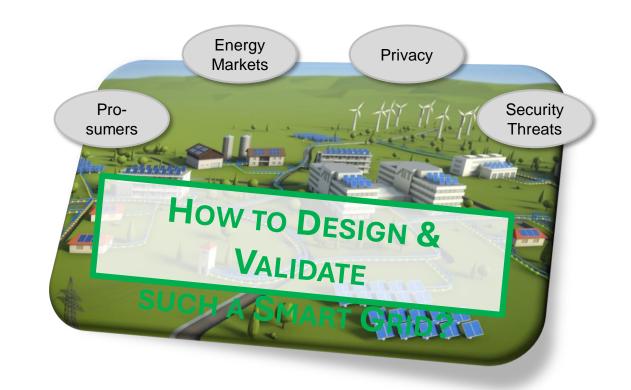


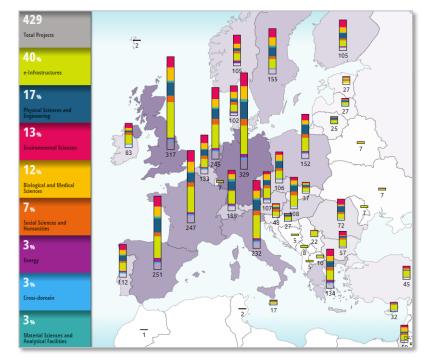
Panel 4. Advanced simulation and laboratory methods in power systems

From ERIGrid to ERIGrid 2.0: Innovations in Research Infrastructures for Sustainable Energy


Thomas I. Strasser
Coordinator ERIGrid and ERIGrid 2.0

¹AIT Austrian Institute of Technology (Austria)

*thomas.strasser@ait.ac.at


Background and Motivation

- Planning and operation of energy infrastructure becomes more complex
 - Large-scale integration of renewable sources (PV, wind, etc.)
 - Controllable loads (batteries, electric vehicles, heat pumps, etc.)
- Trends and future directions
 - Digitalisation of power grids
 - Deeper involvement of consumers and market interaction
 - Linking electricity, gas, and heat grids for higher flexibility and resilience
 - → Smart Grid or Cyber-Physical Energy Systems

European Research Infrastructures (RI)

- Provide resources (major scientific equipment) and services to communities
- Conduct research and foster innovation
- Are strategic investments in scientific and technological excellence
- Act as knowledge and innovation hubs (collections, archives or scientific data)
- Essential pillar of the European Research Area

Source: European Commission & RICH2020

- → Only a few cover energy-related topics
- → Almost no one covers power system/smart grid topics

Integrated Smart Grid and Energy Systems RIs

- Long-term, Pan-European cooperation
- Advanced community

DERlab

- GA-ID 5189299
- FP6 NoE (11/2005-10/2011)
- Coordinated by FhG
- 3 Mio EUR funding
- 12 partner
- Networking of DER labs, pre-standardization

2005

- GA-ID 228449
- FP7 RI IA (09/2009-12/2013)
- Coordinated by RSE
- 5 Mio EUR funding
- 16 partner from 12 countries
- TNA to DER labs, pre-standardization

- GA-ID 654113
- H2020 RI IA (11/2015-04/2020)
- Coordinated by AIT
- 10 Mio EUR funding
- 18 partner from 11 countries
- TNA to Smart Grid and DER labs, pre-standardization

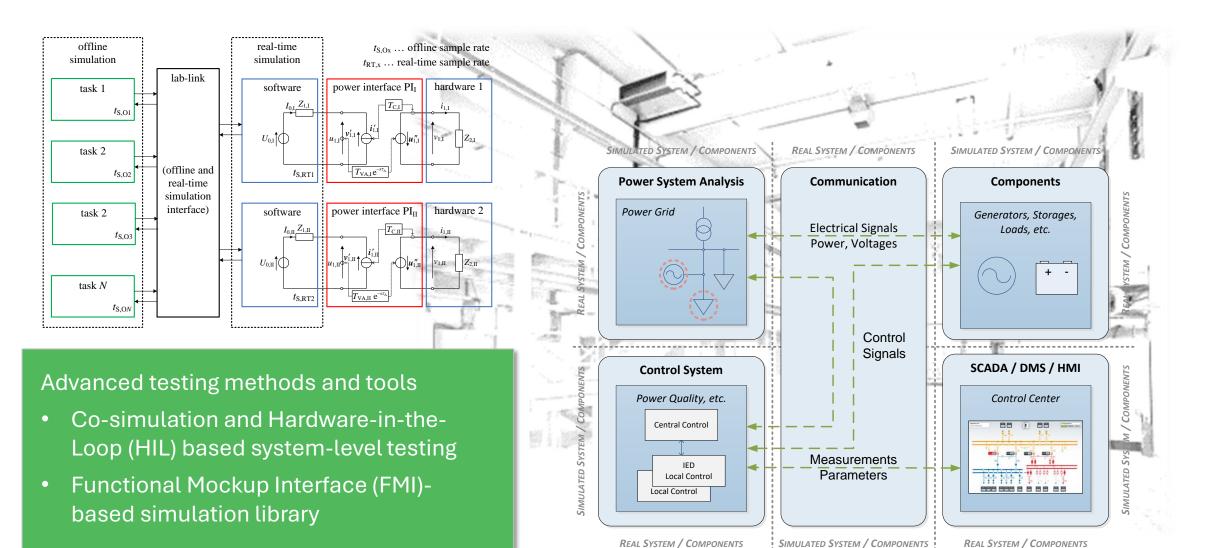
DER ... Distributed Energy Resource

RI ... Research Infrastructure

TNA ... Trans-national Access

/A ... Virtual Access

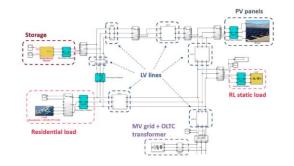
NoE ... Network of Excellence


2028

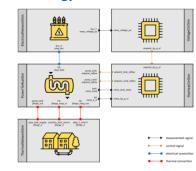
- GA-ID 870620
- H2020 RI IA (04/2020-04/2025)
- Coordinated by AIT
- 10 Mio EUR funding
- 20 partner from 13 countries
- TNA & VA to Smart Grid, Smart Energy Systems and DER labs, pre-standardization

- GA-ID 101131793
- HORIZON RI SERV (03/2024-08/2028)
- Coordinated by KIT
- 14.5 MIO EUR funding
- 54 partners (17 core institutes)
- TNA & VA to renewables and energy systems

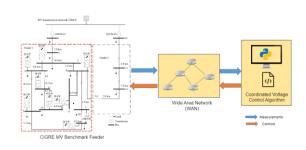
Selected Results ERIGrid



Selected Results ERIGrid 2.0

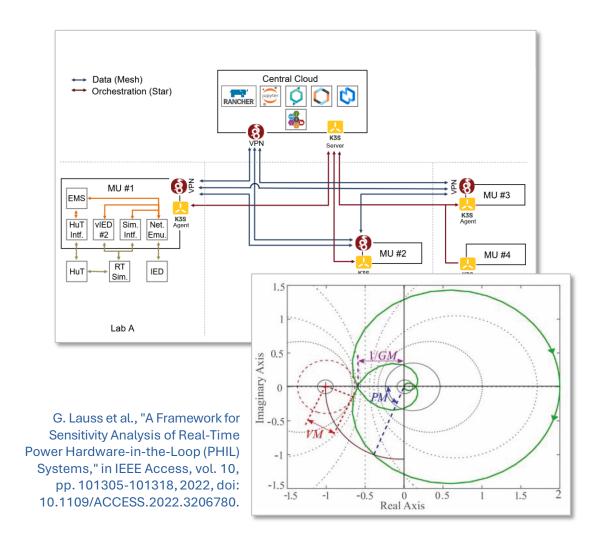

- Enhanced validation methods
 - Development of benchmark scenarios/models for different testing setups
 - Developing guidelines for test reproducibility and representation of data and uncertainty
 - Developing methods for test upscaling and domain extension

Name	Domain	Simulation Environment
Electrical Network	Electrical	MathWorks MATLAB/Simulink
Multi-Energy Networks	Electrical, Thermal	pandapower, Modelica, Python
ICT-Enhanced Power Systems	Electrical, ICT	DIgSILENT PowerFactory, Mininet

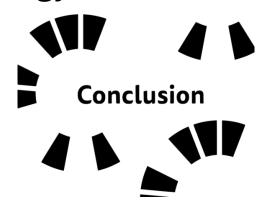

Electrical Network Benchmark

Multi-Energy Network Benchmark

ICT-enhanced Power System Network Benchmark



Documentation in GitHub


Selected Results ERIGrid 2.0

- Improved and extended tools
 - Coupling multiple instances of non real-time with real-time simulators, HIL components, and lab equipment (RiasC approach)
 - Multi-domain co-simulation of physical infrastructures at multiple time scales
 - Methods for the coupling of real-time simulators with co-simulation and HIL
 - Sensitivity analysis of HIL experiments
 - Support distributed and remote experiments

Lessons Learned

- Future large-scale rollout of smart grid and energy solutions expected
- New technologies and methods needed for system analysis and testing
- Promising integration of simulations, HIL, and lab testing
- Important to develop system validation procedures and benchmarks
- Open research results (open access, data, publications) drive innovation
- Lab-based research infrastructures are crucial for the energy transition
- Multi-domain education and training essential
- Collaboration on an international basis is important and beneficial

Outlook

First Transnational Access Call

Call topic: Innovative solutions to improve energy systems and/or reduce the cost of energy technologies enabling a wider use of renewable energy.

Call open to researchers from academia and industry

Application deadline: 30 November 2024

https://risenergy-project.eu/open-calls/

Panel 4. Advanced simulation and laboratory methods in power systems

Privatdoz. DI Dr. Thomas Strasser

Senior Scientist Center for Energy Power and Renewable Gas Systems

AIT Austrian Institute of Technology GmbH

Giefinggasse 2 | 1210 Vienna | Austria T+43(0) 50550-6279 | F+43(0) 50550-6390

thomas.strasser@ait.ac.at | http://www.ait.ac.at

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 870620.

doi:10.5281/zenodo.14035794

This work is licensed under a "CC BY 4.0" license.

