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1. Background

1.1. Purpose and Context

1.1.1. Purpose

In the 4th Quarter of 2023, the Australian Research Data Commons (ARDC) reached out to the Australian

Cancer Data Network (ACDN), who had previously collaborated on a federated learning project with

ARDC, to jointly develop a pathfinder project.

● The study aims to explore the uses, needs, and challenges of federated learning in the context of
sensitive health-related data, while ensuring the maintenance of privacy and confidentiality.

● Identify and establish a collaborative network among similar research groups.
● Develop suitable demonstrator artifacts to centre the dialogues around them.

This report presents the findings of this Pathfinder Project (see Section 1.2) for the analysis of sensitive

health-related data while maintaining privacy and confidentiality. It focuses on requirements and current

experiences with federated learning (Section 1.3).

1.1.2. Context

The Australian Research Data Commons (ARDC), through the People Research Data Commons (People

RDC), is delivering national scale data infrastructure for health research and translation. In this context,

the infrastructure is defined broadly as shared resource or coordinated activity and includes both hard

and soft resources and assets such as:

● Underpinning hardware infrastructure: Compute support program (Nectar, MLeRP), graphics

processing unit (GPU), storage

● National reference data assets: Data curation, vocabularies and analytic reference datasets,

synthetic data, Research Data Australia, Research Vocabularies Australia, FAIR model for artificial

intelligence (AI) reference data and machine learning (ML) models

● Tools & environment reference programs: Library of tools/collaborative and foundational

infrastructure (models, analytics tools, hubs, virtual labs) etc.

● National-level cultural and coordination assets: Training and capacity development, culture and

policy, communities of practice, guidelines

The People RDC engages with all parts of the health system to address four national-scale challenge

areas, as shown in Figure 1.1:

1. Data Strategy and Discovery

2. Secure Data Access
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3. Data Integration

4. Advanced Analytics

An important strategy for addressing the challenges associated with advanced analytics is the

co-development of a national framework. This framework provides the specifications and reference

architecture for future work. One of the known cardinal challenges of healthcare advanced analytics is

managing the sensitivity in the data.

Healthcare data, as a consequence of various protective regulations and concerns, is fragmented. To

understand this key issue, People RDC investigated the landscape of federated learning and sought to

develop a pathfinder to facilitate exploration of the approach.
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As a companion to framework development, the overarching goal is to create a federated learning

pathfinder for People RDC projects, which would provide insights for future ARDC partnership programs

and foster a sense of community around the feasibility of constructing a federated learning

infrastructure for healthcare data.

1.2. Background and Introduction to Federated Learning

High quality data analysis and model development requires access to large, diverse and granular

datasets. Ideally this requires detailed (e.g. imaging and detailed treatment information) datasets to be

available for learning from different geographical locations both across Australia and internationally.

With regards to healthcare data, this is challenging due to ethics and privacy requirements that can limit

data movement and restrict storage requirements.

Federated learning (Li, Fan, Tse, & Lin, 2020) is a decentralised approach to machine learning model

training. It is gaining traction for its ability to preserve data privacy while allowing for collaborative

learning across distributed sites. Instead of centralising data on a server, federated learning enables

distributed sites to train models locally using their respective datasets and then share only model

updates or gradients with a central server, as shown in Figure 1.3. This methodology not only ensures

data privacy and security but also enables learning from diverse data sources without the need for

centralised data aggregation.
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(a) Horizontal data partitioning

(b) Vertical data partitioning

(c) Combined data partitioning

Figure 1.4. Illustration of different data partitioning used in federated learning

Various types of federated learning approaches exist to accommodate different data partitioning

scenarios (illustrated in Figure 1.4). Horizontal federated learning deals with situations where distributed

sites have access to similar features but possess different data points. In contrast, vertical federated
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learning addresses cases where distributed sites hold different sets of features for the same data points.

Further, data can be both horizontally and vertically partitioned between the sites.

To facilitate the implementation of federated learning, numerous open-source tools and frameworks

have emerged. These tools provide developers and researchers with the necessary infrastructure and

algorithms to experiment with federated learning setups efficiently. However, deploying federated

learning in real-world scenarios presents a set of unique challenges.

Integrating federated learning tools into existing systems can be complex, requiring compatibility with

diverse infrastructures and technologies. Participating sites may not have the required infrastructure or

skills. There may be challenges around data governance, in the context of federated learning, which is a

change from the well understood centralised data sharing approach. Ensuring the security and privacy of

sensitive data during federated learning processes must also be carefully managed, particularly in

applications where regulatory compliance is mandatory.

Achieving scalability and optimal performance while minimising communication overhead and resource

consumption poses additional hurdles in real-world deployments. Addressing these challenges demands

interdisciplinary collaboration among experts in machine learning, distributed systems, cybersecurity,

and regulatory compliance as well as discipline specific data experts. Innovative solutions and robust

methodologies are necessary to overcome the obstacles and unlock the full potential of federated

learning in real-world applications.

1.3. Report Focus

This report provides an overview of requirements and current experiences with federated learning. It

covers the following:

1. A comparison of key federated learning tools available and infrastructure requirements to

support federated learning with the goal of establishing a suitable blueprint for a federated

learning architecture that can be effectively implemented. The intention of this work is to

identify and assess opportunities and requirements for these tools as part of a national

infrastructure solution. This includes:

● Building on work to date to review open-source software available for federated learning

(horizontal and vertical); Section 2.

● Providing overview of key differentiators of the different open-source software tools for

federated learning (e.g. ease of use, communication requirements, ability to adapt

software) for both horizontal and vertically distributed data; Section 2.
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● Comparing practical implementation of a refined number of open-source software tools

(up to 5) for federated learning in the simulation environment, considering both

horizontal and vertically distributed datasets; Section 3.

● Consideration of the infrastructure, particularly data storage, compute, and

communication pathways necessary to support implementation of federated learning

generally but specifically in a health care environment; Section 4.

It should be noted that data standardisation is also a key requirement for effective federated

learning. As work on data standardisation is being undertaken by the ARDC elsewhere (in the

Integration Stream 3.* People RDC Projects) it has not been covered in this report. The

Integration Stream of work covers areas such as Data Standards and Common Models.

2. Consideration of use cases that could become cardinal edge cases for the development of a

national infrastructure, including discussion of case study of designs, deployments, that are

available to or informing national infrastructure. The discussions include features, coordination

and resources required, successes as well as lessons learnt (or pitfalls to be avoided); Section 5.

3. Conclusions and Recommendations to ARDC on infrastructure and other support required to

enable and encourage use of federated learning by Australian research groups, particularly

focused on health care (ARDC people). These recommendations were developed following a

workshop on federated learning including research teams working with federated learning or

related areas; Section 6.
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2. Comparison of Open-Source Tools

2.1. Aim

A primary objective of this report is to provide a comprehensive comparison of open-source federated

learning tools. Specifically, the aim is to identify tools that not only incorporate the federated learning

paradigm but also exhibit robust security features while offering a flexible framework for the integration

of additional features.

2.2. Background

A similar study on the comparison of different open-source federated learning tools was done in (Riedel,

et al., 2024). Their evaluation began with a literature review, organised using a Latent Dirichlet Allocation

model to identify key concepts. The frameworks were then assessed based on criteria categorized into

Features, Interoperability, and User Friendliness, and a weighted scoring system was applied. Fifteen

open-source FL frameworks were evaluated, with Flower achieving the highest total score of 84.75%.

Other frameworks like FLARE, FederatedScope, PySyft, FedML, and OpenFL also performed well.

FederatedScope excelled in Features, while PySyft, FedML, Flower, IBM FL, and FLARE topped

Interoperability. EasyFL was the best in User Friendliness. On the other hand, FATE AI, PaddleFL, and

FedLearner scored the lowest, mainly due to poor Interoperability and User Friendliness.

Our work differs from this study by focusing on additional criteria specific to practical and technical

aspects relevant to the implementation and usability of federated learning frameworks, as described in

the next section.

2.3. Selection Criteria

The federated learning tool assessment criteria is aimed to streamline the evaluation process for

federated learning (Li, Fan, Tse, & Lin, 2020) tools. This criterion was determined in discussion with

experts in the field, with seven criteria determined as described below:

2.3.1. Authentication and Security

Authentication is the process of verifying the identity of users or systems to ensure that only authorized

entities can access sensitive information or perform specific actions. In the context of federated learning,

authentication is crucial for securing communication between different nodes or devices participating in

the learning process. A robust authentication system safeguards against unauthorized access and

ensures the integrity of the federated learning environment. Security features encompass encryption

and other measures to protect data during transmission, safeguarding against potential threats or

breaches.

PAGE 12 Exploring federated learning tools



2.3.2 Node Setup and Ease of Use

Node setup refers to the process of configuring and connecting individual nodes or devices within a

federated learning system. Ease of use evaluates how straightforward it is for users to set up and initiate

the federated learning process. A tool with user-friendly node setup and interfaces streamlines the

implementation process, reducing the complexity of integrating federated learning into existing systems.

Tools that are easy to use are more likely to be adopted widely, especially by users with varying levels of

technical expertise.

2.3.3 Programming Language Support

Programming language support assesses the ability of federated learning tools to work seamlessly with

different programming languages. A tool that supports multiple languages provides users with flexibility,

allowing them to integrate federated learning into projects developed in diverse programming

environments. This criterion is essential for ensuring that the tool can be easily adapted to existing

software ecosystems, promoting interoperability and versatility in application.

2.3.4. Learning Capabilities

Learning capabilities refer to a federated learning tool's capacity to perform different types of learning

tasks. Horizontal learning involves collaborative learning on similar data across different nodes, while

vertical learning entails learning from different but complementary data items across distributed

datasets. Robust learning capabilities are essential for addressing a variety of scenarios and data

distributions, ensuring the tool's applicability to a wide range of use cases.

2.3.5 Technical Expertise and Debugging

Technical expertise measures the level of proficiency required by users to implement and operate a

federated learning tool. A tool that demands minimal technical expertise facilitates wider adoption and

usability. Additionally, debugging tools are crucial for identifying and resolving issues during the

development and deployment phases. Adequate debugging support simplifies troubleshooting, enabling

users to address potential challenges efficiently.

2.3.6. Documentation and Testing

Documentation quality evaluates the clarity, completeness, and accessibility of instructional materials

provided by a federated learning tool. High-quality documentation is vital for guiding users through the

installation, configuration, and utilization processes. Testing suites refer to sets of pre-defined tests that

verify the functionality and reliability of the tool. Well-documented tools with comprehensive testing

suites enhance user confidence and contribute to the overall reliability and stability of the federated

learning environment.
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2.3.7. Cloud Native

People RDC is aiming to provide national research infrastructure at scale and in this setting ‘cloud native’

is a desirable criterion. The cloud native approach is about building applications which are scalable and

can run in public or private cloud or hybrid cloud infrastructure (Amazon, 2024). The cloud native

approach is being led by a global body called The Cloud Native Computing Foundation (CNCF). CNCF is

described as “the open source, vendor-neutral hub of cloud native computing, hosting projects like

Kubernetes and Kubeflow to make cloud native universal and sustainable”. The driving factors behind

the adoption of Kubernetes are hinged on technical advantages elaborated below:

● Microservices approach: Adopts the microservices based approach in building modular

applications which are easy to manage. Each microservice can be realised in the form of a

container (CNCF, 2024).

● Container orchestration: Kubernetes as a container orchestrator allows building an application

with many containers working together. Allowing numerous features such as scalability,

networking, storage and so on (CNCF, 2024).

● Scalability: Allows applications to scale up and down based on usage.

● Simplify infrastructure requirements: Ability to run Kubernetes on varied hardware and

underlying software including cloud.

● Better resource utilisation, faster development, simplified cloud migration (Amazon, 2024).

● Off the shelf containerised software: Ever increasing number of containerised applications

(Veritis, 2024), including machine learning platforms such as Kubeflow.

Given these advantages of cloud native approach, the general recommendation for selecting a FL

framework would be to verify if the framework provides any of the following. Firstly, if the framework

has a containerised implementation. Second, if the framework has an implementation ready to be

deployed on Kubernetes in the form of a helm chart, Kubernetes operator or simply has a Kubernetes

implementation.

2.4. Chosen Tools and Analyses

The federated learning tools to be further investigated were selected by initially looking for tools that

had the presence of the term "federated learning" in the GitHub name or description. Final tools

selected were then required to have an open-source codebase, support for encrypted communication

through Secure Socket Layers, and the availability of actively maintained software documentation on

GitHub.

The tools selected include FEDn, IBMFL, OpenFL, PySyft, Flower, AusCAT, Vantage6, and Flare. Each tool's

strengths and weaknesses were examined across the criteria described above, offering insights into their
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suitability for diverse applications and providing potential users with a thorough understanding of the

comparative advantages and limitations of each tool. For each criteria tools were categorised into one of

three levels: Satisfactory, Requires improvement, or Unsatisfactory. Following are the analyses for each

tool, which are summarised in Figure 2.1:

2.4.1. FEDn

FEDn (Ekmefjord, et al., 2022) exhibits a satisfactory level of node setup, allowing users to configure and

connect nodes efficiently. QuickStart simplicity is another strength. However, challenges arise in

authentication, implying potential vulnerabilities in securing communication between nodes. The tool

demonstrates commendable capabilities in horizontal learning; however, it falls short in vertical learning,

constraining its applicability to specific data partitioned scenarios. FEDn's technical expertise

requirements need improvement, although its built-in debugging tools and software testing suites are

satisfactory. While QuickStart simplicity meets the required standard, a more robust framework for

advanced features and improved security would enhance its versatility. In terms of cloud native FEDn is

containerised with a plan to move to Kubernetes.

2.4.2. IBMFL

IBMFL (Ludwig, et al., 2020) excels in node setup, providing users with a streamlined process for

integration. Built-in debugging tools stand out as a strength, facilitating efficient issue resolution.

However, language support limitations hinder its adaptability to diverse programming environments.

Authentication and technical expertise require improvement, suggesting potential vulnerabilities and a

steeper learning curve. While horizontal learning capabilities are satisfactory, vertical learning and

software testing suites fall short. IBMFL does not meet any of the cloud native requirements. IBMFL's

strengths lie in scenarios where seamless integration and efficient debugging are prioritized over certain

advanced features.

2.4.3. OpenFL

OpenFL (Reina, et al., 2021) demonstrates satisfactory performance in node setup and horizontal

learning. However, challenges in language support and vertical learning limit its adaptability to diverse

scenarios. QuickStart simplicity, built-in debugging tools, and software testing suites require

improvement, impacting user-friendliness and overall reliability. OpenFL is containerised but does not

use kubernetes. Authentication and technical expertise also need enhancements. OpenFL's strengths lie

in projects where a simplified federated learning setup is acceptable, and users prioritise basic

functionalities over advanced features.

2.4.4. PySyft

PySyft (Ziller, et al., 2021) supports both horizontal and vertical learning capabilities, making it

well-suited for different data partitioned scenarios. Technical expertise is a strength, offering users a
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sophisticated framework for complex machine learning models. However, language support, manual

node setup, built-in debugging tools, and documentation quality require improvement. Software testing

suites fall short, potentially impacting the overall reliability of the tool. PySyft meets all of the cloud

native requirements. PySyft's emphasis on advanced learning capabilities positions it as a powerful

choice for projects where users are willing to invest in technical expertise and complex machine learning

models.

2.4.5. Flower

Flower ( Beutel, et al., 2020) demonstrates proficiency in horizontal learning, establishing a robust

foundation for collaborative learning across nodes. Documentation quality is a strength, ensuring users

have comprehensive guidance. However, challenges in authentication, language support, vertical

learning, and built-in debugging tools impact its overall usability. Manual node setup and software

testing suites also require improvement. Flower is containerised with Kubernetes implementation

planned. Flower's strengths lie in scenarios where a simplified federated learning setup is acceptable,

and users prioritise a tool with comprehensive documentation and a straightforward learning curve.

2.4.6. AusCAT

Locally developed, AusCAT (Field , et al., 2022), is not currently a true open-source platform but

components of AusCAT are open source with the goal for the platform to be more broadly open source.

AusCAT demonstrates satisfactory performance in node setup and language support, providing users

with a foundation for integration. However, challenges in authentication, vertical learning, technical

expertise, QuickStart simplicity, and software testing suites impact its overall suitability for more

complex projects. Satisfactory documentation provides users with guidance, but improvements in

security features and advanced capabilities are crucial for broader applicability. AusCAT is containerised

but does not use kubernetes. AusCAT's strengths lie in projects where simplicity and ease of

understanding take precedence over advanced functionalities.

2.4.7. Vantage6

Vantage6 (Moncada-Torres , Martin, Sieswerda, Soest, & Geleijnse, 2021) showcases strengths in

authentication, ensuring secure communication between nodes. Node setup, language support,

horizontal learning, and documentation quality are also well implemented. It demonstrates a particularly

strong performance in vertical learning. However, challenges in technical expertise, QuickStart simplicity,

and software testing suites highlight areas for improvement. Vantage6 meets all the cloud native

requirements. Vantage6's emphasis on security features and satisfactory documentation positions it as a

potential choice for projects where robust security is paramount, and users prioritise comprehensive

documentation for implementation.
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Figure 2.1 Comparison of FL frameworks against different criteria

2.4.8. Flare

Flare (Roth, et al., 2022) demonstrates satisfactory performance in authentication, node setup,

horizontal learning, and documentation quality. However, language support, vertical learning, technical

expertise, QuickStart simplicity, and software testing suites fall short. Despite these limitations, Flare's

strengths in certain usability aspects make it suitable for projects where simplicity and horizontal

learning are prioritized over advanced capabilities. Flare is containerised but does not use kubernetes.

Users valuing a tool with a straightforward learning curve may find Flare to be a viable option, provided

they can accommodate its limitations in other areas.
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3. Open-Source Tool Deployment

Based on the initial overview presented in Section 2, three of these available tools were deployed to

review the practicalities of deploying these tools using NECTAR. A summary of these deployment

experiences is presented here.

3.1. Nvidia Flare

3.1.1. Quick start development

Flare is a tool backed by Nvidia with lots of effort poured into its development and maintenance.

With this, the QuickStart documentation is straight forward to follow, as a researcher or developer may

setup a simulated federated learning environment very easily using Flare’s Proof-of-concept (POC)

command line interface. A dummy “workspace”, Flare’s concept of a directory for managing an entire

federated learning, is setup and ready to perform an example task using a public dataset. This is both

advantageous to federated learning researchers who wish to quickly experiment with ideas rapidly using

the Flare tool without the need to create dummy virtual machines or perform tedious tasks for

simulating a virtual federated learning network as are required with Flower’s virtualised tooling for

dummy federated learning networks. Additionally, POC environment allows developers to test new

features that can be added to the Flare toolkit and streamline new features into the tool easily.

3.1.2. Real world deployment

As mentioned, this tool is backed by Nvidia and as such, a huge effort has gone into making the

documentation clear for the tool for many things, including real world implementation of federated

learning using Flare. A section dedicated to this can be found on their website.

We were successful in re-creating a federated learning system on the NECTAR cloud platform using Flare,

by following their documentation step by step. They provide many tools to easily facilitate “production

grade” setups that would otherwise require developer knowledge of handling this from an end-user

point of view. These include Flare’s provisioning module that handles the authentication and

authorisation steps that are required to ensure that the identity of those contributing to the federated

learning network is clear and transparent to the central server. Roles and different/custom levels of

authorisation can be created using Flare directly allowing for a fine-grained control of participation.

There is a technical overhead with understanding how to maintain these different options and interface

with it, but it is appropriate for those with sufficient software engineering skills to understand and

maintain.
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As this is an open source product with the backing of a large company, this tool is very promising as

many publications and events have been conducted on using Flare and its integration into the ecosystem

of other AI tools such as Clara.

3.1.3. Unique features

● Dashboard for provisioning

● POC command line interface

● Backing and maintenance from Nvidia

3.2. Vantage 6

3.2.1. Quick start development

Vantage6 is a tool developed by The Netherlands Comprehensive Cancer Organisation (IKNL), who are

interested in using federated learning to solve problems and conduct research questions into

radiotherapy problems and challenges.

Comprehensive documentation exists for this tool, providing information on setting up the server and

clients. This can be done using command line interface tools to setup a simulated server and clients to

perform an example task. Similar to Flare, a POC tool can be used to quickly create a federated learning

network. Docker is required to obtain base code for a deployable server and client (termed as “node” in

Vantage6), unlike Flower and Flare where Docker images are not necessarily required for deployment.

This is advantageous to federated learning researchers who wish to experiment with ideas rapidly using

the Vantage6 tool without the need to create dummy virtual machines or perform tedious tasks for

simulating a virtual federated learning network. Additionally, this POC environment allows developers to

test new features that can be added to the Vantage6 toolkit and streamline new features into the tool

easily.

3.2.2. Real world deployment

Real world development of this tool is not as straight forward as Flare’s dedicated real-world deployment

sections but can be achieved using the documentation throughout the tool’s website.

We were successful in re-creating a federated learning system on the NECTAR cloud platform using

Vantage6. Tools are provided to easily facilitate “production grade” setups that would otherwise require

developer knowledge of handling this from an end-user point of view. These include a dashboard for

handling the setup of different components in their federated learning architecture which runs a docker

container and can interface with the central server through its API, such as managing federated learning

user authorisation, interfacing with encryption and API keys to easily manage this on a client level and

monitoring learning tasks in the wider network. There is a technical overhead with understanding how to
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maintain these different options and interface with it, but this is at an appropriate level for those with

software engineering skills to understand and maintain.

3.2.3. Unique features

● Dashboard for handling authorisation/authentication and monitoring the federated learning

network.

● API endpoints that can be called using HTTP requests, not just Python clients.

3.3. Flower

3.3.1. Quick start development

Flower is a federated learning framework that supports large-cohort training and evaluation, both on

real edge devices and on single-node or multi-node compute clusters. The quick start documentation is

very easy to follow. It is designed with simplicity in mind, offering an intuitive and user-friendly interface

for setting up and managing federated learning experiments. Its lightweight coordination server and

straightforward API make it easy for developers to integrate Flower into their existing machine learning

pipelines with minimal effort. It can be simulated on a single machine using Python files, without the

need of any containerisation tool as mentioned at their website. Further, it abstracts away much of the

complexity involved in building and deploying federated learning systems, allowing developers to focus

on model design and optimisation rather than low-level implementation details. By providing high-level

abstractions for tasks such as model aggregation, communication, and synchronisation, Flower simplifies

the development process and accelerates the iteration cycle for federated learning experiments.

3.3.2 Real world deployment

We have successfully re-created a simulation environment on a single machine and on the NECTAR cloud

platform as well. It offers built-in datasets for simulation purposes, alongside the flexibility to use custom

datasets. Users can define various machine learning models such as logistic regression and neural

networks for training, employing a client class to train the model on the training dataset and evaluate it

on the testing dataset. For the server-side, users can choose the specific averaging techniques for the

aggregation. Flower enables SSL for establishing secure connections between servers and clients, with

comprehensive guidance on starting an SSL-enabled secure Flower server and connecting Flower clients

securely, alongside a complete code example, although users are advised to consult the guide for

in-depth SSL setup instructions. For Docker containerisation, it offers two images – a base image

containing essential dependencies shared by both server and client, and a server image built upon the

base image, which installs the Flower server via pip.
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3.3.3. Unique features

● Ease of Use and Deployment

● Reduced Complexity in Development

3.4. PySyft

3.4.1. Quick start development

PySyft is an open-source federated learning library developed by OpenMined. It aims to make private

machine learning accessible by enabling secure and privacy-preserving data analysis. PySyft extends

popular machine learning frameworks such as PyTorch and TensorFlow. The documentation is

comprehensive and user-friendly providing clear guidance on setting up and managing federated

learning experiments.

PySyft facilitates secure multi-party computation (SMPC) and differential privacy ensuring an extra layer

of privacy is maintained throughout the learning process. It provides high-level abstractions for tasks

such as secure aggregation, encrypted communication, and differential privacy, simplifying the

development process and allowing researchers to focus on model design and optimization.

3.4.2. Unique features

● Ease of Use and Deployment

● Support for Vertical data partitioning as well as horizontal
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4. Data storage and communication

4.1. Data Storage and Computational Requirements

A diagram for a typical federated learning use case is provided in Figure 4.1. This highlights the resource

components that are required for federated learning.

The key resource requirements for federated learning are data storage and computational capacity at

each of the nodes, a server system with computational capacity and the ability to communicate between

these components. Given the reason for using federated learning is often to ensure security and privacy

of data, these requirements are also likely to impact resource requirements.

The magnitude of data storage requirements and computational capacity will vary from project to

project depending on the algorithms and data that are being used and the models being developed.

Different scenarios for the node/data storage situations are considered here:

4.1.1. Node/s positioned within an organisational IT environment

A common situation is that the data at each node would remain behind an organisational firewall (e.g. a

hospital). In this situation the data storage and computational capacity must be provided as part of, or at

least linked to, the infrastructure of the organisation. The requirements for the data storage and

computational capacity must also meet the local organisational requirements as well as those for

federated learning. This may make it challenging or impossible to be able to utilise broadly available

research data infrastructure (e.g. nectar and MLeRP in its current form). To enable communication in this

situation the ability to communicate outside the organisation through the firewall must be addressed.

This would commonly require ‘white-listing’ of relevant sites.

4.1.2. Node/s positioned within a Trusted Research Environment (TRE)

In some instances, for example where registry linked data is involved, data is stored in a trusted research

environment (TRE). A TRE can also be known as a secure research environment (SRE), data safe haven or

secure data environment.

A TRE is controlled computing infrastructure designed to facilitate secure research practices while

safeguarding sensitive data. It serves as a centralised platform where researchers can access and analyse

sensitive information without compromising privacy or security. Key characteristics of TREs include

robust data encryption, stringent access controls, comprehensive logging and monitoring systems to

track user activities and detect any unauthorised access and curated gateways. These environments

often comply with relevant regulations and standards, such as GDPR (Goddard, 2017) in the European

Union or HIPAA (Chen & Benusa, 2017) in the United States, to ensure data protection and privacy
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compliance. Examples of TREs implemented in various countries include the UK Secure Research Service

(SRS) (ONS, 2024), Secure eResearch Platform (SeRP). In Australia, TREs include Secure Unified Research

Environment (SURE) (Moore, Guiver , Woollacott, Klerk, & Gidding, 2016), E-Research Institutional Cloud

Architecture (ERICA) (ARDC, 2024), KeyPoint, or Monash SeRP. A common requirement for these secure

environments is that there is manual inspection of data ingress and egress. This is a particular challenge

if data must be stored in a TRE in a federated learning network.

There isn't a one-size-fits-all definition for what constitutes a TRE; rather, design decisions are tailored to

meet the specific needs of each organisation. The Five Safes Framework has emerged as a cornerstone

guiding principle within this realm. Ensuring safe projects underscores the ethical utilisation of data,

necessitating projects with clearly defined purposes. Access to data is restricted to authorised and
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reliable individuals (safe people), who undergo rigorous checks, and receive training in data privacy. Data

must be adequately safeguarded, including measures such as de-identification to prevent privacy

breaches (safe data). Safe settings govern the data environment, demanding secure IT infrastructures

and protocols (safe settings). Meanwhile, safe outputs guarantee that sensitive information remains

undisclosed, aligning with standards set forth by regulatory bodies like the Australian Bureau of Statistics

regarding data publication.

The Five Safes approach offers flexibility, empowering data custodians to evaluate the risks and

potentials associated with data sharing and release. Typically, TRE administrators oversee safe settings,

while stakeholders collectively share responsibility for ensuring the other four aspects (safe projects,

safe people, etc.). However, governance within the medical domain poses unique challenges, particularly

concerning the integration of health data. The intended flexibility of the Five Safes framework

encounters constraints due to the stringent security protocols imposed by data providers. Consequently,

many custodians err on the side of caution, implementing top-tier security measures across all

dimensions, which may prove excessive for certain specific purposes.

There are requirements for particular datasets to be stored within a TRE. Utilisation of federated

learning can provide an opportunity to learn from the datasets that must be stored in a TRE without

requiring combining of the entire dataset which may not be possible. Using horizontal, vertical or a

combination of horizontal and vertical (as described in Section 1) federated learning different datasets

can be utilised. For instance, in healthcare research, a TRE/SRE might contain patient records from one

geographical region, while other nodes hold data from other regions, ensuring data diversity without

sharing sensitive patient information across nodes. in genomic research, a TRE/SRE might hold genetic

sequences, while other nodes hold phenotypic data or clinical outcomes. In financial research, a TRE/SRE

might contain transactional data while other nodes hold demographic or socio-economic information.

This partitioning strategy allows for collaborative analysis without exposing individual-level data across

nodes, thus maintaining privacy and security.

4.2. Integrating Federated Learning within TREs/SREs

The integration of federated learning within TREs or SREs poses a significant challenge due to the

common requirement for manual inspection of data ingress and egress within these secure

environments. Federated learning, being an iterative process that often spans multiple rounds of sharing

the model parameters, necessitates seamless data flow between the participating devices or servers.

However, the stringent security protocols of TREs/SREs mandate manual inspection of data ingress and

egress for each round, which may not be feasible in certain applications of federated learning.

Importantly this manual inspection process is set-up for reviewing data. In federated learning it is

models and not data which are being transferred into and from TREs and the manual inspection process

is rarely appropriate for assessing risks of model transfer. This manual inspection also introduces

potential bottlenecks and delays, hindering the efficiency and scalability of the federated learning
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process within these secure environments. Moreover, the repetitive nature of manual inspection

increases the risk of human error and may compromise the timeliness and accuracy of research

outcomes. Therefore, there is a pressing need to explore alternative solutions or enhancements to

streamline the integration of federated learning within TREs/SREs, ensuring both data security and

research efficiency are effectively balanced.

4.3. Automatic Inspection of Data for TREs

The primary solution to address the challenge of manual inspection of data ingress and egress for

federated learning within TREs/SREs is the implementation of automatic inspection systems. Automatic

inspection refers to the process of using advanced technological systems and algorithms to monitor,

analyse, and detect patterns or anomalies in data flows without the need for manual intervention.

Automated approaches can also be more appropriate for review than manual review processes set-up

for reviewing data and non-ideal for reviewing models. Within the context of TREs/SREs, automatic

inspection systems could play a crucial role in ensuring the security, privacy, and compliance of research

activities, particularly in scenarios such as federated learning where data ingress and egress occur

iteratively over multiple rounds. By employing automated tools, organisations can streamline the

inspection process, reduce the risk of human error, and enhance the efficiency of data monitoring and

analysis. Moreover, automatic inspection systems enable real-time detection of suspicious activities or

deviations from expected behaviour, allowing for prompt intervention and mitigation of security

incidents.

Following are a few of the factors that need to be addressed in the implementation of automatic

inspection:

4.3.1. Collaborative governance

Collaborative governance models involve establishing frameworks where stakeholders from various

domains, including researchers, data custodians, and security experts, work together to govern and

oversee the implementation of processes and policies within TREs/SREs. These models ensure that

decisions regarding data access, security protocols, and compliance measures are made collectively,

taking into account the perspectives and expertise of all involved parties.

By involving stakeholders in the governance process, transparency is fostered regarding the objectives,

methodologies, and outcomes of automatic inspection systems. Transparency helps build trust among

stakeholders and ensures that all parties understand the rationale behind the implementation of

automated inspection processes.

Collaborative governance models establish clear lines of accountability, ensuring that responsibilities for

overseeing and managing automatic inspection processes are clearly defined. This accountability helps

mitigate risks and ensures that any issues or concerns related to the implementation of automated

inspection systems are addressed promptly and effectively.
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Involving stakeholders in the governance of automatic inspection processes enables efficient

decision-making and implementation. By leveraging the collective expertise and insights of researchers,

data custodians, and security experts, governance models can streamline workflows, expedite approval

processes, and optimize resource allocation, leading to increased efficiency in implementing and

managing automated inspection systems. Lastly, collaborative governance models facilitate proactive risk

management by enabling stakeholders to collectively identify, assess, and mitigate risks associated with

automatic inspection processes. By bringing together diverse perspectives and expertise, governance

models help organizations anticipate potential challenges and develop comprehensive risk mitigation

strategies to safeguard data integrity, confidentiality, and compliance within TREs/SREs.

4.3.2. Streamlined approval processes

Streamlined approval processes within TREs/SREs involve integrating efficient procedures for approving

data ingress and egress requests with automated inspection systems, enhancing the efficiency and

accuracy of data monitoring and analysis. By implementing pre-approved templates, checklists, or

protocols, organizations can expedite the review of data flows while ensuring alignment with security

and compliance requirements. This approach standardizes the evaluation criteria, facilitates expedited

review, and enhances oversight and governance of data activities within TREs/SREs. Integrated with

automated inspection systems, streamlined approval processes optimize workflow efficiency, ensure

consistency in data analysis, and enable stakeholders to promptly identify and address any anomalies or

deviations from expected behaviour, thereby strengthening the security and integrity of research

activities conducted within secure research environments.

4.3.3. AIML enabled inspection of data flow

Machine learning models are computational algorithms trained to recognize patterns and make

predictions based on data. Within TREs/SREs, these models play a crucial role in automating the

inspection of data ingress and egress. By training on historical data within TREs/SREs, machine learning

models (supervised and unsupervised) can predict and classify normal and abnormal patterns in data

flows. They can detect anomalies or deviations from expected behaviour, automatically analysing data in

real-time and flagging any deviations warranting further investigation. This automation enhances the

efficiency and accuracy of data monitoring and analysis within TREs/SREs compared to manual methods,

which are time-consuming and error prone. Additionally, machine learning models adapt and evolve

over time, continuously improving their accuracy and effectiveness in detecting anomalies, thus ensuring

TREs/SREs remain resilient against emerging security threats.

4.3.4. Privacy preservation

Privacy-preserving techniques such as differential privacy, secure multi-party computation, and

homomorphic encryption provide an extra layer of security in the context of automatic inspection within

TREs/SREs. While not directly assisting in the automation of inspection processes, these techniques
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ensure that sensitive data remains confidential and protected throughout automated analysis. These

privacy-preserving techniques guarantee that data ingress and egress undergo inspection without

compromising privacy, thus safeguarding sensitive information throughout the automated analysis

process. Differential privacy (Zhang, Lu, & Liu, 2023) adds noise to data before analysis to prevent

individual records from being identifiable. It ensures that the output of automated analysis does not

compromise the confidentiality of underlying data, thereby enhancing overall security. Secure

Multi-Party Computation (SMPC) (Mansouri, Önen, Jaballah, & Conti, 2023) (Fereidooni, et al., 2021)

enables multiple parties to compute functions over their inputs while keeping those inputs private.

SMPC allows for collaborative analysis across multiple nodes without exposing sensitive information,

thereby bolstering security during automated inspection. Homomorphic encryption (Wibawa, Catak,

Sarp, & Kuzlu, 2022) enables computations on encrypted data without decryption. It ensures that

sensitive data remains confidential during automated analysis, adding an additional layer of security to

the process. Figure 4.2 illustrates the incorporation of secure aggregation in federated learning via

homomorphic encryption and differential privacy.

4.3.5. Conditions in favour of federated learning

We have seen that TREs, by design, include stringent security protocols, particularly concerning the

manual mediation of data egress, which can inhibit their direct participation in federated learning. On

the other hand, federated learning requires continuous interaction among nodes for model updates,

which poses a challenge for TREs due to their reliance on human-mediated data flows. At every iterative

step, every federated learning node sends not the data but the model parameters to the central server

which determines resolution on the common model. This requires seamless information flow between

devices or servers. However, the security protocols of TREs require manual inspection of data ingress

and egress for each round, which can be impractical at the frequency of interaction required by

federated learning in addition to increasing the risk of any potential human error. Besides, the current

governance structure for TREs also would make it unsuitable for federated learning.

On the other hand, federated learning actually poses less risk than federated analytics, as the data is not

exchanged, and the human element is removed. This needs to be recognised in the governance

structure.

Currently, there are some promising developments in Federated Analytics in projects like FED-NET, which

involves periodic and less frequent data exchanges where manual oversight is more feasible. However,

this springboard holds the potential to evolve and accommodate federated learning, particularly with

enhancements to support automated data mediation and real-time interaction.

The current capabilities of platforms like TelePort and TRE-FX illustrate potential pathways for TREs to

support federated learning in the future. These platforms are designed with multi-toolkit frameworks

that facilitate data governance and collaboration across different TREs without altering existing

governance structures.
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TelePort, for instance, creates an ephemeral common space for data interaction among TREs, governed

by existing egress rules. According to HDR UK, Trino abstracts the individual database layers and

TELEPORT creates an interoperable “link” between each TRE, allowing each Trino instance to

communicate seamlessly. This setup facilitates secure data sharing and collaborative analysis across

different TREs, while TRE-FX enhances the governance framework by providing standardized egress

processes and ensuring that data sovereignty and privacy requirements are consistently met across all

nodes.
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By abstracting the computation layer and providing a connected space for researchers to operate on and

access data in different environments. While the current structure is available only for Federated

Analytics, this setup may pave the way for collaborative federated learning projects without

compromising data security within this space.

Given the significance and complexity of the area, a separate TRE project is being undertaken by ARDC.

The project brings together a panel of TRE groups on a workshop to explore the key challenges and way

forward and is also exploring the possibility of local TRE groups collaborating with overseas projects such

as HDR UK. The interim report can be accessed at online [TRE Framework Report].

4.4 Secure Network of Servers as an Alternative to TREs

To achieve federated learning among secure nodes, it is possible to create a secure network of servers,

each embedded in different data hosting locations. This network of servers would create a secure space

where federated learning can be carried out without the data leaving the premises or jurisdiction.

Taking a leaf from TelePort and TRE-FX projects as well as upcoming Australian projects such as

AIS-SHIELDS and FLERA (described later in this report), establishing such a secure network of servers

involves creating an ephemeral space for secure data interaction. However, it has one less requirement:

human intervention is needed only during the initial data loading and the final extraction of results (not

the data). This reduction in human involvement during the machine learning process enhances security

by minimizing the potential for human error and unauthorized access.
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5. Use Cases for Federated Learning

5.1. Existing Implementation Case Study: Australian Cancer Data
Network (ACDN)

5.1.1. Background

‘Cancer is responsible for Australia’s largest disease burden and is a leading cause of death (Australia,

2024)’. There are challenges in accessing and thus learning from Australian cancer data which is stored in

detail at local institutions including hospitals and clinical trial organisations and in silos with state-based

registries. Providing evidence to support decisions on the most effective form of treatment for individual

patients can be challenging, particularly for patients who do not meet the eligibility criteria for

randomised clinical trials that form the backbone of practice guidelines. The ability to harness Australia’s

cancer data, which includes both tabular items (e.g. age, disease stage), imaging (e.g. CT, MRI), omics

and other specific data types (e.g. radiotherapy treatment dose distributions) has the potential to enable

learning and generation of additional evidence for our patients and clinicians.

The Australian Cancer Data Network (ACDN) is a collaboration from three platforms, seen graphically in

Figure 5.1. This includes ‘AusCAT’, a federated learning platform developed initially in collaboration with

a team from MAASTRO clinic (Field M. , et al., 2021), The Netherlands and the Australian radiation

oncology community; Cancer Alliance QLD (QLD, 2024), a collaborative organisation across health

services, jurisdictions and organisations in QLD with the goal of supporting clinician-led service

improvement, harnessing and making available cancer data; and CaVa, a research program working to

make available clinical practice datasets in a researcher ready format to investigate variations in cancer

treatment. The specific datasets include clinical practice data from treatment centres, registry data and

clinical trial datasets. Together our collaboration is using federated learning to learn from large and

diverse cancer datasets.

5.1.2. Governance

The governance of the three collaborating platforms in the Australian Cancer Data Network are all

managed separately; however, the governance of the network as a whole is coordinated by a central

executive committee with representatives from each of the platforms and supported by clinical,

technical, data and translational expert panels.

Governance for the federated learning work relies on an overarching ethics protocol with approval to

utilise data at each of the contributing nodes for the purpose of undertaking combined analysis and

model development. Sub-projects asking particular research questions are included within the ethics

protocol or may have other governance arrangements (e.g. legislative approval). Each of the

institutions/nodes involved can choose which sub-projects they are or aren’t involved in.
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5.1.3. Federated learning infrastructure

A custom software platform for distributed learning was developed for the AusCAT network (Field , et al.,

2022). The AusCAT node infrastructure includes two main parts:

Firstly, there are components for setting-up databases at the nodes, with a pipeline of data extraction to

generate a de-identified dataset and a key database that contains the identifiers. The nodes are at

hospitals around Australia and data storage and computational power is provided by the hospitals either

hardware or in the cloud with the systems managed within hospital IT infrastructure (and appropriate

firewalls). The project is working towards setting up nodes for registry datasets (which would be

vertically partitioned in comparison to the hospital datasets which are horizontally partitioned). This

requires addressing both governance and data storage requirements (the need for TRE/SREs).

Secondly, infrastructure enables federated learning. This uses Java web services to coordinate

communication between clinic systems. Algorithms can be sent to each clinic, where they generate and

share model parameters and statistics with the central server and then through iterative transfer of

parameters across the clinics and the server, develop the final model. This has been used for horizontal

federated learning. The project has demonstrated proof of principle with vertical and combined learning

but have not yet implemented this on the ACDN network.

PAGE 31 Exploring federated learning tools



While the federated learning components of AusCAT have proven effective (Hansen, et al., 2022) (Field

M. , et al., 2024) a number of open-source platforms as described above are now available and

maintaining and expanding this proprietary federated learning platform requires significant resources. By

adopting open-source tools, we can leverage existing technologies without the need for extensive

in-house development, ensuring that we align with the broader research community. Open-source

platforms like Flower offer robust, community-supported solutions that facilitate interoperability and

collaboration. This move will ensure ACDN stays at the forefront of federated learning advancements,

benefiting from shared innovations and maintaining compatibility with widely used frameworks.

5.1.4. Specific example cases (including how training, validation and testing is

completed)

Non-small cell lung cancer survival following radiotherapy treatment. This investigation (Field M. , et al.,

2024) developed a survival model for non-small cell lung cancer patients using federated learning across

6 centres in NSW. This was a linear regression model with data split based on time-period. Data from

2011-2016 was used for bootstrap training and internal validation and data from 2017-2019 was used for

validation. This split in data was used to ensure that the model was validated on the most recent data as

is most useful for considering the clinical applicability of the model. The data used was federated for

both the training and the validation.

Cardiac toxicity model following radiotherapy treatment. A current project is working towards

developing a cardiac-toxicity model following radiotherapy treatment. There is evidence that radiation

dose to the heart increases the risk of cardiac toxicity (e.g. heart attacks) following treatment but there

is limited evidence on how the distribution of dose affects this risk. In this project a developed cardiac

segmentation algorithm is being used to determine the radiation dose to cardiac substructures using

imaging and radiation dosimetry data available at individual centres. A combined model will then be

developed using federated learning. Data will remain federated for both training and validation. A

random split of data may be used to separate training and validation datasets or one or two centres may

be separated as the validation cohorts.

Prognosis models for anal cancer. In this international study prognosis models are being developed for

anal cancer (Theophanous, et al., 2022). Using federated learning enables access to a large dataset

which would not otherwise be possible for anal cancer which is relatively uncommon. The data is

remaining federated for training and validation. A separate external validation is also being undertaken

with datasets from centres that were not involved in the original training and validation.

5.2. Existing Implementation Case Study: FLERA+

5.2.1 Background
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Applied artificial intelligence (AI) research in health, and particularly in human imaging, is a

transformative technology that will accelerate diagnosis, and facilitate precision management of a range

of human diseases. Its success relies heavily on data availability during model development or clinical

validation stages. Many roadblocks obstruct the integration of precision imaging into clinical

decision-making. Technical, logistical and governance issues have prevented public and private health

providers, often the custodians of real-world imaging datasets, from participating in cutting-edge applied

AI research, which has remained largely within the domain of research institutes and technology

companies.

In 2020, the MRFF-funded TRANSCEND (TRanslating AI Networks to Support Clinical Excellence in Neuro

diseases). This project was established to overcome the bench-to-bedside roadblock by creating a

permanent bi-directional interface between AI RRD and clinical practice. The TRANSCEND eco-system

provides a rich federated learning environment for clinical applications and broad expertise to advance

applied AI research, building upon the team’s previous R&D work in the CRC-P project: “AI: new smarts

for the medical imaging industry”. FLERA (Federate Learning Ecosystem for Research in Australia)

represents the natural evolution of TRANSCEND: the goal is to be the partner of choice for supporting

the accelerated development and adoption of AI solutions in health that rely on federated learning for

healthcare.

5.2.2 Outcome

FLERA comprises four critical capacities:

1. FLERA Experience: This encompasses the overall federated learning collaboration network and

successful federated learning experiences of TRANSCEND, which can be referenced for new federated

learning projects and facilitate multicentre AI collaborations within and outside the FLERA network.

2. FLERA Box: An end-to-end engineering solution designed for the rapid deployment of federated

learning across stakeholders in health provider networks, ensuring operational efficiency and maximum

performance. The engineering solution incorporates “requirements-design-evaluation” development

cycle, which takes requirements from clients and provide support from aspects like performance target,

hardware requirements, model design, federated training and evaluation. The FLERA Box has been

tested with hospitals (including Royal Prince Alfred Hospital, St Vincent Hospital, Westmead Hospital,

etc.) and data providers (including iMed Radiology, Synergy Radiology, Flinders University, etc.) on

multiple applications.

3. FLERA AI Research: Focuses on themes that continually improve AI training efficiency, advancing the

field of AI in health research. Previous research has covered multiple aspects in neuroimaging and

neurological research and applications and to redesign the algorithms used in federated learning

framework to enhance model performance. We’ve focused on real-world challenges and provided

solutions when many data centres are involved, including labels with noise, lack of labels from

PAGE 33 Exploring federated learning tools



participated centres, imaging inhomogeneity across data centres, and predicting performance

requirements for given task.

4. FLERA Team: Led by the original PIs from TRANSCEND, this growing multidisciplinary team continues

to excel in large-scale AI adoption in Australia. Currently led by Prof. Michael Barnett, Prof. Fernando

Calamante, Dr. Chenyu Wang and Dr. Ryan Sullivan.

FLERA has translated and implemented AI technologies into health applications across multiple

disciplines. In Multiple Sclerosis, we developed lesion models, LLM based prognosis models, and spinal

cord assessment models, which have been made available to the MS research community through FLERA

and MSBIR for improved disease progression monitoring. Additionally, we developed CT-based brain

haemorrhage detection models for CT triage and brain tissue models for quantifying various brain

diseases. Importantly, leveraging NVIDIA MONAI, we created a robust AI development pipeline that

rapidly transforms imaging analysis tasks into AI-powered applications.

The research outcomes promote economic solutions for facilitating federated learning, preserving

privacy in large-scale, multidisciplinary AI collaborations. We have ‘packaged’ all learnings from

TRANSCEND project into its post MRFF funding cycle form: Federated Learning Ecosystem for Research In

Australia, the FLERA program. The FLERA program comprises FLERA Teams, FLERA Box, FLERA Research,

and FLERA Experience, offering a comprehensive ecosystem for AI innovation in health. This

interdisciplinary collective includes all necessary expertise, AI models, tools, engineering solutions,

governance, and most importantly, successful experience in large scale AI adoption in health.

5.3. Implementation Case Study: AIS-SHIELDS

5.3.1. Australian Imaging Service Background

The Australian Imaging Service (AIS) is a nationally federated platform for secure imaging data

management and analysis, focusing on clinical and pre-clinical imaging modalities such as Magnetic

Resonance Imaging (MRI), Computed Tomography (CT), Ultrasound, Positron Emission Tomography

(PET), X-Ray, etc. AIS fully launched in 2022 and currently consists of 13 research institutions with

funding from the Australian Research Data Commons (ARDC) and the National Imaging Facility (NIF)

NCRIS capabilities. AIS integrates directly with clinical scanners for consenting patients, doing on-site

de-identification of direct identifiers before uploading images to university nodes for long term curation,

analysis, and collaboration. AIS’s mission is to increase research reproducibility and drive the adoption of

innovative but trusted analysis techniques.

Starting as an institutional initiative at the University of Sydney in 2017, the national Australian Imaging

Service was created through the ARDC Platforms 2019 AIS Project with a network of central DVC-R and

ICT teams across 7 Universities using the open source XNAT for imaging data management. AIS operates

with core institutional support from the University of Sydney with a portfolio of research grants for
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feature enhancements. The original ARDC project focused on developing a standardized, secure, and

scalable architecture built around XNAT and Kubernetes. AIS was subsequently extended in the ARDC

Platforms 2020 AEDAPT Project adding secure virtual desktops built on Neurodesk (Renton, et al., 2024)

and in the NIF 2021 AIS Pipelines Project building out the workflow engine built on ARCANA (Close, et

al., 2020) and with a library of curated pipelines. The 2023 EU Horizon Infrastructure FoundingGIDE

project is standardizing biological, preclinical, and clinical imaging ontologies used internationally while

the MRFF NCRI AIS-SHIELDS project is adding NLP, AI Segmentation, and federated learning capabilities.

AIS uses a data centric computing model with all computational services tightly coupled with the data

repository. This increases accessibility by allowing all tools to be accessed via a browser UI,

reproducibility by using version-controlled software stacks so multi-site studies can use identical tools

across the full duration of a study, and security by integrating computational data access and auditing

managed by the data repository without data needing to leave AIS.

Figure 5.2. Overview of AIS

AIS currently consists of five key services, as shown in Figure 5.2.

1. Data Movement: Secure movement from image acquisition to repository, and between repositories,

including de-identification, encryption, and routing

2. Data Management: Built around XNAT, this provides long term archival data management, with per

project, per data type user access controls directly coupled with analysis platforms so data doesn’t need

to leave the platform
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3. Automated Pipelines: Built around ARCANA/Pydra workflow engine and kubernetes schedulers, this

provides the ability to run containerized workflows for bulk analysis, automated QC, file conversion,

pre-processing, etc.

4. Interactive Visualization and Analysis: Built around JupyterHub and Neurodesk, this provides secure

virtual desktops preloaded with reproducible imaging software.

5. Machine Learning: (Still in heavy development) Built around MONAI, this provides AI assisted image

segmentation and classification by running PyTorch models directly integrated with image viewers.

5.3.2. ACRF Centre of Excellence in Melanoma Imaging and Diagnosis Background

The ACRF Centre of Excellence for Melanoma Imaging and Diagnosis (ACEMID) has been establishing a

network of 16 Total Body Photography (TB-Photography) clinical scanners in urban and regional locations

to create a national teledermatology network for detection, monitoring, and treatment of Melanoma

and related diseases in partnership with QLD Health, NSW Health, VIC Health, and Melanoma Institute of

Australia. TB-Photography offers an excellent and impactful imaging modality and will lead to major

advances in the field of dermatology; however, it requires AIS’s input and advanced capabilities as it

produces images that are very sensitive and need extra protection to maintain patient’s privacy. ACEMID

has partnered with AIS to build the ACEMID Research Repository across AIS nodes at the University of

Queensland, University of Sydney, and Monash University, complementing the national clinical

teledermatology network.

At present, there is a significant two-fold gap in the maturity and progress of imaging and reporting

standards in the field of dermatology compared to those found in radiology, especially related to

diagnosis, monitoring, and treatment of melanoma and skin cancers. Firstly, individual imaging

modalities are siloed, using non-standard formats and separate software platforms, precluding their

combined linkage. Secondly, unlike traditional radiology imaging that focuses on the internal parts of the

body, dermatology focuses on the visible parts of the body; therefore, images are inherently identifiable

and sensitive (patients are nude or semi-nude), raising significant privacy concerns for patients, affecting

their willingness to participate in screening programs. This has knock on affects for all melanoma and

skin cancer patients who undergo 1.1 million Medicare treatment services in Australia every year.

5.3.3. Federated Learning Infrastructure

AIS-SHIELDS is a new MRFF National Critical Research Infrastructure project that converges the work on

AIS, the ACEMID Research Repository, & FLERA to implement federated learning within the AIS context.

AIS operates as a federated network of institutional nodes deployed on kubernetes with each researcher

only able to access the project(s) to which they have been granted access. Universities’ have an AIS node

with all 5 services mentioned above that acts as the decadal data store of the research data. Clinical sites

where the data is acquired will have Edge Devices, which can perform transient processing such as
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de-identification, encryption, routing, real-tie analysis, or in this case federated learning, as depicted in

Figure 5.3.

The data flow is usually Instrument<->Edge Device<->AIS Node, optionally between AIS Nodes as well.

All software and containers are stored in the AIS Github Organization

(https://github.com/Australian-Imaging-Service) which is used for CICD to deploy and update each node.

Both AIS Nodes and Edge Devices run on Kubernetes on top of a diverse set of underlying

infrastructures, allowing the tooling to be standardized. The Kubernetes clusters for AIS Nodes tend to

be larger, using services such as AWS Elastic Kubernetes Service (EKS), potentially with many dozens of

worker nodes (Virtual Machines assigned to the cluster) with dynamic scaling. Kubernetes clusters for

AIS Edge Devices are much smaller, often 1-3 individual Virtual Machines on which Microk8s has been

implemented.

A challenge with deploying within clinical sites is the differences in technology. Research technology,

particularly in the case of machine learning, is heavily Linux based with software containers. Hospital IT

however tends to be Windows based with no containerization. AIS has had some success bridging the

two by deploying Microk8s on NSWHealth Windows Machines. The University of Sydney central ICT

team, which manages the AIS GitHub Organization, did a vendor assessment with Microk8s as the

software application. From the NSWHealth point of view Microk8s is a Windows application, and they

manage it as other applications, being responsible for the underlying VM and security of the OS image.

From the AIS point of view, the research tools then see a Linux based Kubernetes cluster. Specific firewall

whitelists are made to the AIS container registry to allow pre-approved containers to be pulled and

updated to run on the edge cluster. A second set of firewall rules are made for any egress of data

between the edge device and the AIS Node. This deployment approach for edge devices has to date

focused on secure data egress where image data is captured from a scanner and needs to be
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de-identified, encrypted, and routed to the correct project in XNAT on an AIS node in a secure and

audited manner. In AIS-SHIELDS, this is being expanded to add local computational capability. In

principle, an entire AIS Node could be run on an edge device if there were sufficient storage and

computational resources available.

The workflow for image labelling is:

1. Upload data to XNAT

2. XNAT automatically triggers n many pipelines to run on the images

3. From XNAT, open the data in an image viewer integrated with MONAI Label to add annotations to

the dataset

For federated learning, AIS is working to add NVFlare as a service in the Kubernetes cluster that can be

accessed via the XNAT UI like how ARCANA pipelines and Neurodesk virtual desktops, matching data

access of the initiating user. This builds upon the previous FLERA work. AIS will manage the edge devices,

allow researchers to access the pre-processing pipelines and federated learning clients to run on their

datasets. The long-term intention is to apply this infrastructure to the ACEMID Total Body Photography

scanners so that federated learning can be applied securely without the participant data leaving the

clinical site to widen participation.

5.4. Existing Implementation Case Study: NINA

5.4.1 Background

The National Infrastructure for Federated Learning in Digital Health to Generate New Models of Care for

Chronic Diseases (NINA) project seeks to answer the following question: Can we leverage disruptive,

cutting-edge federated learning technology to overcome existing barriers in accessing health data for

research, thereby facilitating research aimed at enhancing outcomes for chronic diseases?

Currently, Australian datasets are siloed, isolated both geographically (across different states) and across

the care continuum (spanning primary and hospital care). NINA aims to establish a national capability

and infrastructure network to enable federated digital learning in Australia. The overarching hypothesis

of the project is that by establishing the necessary critical federated learning research infrastructure, we

can create breakthrough research opportunities for improving outcomes in chronic diseases.

The main objectives are:

● Objective 1 - co-design new scalable ethics and governance pathways for federated learning in

health, ensuring compliance with existing legislation.

● Objective 2 - establish the technology and demonstrate its potential for safely accelerating

development of chronic disease research with the creation of national synthetic datasets (as

required) to test federated learning approaches.
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● Objective 3 - provide infrastructure that enables healthcare data to remain in situ and

harmonised in separate databases with data and analytics capability brought to the datasets

(through federated learning systems) while preserving privacy.

● Objective 4 - implement federated learning using infrastructure (from 3) to deliver innovative

research to inform better outcomes for chronic disease exemplars (diabetes, rheumatoid

arthritis, osteoarthritis and cancer).

● Objective 5 - ensure this infrastructure is transitioned to business as usual through

implementation, evaluation and sustainment planning.

In essence, the NINA project aims to:

● Integrate and harmonise data: NINA seeks to integrate and harmonise data at each site according

to globally accepted standards.

● Pioneer AI/ML federated learning: NINA aims to pioneer the use of iterative AI/ML federated

learning, bringing computing and AI/ML capabilities directly to the data.

● Establish a Digital-Health Accelerator: NINA plans to create a Digital-Health Accelerator for both

industry and research. This includes an incubator phase that allows research organisations and

industries to utilise synthetic datasets. These datasets contain equivalent data to that which will

be used to train AI/ML at local sites.

● Develop Best Practices and Educational Programs: NINA will develop standard operating

procedures and educational programs to expedite the transformation of research data analysis

using federated learning.

● Showcase the Impact of federated learning: To demonstrate the effectiveness of this federated

learning model, NINA will focus on applying federated learning to data related to three prevalent

chronic diseases in Australia: diabetes, rheumatoid arthritis, osteoarthritis and cancer.

● Ensure Long-Term Impact: NINA is committed to ensuring the translation and long-term impact

of the project by collaborating with industry, health and government departments, universities,

and peak bodies.

5.4.2 Project governance

NINA is a five-year program funded by the MRFF National Critical Research Infrastructure scheme with

additional cash and in-kind contributions from UQ, Monash and Macquarie universities, the Queensland

Cyber Infrastructure Foundation (QCIF), Styker, Ansen Innovation, Athritis Research Canada, ARDC,

ARMHUB, BioGrid, CSIRO, Microba, Medical Software Industry Association, QLD Health, A3BC Cancer

Alliance QLD, the Department of Environmental and Health and Victorian Institute of Forensic Medicine

(VIFM). Led by CIA Professor Clair Sullivan, University of Queensland, over 20 organisations are

participating in NINA (Figure 5.4.).
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The NINA Steering Committee consists of all Chief Investigator team members, partner and consumer

representatives across the four use cases, and has overall responsibility for delivering the project,

including monitoring identified risks and managing project risks as they arise.  It meets on a monthly

basis and is chaired by Prof. Sullivan.

The National advisory group is comprised of eminent experts in digital health and the clinical domains of

the use cases. It includes representatives from ADRC, Medical Software Industry Australia (MSIA),

Australian Alliance for Artificial Intelligence in Healthcare (AAAiH) and Google Health. This committee

provides invaluable strategic advice and monitor the project for compliance.  Any issues will be raised

directly with Prof. Sullivan, who will be responsible for implementing changes to the project to address

the issues raised.

Importantly, the NINA project will ensure the voice of consumers is heard by including consumers in the

design and evaluation of potential digital health solutions.

5.4.3 Federated Learning Infrastructure

NINA is dedicated to the practical application of federated learning in a variety of real-world settings.

The project engages a diverse range of participating sites, such as health services, pathology services,

industry partners, and registries. Each of these sites necessitates a specialised infrastructure, possesses

varying degrees of IT and data science expertise, and adheres to unique data governance protocols and

procedures. Through the deployment of tailored infrastructure at each location, NINA aims to evaluate

how federated learning can enhance and expedite data accessibility. The project will explore whether

federated learning mitigates existing data access challenges, introduces new concerns, or encounters

distinct obstacles and roadblocks.
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To guide those real-world deployment, a test environment has been deployed on the Nectar cloud for

three federated learning frameworks allowing to:

● Establish the infrastructure requirements for a participating site

● Conduct performance testing

● Simplify, fine-tune and document the deployment at a participating site

● Allow researchers and sites to experiment with the technology

● Assess security

● Provide a training ground for researchers and other stakeholders
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6. Enabling Implementation of Federated Learning -
Recommendations to ARDC

In the final period of writing this report, a workshop was held including research groups working with

federated learning in Australia to exchange ideas on experiences and suggestions for supporting

federated learning in the Australian research community in the future. This section presents a series of

recommendations to the ARDC generated from writing this report and during the workshop.

As detailed in this report and references within the report enabling federated learning: 

● Overcomes many barriers that exist with centralised learning. Data can be used for research

projects while it remains at a local institution overcoming the challenge of moving data between

jurisdictions to one central location. Some risks associated with linking data can also be overcome

with datasets being able to be learnt from jointly but without linking the data. With data

remaining at local institutions, it can also be updated in a timely manner overcoming the

challenge of how up to date a dataset is once it has been collected and is available for the

research. 

● Is in the national interest facilitating learning from data across jurisdictions, supporting research

work across Australia but as importantly supporting work between Australia and the rest of the

world. This can be very challenging as not only Australian data requirements need to be met but

also those from other countries. Federated learning is also being supported by many other

countries and it is important that Australian researchers are able to be involved in these

international efforts. 

● Supports leading edge research. Many impactful data research projects require access to large,

detailed datasets (e.g. imaging data) and to reduce bias in any data project diverse data is

required. Federated learning enables access to these large datasets and by supporting access to

diverse data can enable cutting edge research to be undertaken in the most appropriate manner. 

To ensure these opportunities are effectively harnessed it is recommended to the ARDC that federated

learning be supported as a mainstream approach. The following recommendations are made to the

ARDC to enable this:

6.1. Support for Australian Federated Learning collaboration

There are a number of Australian research teams using federated learning enabling large scale,

internationally linked, cutting-edge research to be undertaken. Although there is significant enthusiasm

for this to occur, these research teams have not generally been working together and there is minimal

support for other research teams who wish to consider using federated learning, limiting the impact use

of federated learning may have for Australian researchers.
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6.1.1. Current recommendations to ARDC 

It is recommended that ARDC support collaboration between researchers undertaking federated

learning across Australia. Following discussions at the federated learning workshop held in June 2024,

the recommendation is that this could occur with the establishment of a working/interest group on

federated learning within the machine learning community of practice (ML4AU CoP) perhaps in

collaboration with the Australian Research Containers Orchestration Service (ARCOS) and the Australian

Sensitive Data Interest Group (AuSDIG). 

6.1.2. Collaborative activities to strengthen federated learning across research teams

● Establishing a communication channel (or links to existing communication channels) for

Australian researchers working in or exploring the potential of federated learning. A suggestion

during the workshop is that this could be set-up on Zulip. 

● Using the communication channel and interest/working group to propose collaborative projects

that would be of benefit to all federated learning researchers 

● Using the communication channel and interest/working group to share expertise and

experiences.

6.2. Support for Federated Learning Software Tools

There is a need to provide the necessary software tools for federated learning as described in detail in

the above sections. To support this, it is important that there is ongoing software understanding and

development knowledge.

 6.2.1. Current recommendations to ARDC 

● That ARDC endorse the review criteria recommended in the federated learning report as an initial

criterion for assessing federated learning tools (noting the suggestion for federated learning

groups to work together to expand this criteria) 

● That ARDC endorse recommendations for the FLOWER, Vantage6, Pysyft and NVIDIA FLARE

platforms to be used by Australian research groups 

● That ARDC enable software engineering and machine learning expertise to be developed in these

open-source tools to support international efforts and ensure local knowledge.

● That ARDC provide or support expertise & training (software engineering, federated learning and

machine learning) for these recommended platforms that Australian research groups can utilise,

developing and conducting technical tutorials and workshops on how to use key federated

learning frameworks such as Flare, Vantage6, Pysyft and Flower, highlighting their suitability, and

pros and cons, for a range of federated learning scenarios.
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● That ARDC provide or support demonstrations of these platforms set-up on nectar (only publicly

available or simulated data) for research groups to test and learn on. This could include setting up

dedicated compute resources (such as GPU VMs or deployed Jupyter server notebooks) on the

NECTAR cloud platform to provide a training ground for researchers and other stakeholders who

are interested in evaluating federated learning frameworks using a production grade federated

learning systems

● That ARDC provide or support approaches achieving implementation consistency of these

federated learning platforms (to enable consistency and support review and implementation for

data custodians and institutions) 

● That ARDC provide or support approaches ensuring that these platforms can be rolled out

robustly across different institutions and local set-ups. 

6.2.2. Collaborative activities to strengthen federated learning across research teams

● Collaborative review of and further development of the federated learning platform assessment

criteria to provide a more detailed assessment criteria that can be tailored for individual research

project assessment of the federated learning platforms. 

● Using the revised criteria independent assessment of the different platforms by different

researchers and research teams to provide an uncertainty analysis of these assessments 

● Consider standard interfaces/approaches to support implementation consistency (considering

data custodians and institutions) 

6.3. Supporting Data Storage and Computational Power

As described above there is a need for data storage and computational power requirements at the nodes

and at the server as well as communication channels.

This could potentially be established on nectar and on MLeRP with individual institutions looking after

their own data storage on these platforms. However, it is unlikely that accessing and storing data on

nectar and MLeRP will meet the requirements of the health care institutions and particularly the

registries where the datasets are.

An additional challenge for federated learning is where datasets (commonly linked registry data) must be

stored in a trusted research environment as described in Section 4. In this environment aggregate

analysis using federated data is still achievable (as there is only one or perhaps two exports required)

however federated learning, particularly with advanced modelling requires multiple iterations and is

unfeasible with manual review for export from such secure access platforms. This requires either a

different approach to how the data is stored e.g. an alternative to the current TREs or an alternative

federated learning architecture with involvement from organisations holding the data. For inclusion of

registry data in a federated learning network it would be possible to use either a vertical or more likely a
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combined horizontal and vertical federated learning approach with a node set-up with registry data and

someone at the registry supporting this to ensure separation of data handling, as necessary to manage

best practice of managing linked data.

 6.3.2. Current recommendations to ARDC 

● That ARDC consider the options for cloud computing resources that could be used for federated

learning where these resources need to be accessed from within IT infrastructure at

organisations where the data is held (primarily health but also registries and other

organisations).  E.g. Funding for access to the currently approved health network cloud

computing resources (or some available resources that meet the approved cloud computing

requirements) to enable node set-up and federated learning could be considered.

● Related to the previous point, it was noted that if NCRIS resources are to be used with health

data, the requirements for this need to be extended. ISO certification is one of these factors. As

raised during the workshop this is something that the ARDC is currently discussing and that they

are committed to progressing. This is a longer-term goal. 

● Consideration of use of nectar or similar as a federated learning server location in the first

instance (this is also related to the need for clear security and privacy documentation)

● That ARDC provide support for increasing robustness in the Kupernedes layer to increase

confidence for organisations IT departments 

● That ARDC provide support for discussions across jurisdictions (particularly across states but also

organisations within each state) regarding accessing data storage and computational resources. 

● That ARDC provide support for sharing of and co-developing documentation (that is maintained

as systems, technologies and approaches are updated) to provide to organisations. This could

include documentation and pathways for data node set-up including storage and federated

learning set-up that have prospectively been reviewed and approved by jurisdiction IT teams (e.g.

NSWHealth). It is likely that there would still be processes and approvals needed at a local level

(e.g. in NSW within Local Health Districts) but this would be much smoother if there was central

IT knowledge and support for such a platform. 

● That ARDC provide support to explore alternate options to TRE/SREs for use of datasets that

must currently be stored in such environments in a federated learning network. 

o Support for discussions and where necessary changes in current approvals/practices for

registries to support a federated learning model, enabling a node to be set-up and

supported by the relevant registry. In an ideal setting this framework could be used for

multiple federated learning projects/platforms (e.g. a cancer network as well as a

neurology and a cardiology network)
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o Support to work with secure access environment platform providers (e.g. the UNSW

developed ERICA platform) to provide a secure access environment where there is an

automated review of data extracted from the secure access environment.

o Support to work with those establishing policies over how registry data is stored to

develop adaptions where necessary that meet requirements and what is technically

feasible.

6.3.3. Collaborative activities to strengthen federated learning across research teams

● Sharing of experiences regarding establishing datasets for federated learning within the various

health and registry organisations. Looking at building on success of initial projects to streamline

this for future projects. 

● Collaborative effort with research groups and ARDC to approach organisations (e.g. registries and

health departments) 

● Sharing experiences in use of cloud resources within health departments as availability and

costing of these services develop over time. 

6.4. Security, data privacy and data equity

Security, data privacy and data equity are key areas that cut across choice and appropriateness of almost

all areas of federated learning set-up including data storage and computational requirements, software

choice, governance and the practicalities of implementation. As such during the workshop it was

decided that this topic should be addressed as a key theme.

6.4.1. Current recommendations to ARDC 

● That ARDC provide a service to demonstrate maintained security testing and documentation for

recommended federated learning platforms that can be consistently shared with institutions so

that Australian research groups using federate learning are consistent in their messages to

institutions.  

● Can ARDC provide a service to demonstrate these security aspects, so we have a shared set of

information provided to organisations (especially state health organisations).

● Cloud Native Environments are recommended as an option for federated learning infrastructures

due to their security, privacy, and flexibility. They offer features like identity and access

management, encryption, and security monitoring, while also supporting machine learning

frameworks and facilitating horizontal scaling. These environments also enable deployment in

distinct Secure Networks, ensuring reproducibility and robustness of federated learning

infrastructure.
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6.4.2. Collaborative activities to strengthen federated learning across research teams

● Determining collaboratively how we most effectively demonstrate privacy and risks/benefits for

our research projects using federated learning. In doing this it is important to clarify the

difference in federated learning on device (e.g. google) vs federated learning on health sites (with

benefits back to patients). It would also be useful to consider risk tiers/levels and risk of

re-identification. 

● Sharing of security testing and documentation on the tools that are being used across the

research groups. 

● Work together to formulate appropriate and realistic threat models (e.g., re-identification

attacks, record linkage attacks, data reconstruction attacks, etc.).  

● Work together to determine appropriate privacy protection metrics (e.g., differential privacy

value adopted by the US census 2020, successful attack rate, etc.).

● Support each other to evaluate model fairness in federated learning (e.g. assessing accuracy

across different population groups) and to implement federated learning approaches that

support the development of non-biased models.

● Work together to assess and demonstrate the pros and cons of privacy vs model utility in a

federated learning setting (e.g. adding noise will reduce quality of final model).

● Undertake a comparison with risks/benefits of federated learning compared to other approaches

esp. Centralised. Consider a framework that can be used for new projects.

● For vertical learning (and linking of data for an individual patient), consider the risk of linking

data 

● For noting there is a research team at Macquarie University who are looking at risk profiles of

identification to the individual and to the sites might have good input on risk (Mark Dras &

Annabelle McIver).

6.5. Data standardisation

Although not addressed in this report as this is being considered by other ARDC initiatives the need for

data standardisation for federated learning is key and recommendations on this are provided here.

6.5.1. Current recommendations to ARDC

● That the federated learning research groups are kept in the loop regarding other ARDC activity on

data standardisation.

● That ARDC support implementation of data standardisation using a common and well recognised

framework for federated learning projects (e.g. OMOP). Of note there is a current ARDC project
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looking at translating electronic medical records to OMOP and there will be a ARDC framework

document on common data models progressing soon. 

6.5.2. Collaborative activities to strengthen federated learning across research teams

● Review of approaches to data standardisation across the different research groups and a broad

goal to try and work towards consistency with the potential of linking across the federated

projects in the future when appropriate. 

6.6. Governance to Support Federated Learning

Similarly to security, governance is a key overarching area for federated learning and recommendations

to support this have been separated out from the core infrastructure requirements.

6.6.1. Current recommendations to ARDC

● That ARDC generate or support generating agreed and consistent documentation regarding risks

and benefits and IT implementation that can be provided to institutions by research teams

wishing to undertake federated learning.

● That ARDC support discussions with overarching organisations such health services and registry

data holders to ensure understanding of federated learning and requests for changes to process

and/or resources as may be necessary. (Noted ARDC would be interested in doing this for the PBS

or a similar dataset)

● That ARDC undertake or support approaching the NHMRC to consider providing guidance to

ethics committees regarding federated learning (and perhaps machine learning in general).

● That ARDC undertakes work or supports work to consider different approaches to SRE/TREs for

federated learning. This would consider how automation could be used appropriately (how do

the 5 safes change if there is no human in the loop?) and could review international approaches

(e.g. UK federation of TRE providers where queries can be shared, noting this is aggregate

analysis rather than true federated learning).

● Some of these activities could be incorporated into ARDC plans to look at path finder projects

working across organisations.

6.5.2. Collaborative activities to strengthen federated learning across research teams

● Work together to determine common requirements for organisational governance and IT

approvals to support work with ARDC to provide documentation for these requirements

● Sharing of governance documents and experiences, providing the opportunity to build on

successes and learn from challenges.
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● Work together to determine common dataset of interest to federated learning projects (e.g. the

PBS dataset) and a prioritisation of these datasets to support work with ARDC to support access

to these datasets using federated learning frameworks

● Where there is a ARDC work with the research teams and the relevant organisation to support

discussions around how this could be achieved. (Noted ARDC would be interested in doing this

for the PBS or a similar dataset)

● To be forward-looking and ensure the developed federated learning systems are compliant with

the upcoming Australian regulations on AI, which goes beyond the Australian Privacy Act 1988.

(See DISR’s recent response on AI regulations:

https://www.industry.gov.au/news/australian-governments-interim-response-safe-and-responsib

le-ai-consultation).

● Consider a consistent vocabulary around federated learning 

● Of note the NINA project are working on a publication on governance for federated learning.
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Appendix

A.1. Flower Implementation Guide

This section presents in detailed implementation of Flower framework for horizontal data partitioning.

The dataset considered is tabular, however, imaging data can easily be incorporated. The code is

available at: https://github.com/AustralianCancerDataNetwork/FlowerSimulations

A.1.1. Horizontal Partitioning

In horizontal data partitioning, all participating clients have the same features (input items) including the

output item (labels), however, the data points are different as shown in Figure A1.

A.1.1.1. Server-Client Architecture

The horizontal federated learning framework utilizes a server-client architecture. In this setup, there is a

central server responsible for coordinating the federated learning process, and three clients that

contribute their local model updates to the server. This architecture enables collaborative model training

across decentralized data sources while maintaining data privacy.

A.1.1.2. Components: Server and Clients

Server:

The server acts as the central coordinator in the federated learning process. Its primary responsibilities

include:

● Orchestrating communication with clients.

● Aggregating model updates from multiple clients.

● Distributing the global model parameters to clients for further training. Managing the overall
training process, including the number of rounds and convergence criteria.

Clients:

Clients represent individual devices or entities with local data that participate in the federated learning

process. Each client:

● Trains a local model on its own data without sharing the raw data with the server or other clients.

● Computes model updates based on its local data and sends these updates to the server.

● Receives global model updates from the server and incorporates them into its local model for

further training.
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A.1.1.3. Server Code

The Server code consists of number of different components, described below:

Import Files

The code begins with necessary imports from the Flower framework. It imports classes and functions

required for setting up the server, defining the federated averaging strategy, and handling common

components such as metrics.
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FedAvg Strategy

The federated averaging strategy, often abbreviated as FedAvg, is a key component of the framework's

model aggregation process. FedAvg operates as follows:

● Upon receiving model updates from participating clients, the server aggregates these updates to

compute a global model update.

● FedAvg typically employs a weighted average scheme (also employed in this example), where the

contribution of each client's update is weighted by the size of its local dataset or another relevant

metric.

● This weighted average helps mitigate the impact of imbalanced or varying dataset sizes across

clients, ensuring fair representation in the global model.

Server Configuration

A “ServerConfig” object is created, specifying the number of training rounds (“num_rounds”, which is set

to 100) for the federated learning process. Finally, the “ServerApp” is initialized with the specified

configuration (“config”) and strategy (“strategy”). This sets up the server application ready to start.

Legacy Mode:

This part of the code ensures that the server can be started directly when the script is executed as the

main program. It uses the “start_server” function to start the server with the specified address (IP and

Port, in this example the IP address is of its own machine, implying that the simulations for the clients

and the server are done on the same machine, to employ on a different machine, specify the IP address

and Port number of that specific machine), configuration, and strategy.

PAGE 52 Exploring federated learning tools



A.1.1.4. Client Code

The Server code consists of number of different components, described below:

Import Files

The code begins with necessary imports including libraries for data pre-processing (“pandas, sklearn”),

neural network modeling (“torch, torch.nn”), Flower client setup (“flwr.client”), and other utility

functions.

Data Loading

The “load_data” function is responsible for loading and preprocessing the dataset. It reads the data from

a CSV file (it can be any dataset, one can replace this with their own custom dataset, however, make sure

that the features are in column form and the datapoints are in row form), shuffles it, splits it into input

features (“X”) and labels (“y”), performs standardization, and converts the data into PyTorch tensors.

Further, it also split the data into training and testing datasets as well.
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Train Function

This function is responsible for training the neural network model (“model”) using the provided training

data (“train_data”). It takes parameters such as the model, training data, and number of epochs. It is the

same training function as can be used in a centralised manner.
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Test Function

This function evaluates the performance of the trained model on the provided test data (“test_data”). It

takes parameters such as the model and test data. It is the same testing function as can be used in a

centralised manner.
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Neural Network Model

The Net class defines the architecture of the neural network. It specifies the layers, activation functions,

and input/output sizes of the network.

Flower Client

This is the meat of the client code. The “FlowerClient” class extends the “NumPyClient” class provided

by Flower. It overrides methods such as “get_parameters”, “set_parameters”, “fit”, and “evaluate” to

define the behaviour of the client during the federated learning and communication process.
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Starting the Client

If the script is run directly, it imports the “start_client” function from the Flower client module

(flwr.client). The “start_client” function is then called with the following arguments:

● “server_address”: The address of the federated learning server to connect to. In this case, it's
"127.0.0.1:5009", indicating that the server is running on the local machine (localhost) and
listening on port 5009.

● client: An instance of the “FlowerClient” class converted to a Flower client using the “to_client()”
method. This represents the client that will participate in the federated learning process.

A.1.1.5. Running the Example

We can simply start the server in a terminal as follows:

“python3 server.py”

Now we are ready to start the Flower clients which will participate in the learning. To do so simply open

three more terminal windows and run the following commands.

Start client 1 in the first terminal:

“python3 client_1.py”

Start client 2 in the second terminal:

“python3 client_2.py”

Start client 3 in the second terminal:

“python3 client_3.py”

The above is for three clients, if there are more clients we need to run those as well. The number of

participating clients can be specified by the server in “FedAvg” function.
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A.2. Implementation on Nectar Cloud

This section presents the implementation of the Horizontal Federated Learning setup using Flower tool.

The underlying python files and programming environment remains the same as described in section

A.1.

A.2.1. Creation of Virtual Machines on Nectar

The first step is to create Virtual Machines (VMs) on the Nectar. As there are four nodes; one server and

three clients participating in the federated learning setup, we need to create four VMs. The specific steps

required to create a VM is mentioned at the official website of Nectar:

https://tutorials.rc.nectar.org.au/cloud-starter/02-tutorials

The steps are also illustrated at AusCAT documentation:

https://australiancancerdatanetwork.github.io/auscatverse/simulation/NECTAR.html

We will be creating from Ubuntu image and therefore need to generate cryptographic key pairs; the

public key will be used at the time of VM creation and private key will be used at the time of logging in.

A.2.2. Login and Copying Files

To login into the VM, use the following syntax:

ssh -i ~/.ssh/your-private-ssh-key ubuntu@your-vm-ip

To copy files from the local machine into the VM, use the following syntax:

scp /path/to/local/file ubuntu@your-vm-ip:/path/to/remote/directory

We need to copy the relevant files to the VMs. For the server VM, we need to copy the server python file

and pyproject.toml file (which lists all the required packages to be installed). For each of three client

VMs, we need to copy the client python file, pyproject.toml file and data (csv) file.

A.2.3. Run Python Files

Once the relevant files are copied to the VM, we need to install the relevant packages listed in

pyproject.toml for all the server and three client VMs. After this, run the server python file first, once the

server is up and running, run the client python files from the client VMs (Note: make sure to enter the

server’s VM’s IP address and port number in each of the client python file).
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A.3. Implementation on Nectar Cloud using Docker

This section describes the required steps to implement the above federated learning setup using Docker

instead of raw python files.

A.3.1. Docker Installation

We need to install Docker at each of four VMs. The detailed steps for the installation of Docker in Ubuntu

VM are mentioned at AusCAT documentation:

https://australiancancerdatanetwork.github.io/auscatverse/simulation/DOCKER_PORTAINER.html

A.3.2. DockerFiles

Once the docker is installed, we need to create docker images on the VMs using DockerFiles. The

DockerFile for the server and the client will be a bit different; though a same DockerFile will be used for

all three clients.

The server DockerFile is illustrated in the following figure:

First, we are using a python base image to install it. The working directory of the container is set to /app

(this will be used when we run the container of the image). Next, we are copying all the files from the

local machine current directory to the container current directory (which is /app set in the previous line);

need to make sure we have all the required files (client python file, data file, pyproject.toml and

PAGE 59 Exploring federated learning tools

https://australiancancerdatanetwork.github.io/auscatverse/simulation/DOCKER_PORTAINER.html


DockerFile). Then, we are installing the required packages mentioned in pyproject.toml. Finally, the

servor python file is being run at the end.

The client DockerFile is illustrated in the following figure:

The only difference between is the client python file being run at the last line as compared to the server

DockerFile.

A.3.3. Build and Run Images

To build the Docker Image using DockerFile, use the following syntax:

docker build -t [name-of-the-image] -f [name-of-the-DockerFile]

Once the images are created/build, we need to run the containers for these images on the respective

VMs using the following syntax:

docker run -it --rm -v $(realpath ../../data):/app/data f [name-of-the-image]

-it: it is for interactive mode

-v: to mount the host’s directory to the container’s directory.
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