_DCM_No_58_M"    "9_LV_IHD_Yes_55_M"   
## [49] "12_LV_IHD_Yes_59_M"   "15_LV_IHD_No_41_M"    "29_LV_IHD_No_62_M"   
## [52] "34_LV_DCM_Yes_56_M"   "13_LV_IHD_Yes_59_M"   "36_LV_DCM_Yes_58_M"  
## [55] "18_LV_IHD_No_45_M"    "10_LV_IHD_Yes_56_M"   "93_LV_Donor_No_25_F" 
## [58] "56_LV_DCM_No_52_M"    "38_LV_DCM_Yes_61_F"   "11_LV_IHD_Yes_56_M"  
## [61] "97_LV_Donor_No_49_F"  "92_LV_Donor_No_23_M"  "108_LV_Donor_No_62_F"
## [64] "102_LV_Donor_No_54_F" "96_LV_Donor_No_48_M"  "30_LV_IHD_No_66_M"   
## [67] "106_LV_Donor_No_60_M" "95_LV_Donor_No_47_F"  "8_LV_IHD_Yes_53_M"   
## [70] "107_LV_Donor_No_62_M" "25_LV_IHD_No_54_M"    "104_LV_Donor_No_55_F"
## [73] "1_LV_IHD_Yes_41_M"    "43_LV_DCM_No_49_M"    "42_LV_DCM_No_45_M"

## [1] 155 107
## [1] 155  77
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "15_LV_IHD_No_41_M"   
## [16] "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"    "18_LV_IHD_No_45_M"   
## [19] "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"    "21_LV_IHD_No_49_F"   
## [22] "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"    "24_LV_IHD_No_54_M"   
## [25] "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"    "27_LV_IHD_No_62_F"   
## [28] "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"    "30_LV_IHD_No_66_M"   
## [31] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
## [34] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
## [37] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [40] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
## [43] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
## [46] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [49] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [52] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [55] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "90_LV_Donor_No_21_M" 
## [58] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [61] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [64] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [67] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [70] "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [73] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [76] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"

## [1] 341 105
## [1] 341  75
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "15_LV_IHD_No_41_M"   
## [16] "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"    "18_LV_IHD_No_45_M"   
## [19] "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"    "21_LV_IHD_No_49_F"   
## [22] "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"    "24_LV_IHD_No_54_M"   
## [25] "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"    "27_LV_IHD_No_62_F"   
## [28] "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"    "30_LV_IHD_No_66_M"   
## [31] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
## [34] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
## [37] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [40] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
## [43] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
## [46] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [49] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [52] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [55] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "90_LV_Donor_No_21_M" 
## [58] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [61] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [64] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [67] "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F"
## [70] "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M"
## [73] "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"

3.2 upset plot

  • notice here, we use decide test to get all comparisons all at once instead of performing each comparison individually, the donors are used as the >=47 donors for others, >=21 for dcm-dm and dcm-no dm
## [1] 9037  109
## [1] 9037  109
## [1] 77 14
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "15_LV_IHD_No_41_M"   
## [16] "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"    "18_LV_IHD_No_45_M"   
## [19] "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"    "21_LV_IHD_No_49_F"   
## [22] "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"    "24_LV_IHD_No_54_M"   
## [25] "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"    "27_LV_IHD_No_62_F"   
## [28] "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"    "30_LV_IHD_No_66_M"   
## [31] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
## [34] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
## [37] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [40] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
## [43] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
## [46] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [49] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [52] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [55] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "90_LV_Donor_No_21_M" 
## [58] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [61] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [64] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [67] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [70] "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [73] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [76] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 9037   75
## [1] 9037   75
## [1] 4085   75
IHD_DM=grep("_IHD_Yes",colnames(experiment_data_noimputation))
IHD_NO=grep("_IHD_No",colnames(experiment_data_noimputation))
DCM_DM=grep("_DCM_Yes",colnames(experiment_data_noimputation))
DCM_NO=grep("_DCM_No",colnames(experiment_data_noimputation))
Donor=grep("Donor",colnames(experiment_data_noimputation))
young_donor=Donor[which(Donor%in%c(grep("90",colnames(experiment_data_noimputation)),grep("91",colnames(experiment_data_noimputation)),grep("92",colnames(experiment_data_noimputation)),grep("93",colnames(experiment_data_noimputation))))]
other_donor=Donor[-which(Donor%in%c(grep("90",colnames(experiment_data_noimputation)),grep("91",colnames(experiment_data_noimputation)),grep("92",colnames(experiment_data_noimputation)),grep("93",colnames(experiment_data_noimputation))))]

experiment_data_noimputation1=as.data.frame(t(experiment_data_noimputation))
rownames(experiment_data_noimputation1)=1:dim(experiment_data_noimputation1)[1]
experiment_data_noimputation1$y=ifelse(rownames(experiment_data_noimputation1)%in%IHD_DM,"IHD_DM",ifelse(rownames(experiment_data_noimputation1)%in%IHD_NO,"IHD_NO",ifelse(rownames(experiment_data_noimputation1)%in%DCM_DM,"DCM_DM",ifelse(rownames(experiment_data_noimputation1)%in%DCM_NO,"DCM_NO",ifelse(rownames(experiment_data_noimputation1)%in%young_donor,"young_donor","other_donor"))))) 

#de analysis-- should be on the non-imputed data

    groupname<-as.factor(experiment_data_noimputation1$y)
    design <- model.matrix(~ groupname + 0)
    fit <- lmFit(experiment_data_noimputation, design)
    cont.matrix <- makeContrasts( IHD_DM_D="groupnameIHD_DM-groupnameother_donor",IHD_NO_D="groupnameIHD_NO-groupnameother_donor",DCM_DM_D="groupnameDCM_DM-groupnameother_donor-groupnameyoung_donor",DCM_NO_D="groupnameDCM_NO-groupnameother_donor-groupnameyoung_donor", levels=design)
    fit2 <- contrasts.fit(fit, cont.matrix)
    fit2 <- eBayes(fit2)
    tT <- topTable(fit2)
    df1 <- topTable(fit2, number=nrow(fit2), genelist=rownames(experiment_data_noimputation))
    df1$name=rownames(df1)
    df1$neglogP_value = -log10(df1$P.Value)
 results <- decideTests(fit2,p.value =0.05, adjust.method = "BH") 
 results2=as.data.frame(results)
 results2[results2==-1]=1 #need to change down regulated to regulated for upset plot
 results2[is.na(results2)]=0
upset(as.data.frame(results2),nsets = 4)
grid.text("Summary plot for significantly expressed omics",x = 0.65, y=0.95, gp=gpar(fontsize=10))

## [1] 155 107
## [1] 77 14
##  [1] "1_LV_IHD_Yes_41_M"    "2_LV_IHD_Yes_45_M"    "3_LV_IHD_Yes_46_F"   
##  [4] "4_LV_IHD_Yes_49_M"    "5_LV_IHD_Yes_50_M"    "6_LV_IHD_Yes_51_M"   
##  [7] "7_LV_IHD_Yes_51_M"    "8_LV_IHD_Yes_53_M"    "9_LV_IHD_Yes_55_M"   
## [10] "10_LV_IHD_Yes_56_M"   "11_LV_IHD_Yes_56_M"   "12_LV_IHD_Yes_59_M"  
## [13] "13_LV_IHD_Yes_59_M"   "14_LV_IHD_Yes_65_M"   "15_LV_IHD_No_41_M"   
## [16] "16_LV_IHD_No_42_F"    "17_LV_IHD_No_43_F"    "18_LV_IHD_No_45_M"   
## [19] "19_LV_IHD_No_47_F"    "20_LV_IHD_No_48_F"    "21_LV_IHD_No_49_F"   
## [22] "22_LV_IHD_No_50_M"    "23_LV_IHD_No_50_M"    "24_LV_IHD_No_54_M"   
## [25] "25_LV_IHD_No_54_M"    "26_LV_IHD_No_54_F"    "27_LV_IHD_No_62_F"   
## [28] "28_LV_IHD_No_62_M"    "29_LV_IHD_No_62_M"    "30_LV_IHD_No_66_M"   
## [31] "31_LV_DCM_Yes_22_F"   "32_LV_DCM_Yes_31_F"   "33_LV_DCM_Yes_53_M"  
## [34] "34_LV_DCM_Yes_56_M"   "35_LV_DCM_Yes_56_M"   "36_LV_DCM_Yes_58_M"  
## [37] "37_LV_DCM_Yes_59_M"   "38_LV_DCM_Yes_61_F"   "39_LV_DCM_Yes_63_F"  
## [40] "40_LV_DCM_No_43_F"    "41_LV_DCM_No_43_M"    "42_LV_DCM_No_45_M"   
## [43] "43_LV_DCM_No_49_M"    "44_LV_DCM_No_50_F"    "45_LV_DCM_No_51_M"   
## [46] "46_LV_DCM_No_53_F"    "47_LV_DCM_No_53_M"    "48_LV_DCM_No_54_M"   
## [49] "49_LV_DCM_No_54_M"    "50_LV_DCM_No_55_M"    "51_LV_DCM_No_56_M"   
## [52] "52_LV_DCM_No_58_F"    "53_LV_DCM_No_58_M"    "54_LV_DCM_No_60_F"   
## [55] "55_LV_DCM_No_62_M"    "56_LV_DCM_No_52_M"    "90_LV_Donor_No_21_M" 
## [58] "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M"  "93_LV_Donor_No_25_F" 
## [61] "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F"  "96_LV_Donor_No_48_M" 
## [64] "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F"  "99_LV_Donor_No_53_M" 
## [67] "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [70] "103_LV_DCM_No_44_M"   "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [73] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [76] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 155  77
## [1] 155  77
## [1] 154  77
IHD_DM=grep("_IHD_Yes",colnames(experiment_data_noimputation))
IHD_NO=grep("_IHD_No",colnames(experiment_data_noimputation))
DCM_DM=grep("_DCM_Yes",colnames(experiment_data_noimputation))
DCM_NO=grep("_DCM_No",colnames(experiment_data_noimputation))
Donor=grep("Donor",colnames(experiment_data_noimputation))
young_donor=Donor[which(Donor%in%c(grep("90",colnames(experiment_data_noimputation)),grep("91",colnames(experiment_data_noimputation)),grep("92",colnames(experiment_data_noimputation)),grep("93",colnames(experiment_data_noimputation))))]
other_donor=Donor[-which(Donor%in%c(grep("90",colnames(experiment_data_noimputation)),grep("91",colnames(experiment_data_noimputation)),grep("92",colnames(experiment_data_noimputation)),grep("93",colnames(experiment_data_noimputation))))]


experiment_data_noimputation1=as.data.frame(t(experiment_data_noimputation))
rownames(experiment_data_noimputation1)=1:dim(experiment_data_noimputation1)[1]
experiment_data_noimputation1$y=ifelse(rownames(experiment_data_noimputation1)%in%IHD_DM,"IHD_DM",ifelse(rownames(experiment_data_noimputation1)%in%IHD_NO,"IHD_NO",ifelse(rownames(experiment_data_noimputation1)%in%DCM_DM,"DCM_DM",ifelse(rownames(experiment_data_noimputation1)%in%DCM_NO,"DCM_NO",ifelse(rownames(experiment_data_noimputation1)%in%young_donor,"young_donor","other_donor"))))) 

#de analysis-- should be on the non-imputed data

    groupname<-as.factor(experiment_data_noimputation1$y)
    design <- model.matrix(~ groupname + 0)
    fit <- lmFit(experiment_data_noimputation, design)
   cont.matrix <- makeContrasts( IHD_DM_D="groupnameIHD_DM-groupnameother_donor",IHD_NO_D="groupnameIHD_NO-groupnameother_donor",DCM_DM_D="groupnameDCM_DM-groupnameother_donor-groupnameyoung_donor",DCM_NO_D="groupnameDCM_NO-groupnameother_donor-groupnameyoung_donor", levels=design)
    fit2 <- contrasts.fit(fit, cont.matrix)
    fit2 <- eBayes(fit2)
    tT <- topTable(fit2)
    df1 <- topTable(fit2, number=nrow(fit2), genelist=rownames(experiment_data_noimputation))
    df1$name=rownames(df1)
    df1$neglogP_value = -log10(df1$P.Value)
 results <- decideTests(fit2,p.value =0.05, adjust.method = "BH") 
 results2=as.data.frame(results)
 results2[results2==-1]=1 #need to change down regulated to regulated for upset plot
results2[is.na(results2)]=0
upset(as.data.frame(results2),nsets = 4,nintersects = NA)
grid.text("Summary plot for significantly expressed omics",x = 0.65, y=0.95, gp=gpar(fontsize=10))

4 S4

4.1 MDS female and male

  • notice here, donors with >=21 are applied, 10 males and 10 females (in lipids data, one donor, donor 100 is missing)
## [1] 9037  109
## [1] 9037   20
##  [1] "110_LV_Donor_No_65_F" "101_LV_Donor_No_54_M" "91_LV_Donor_No_23_F" 
##  [4] "94_LV_Donor_No_47_M"  "98_LV_Donor_No_51_F"  "105_LV_Donor_No_56_M"
##  [7] "90_LV_Donor_No_21_M"  "100_LV_Donor_No_53_F" "109_LV_Donor_No_65_M"
## [10] "99_LV_Donor_No_53_M"  "93_LV_Donor_No_25_F"  "97_LV_Donor_No_49_F" 
## [13] "92_LV_Donor_No_23_M"  "108_LV_Donor_No_62_F" "102_LV_Donor_No_54_F"
## [16] "96_LV_Donor_No_48_M"  "106_LV_Donor_No_60_M" "95_LV_Donor_No_47_F" 
## [19] "107_LV_Donor_No_62_M" "104_LV_Donor_No_55_F"

## [1] 155 107
## [1] 155  20
##  [1] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
##  [4] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
##  [7] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [10] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [13] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [16] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [19] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"

## [1] 341 105
## [1] 341  19
##  [1] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
##  [4] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
##  [7] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [10] "99_LV_Donor_No_53_M"  "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [13] "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M"
## [16] "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M"
## [19] "110_LV_Donor_No_65_F"

4.2 de analysis

## [1] 9037  109
## [1] 9037  109
## [1] 4077  109
## [1] 20 14
##  [1] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
##  [4] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
##  [7] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [10] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [13] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [16] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [19] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 9037   20
## [1] 9037   20
## [1] 4014   20
##  [1] "110_LV_Donor_No_65_F" "101_LV_Donor_No_54_M" "91_LV_Donor_No_23_F" 
##  [4] "94_LV_Donor_No_47_M"  "98_LV_Donor_No_51_F"  "105_LV_Donor_No_56_M"
##  [7] "90_LV_Donor_No_21_M"  "100_LV_Donor_No_53_F" "109_LV_Donor_No_65_M"
## [10] "99_LV_Donor_No_53_M"  "93_LV_Donor_No_25_F"  "97_LV_Donor_No_49_F" 
## [13] "92_LV_Donor_No_23_M"  "108_LV_Donor_No_62_F" "102_LV_Donor_No_54_F"
## [16] "96_LV_Donor_No_48_M"  "106_LV_Donor_No_60_M" "95_LV_Donor_No_47_F" 
## [19] "107_LV_Donor_No_62_M" "104_LV_Donor_No_55_F"
## [1] 4.904716
## [1] 4014   10
## [1] 4013   10
## [1] 155 107
## [1] 20 14
##  [1] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
##  [4] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
##  [7] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [10] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [13] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [16] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [19] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 155  20
## [1] 155  20
## [1] 154  20
##  [1] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
##  [4] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
##  [7] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [10] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [13] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [16] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [19] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 3.491362
## [1] 154  10
## [1] 154  10
## [1] 341 105
## [1] 341 105
## [1] 341 105
## [1] 20 14
##  [1] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
##  [4] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
##  [7] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [10] "99_LV_Donor_No_53_M"  "100_LV_Donor_No_53_F" "101_LV_Donor_No_54_M"
## [13] "102_LV_Donor_No_54_F" "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M"
## [16] "106_LV_Donor_No_60_M" "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F"
## [19] "109_LV_Donor_No_65_M" "110_LV_Donor_No_65_F"
## [1] 341  19
## [1] 341  19
## [1] 341  19
##  [1] "90_LV_Donor_No_21_M"  "91_LV_Donor_No_23_F"  "92_LV_Donor_No_23_M" 
##  [4] "93_LV_Donor_No_25_F"  "94_LV_Donor_No_47_M"  "95_LV_Donor_No_47_F" 
##  [7] "96_LV_Donor_No_48_M"  "97_LV_Donor_No_49_F"  "98_LV_Donor_No_51_F" 
## [10] "99_LV_Donor_No_53_M"  "101_LV_Donor_No_54_M" "102_LV_Donor_No_54_F"
## [13] "104_LV_Donor_No_55_F" "105_LV_Donor_No_56_M" "106_LV_Donor_No_60_M"
## [16] "107_LV_Donor_No_62_M" "108_LV_Donor_No_62_F" "109_LV_Donor_No_65_M"
## [19] "110_LV_Donor_No_65_F"
## [1] 3.835056
## [1] 341  10
## [1] 341  10