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Abstract
Visually grounded speech models link speech to images. We
extend this connection by linking images to text via an exist-
ing image captioning system, and as a result gain the ability to
map speech audio directly to text. This approach can be used
for speech translation with just images by having the audio in
a different language from the generated captions. We investi-
gate such a system on a real low-resource language, Yorùbá,
and propose a Yorùbá-to-English speech translation model that
leverages pretrained components in order to be able to learn in
the low-resource regime. To limit overfitting, we find that it is
essential to use a decoding scheme that produces diverse image
captions for training. Results show that the predicted transla-
tions capture the main semantics of the spoken audio, albeit in a
simpler and shorter form.
Index Terms: Visually grounded speech models, low-resource
languages, speech translation.

1. Introduction
Imagine you are a linguist tasked with translating a foreign
low-resource language, but that it is not possible to get parallel
speech–translations. One possible approach is to ask native
speakers to describe images using their own language. The idea
would be to then use the images as an intermediate modality
to understand new input speech [1, 2]. While there has been
major advances in visually grounded speech models that learn
from paired audio–image correspondences [3–7], no study has
attempted to develop a model that can take speech and directly
produce a written translation of the input. This is our goal.

Earlier work [8] has shown that it is possible to perform key-
word detection in a foreign language using only images paired
with unlabelled speech. The idea was to use a pretrained vi-
sion system to tag images with word labels in the high-resource
target language. These tags were then used as targets to train
an audio-to-keyword model, taking speech input in the foreign
low-resource language. At test time, the audio model was then
able to predict whether a keyword (in the target language) oc-
cured in the audio stream (of the low-resource source language).
However, the model did not predict full translations of the speech
input. Moreover, the study was done in an artificial setting where
German was the high-resource target language (of the image
tagger) and English audio was the low-resource source language.

An alternative approach is to do translation by retrieval:
finding relevant existing captions for a given audio in a foreign
language [1, 9, 10]. These methods project audio and images
in a common embedding space. Then at test time they can
map a novel audio to the caption of the closest image, thereby
producing a full natural language translation. However, retrieval
is limited to the dataset and requires manually provided captions.
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Figure 1: Overview of our speech translation system. Given
an audio in a foreign language (e.g., Yorùbá), we generate nat-
ural language translations in a high-resource language (e.g.,
English). We achieve this with only audio–image pairs by gener-
ating captions automatically using a pretrained image captioner
and then using these as targets for an audio-to-text model.

In this paper we propose a system that is able to directly
generate natural language translations for a given foreign input
audio. Our speech translation system is trained solely on audio–
image pairs. The approach is illustrated in Figure 1. First, target
sentences in the high-resource language (English) are generated
with a pretrained image captioning system for the image asso-
ciated to an audio input. Then, based on these sentences we
learn an audio-to-text model, which takes as input speech in the
foreign language (Yorùbá, in our case). Finally, at test time we
can generate translations using the audio-to-text model, in our
case translating Yorùbá speech to English text. This is done
without any parallel Yorùbá–English speech–translation pairs.

In this real Yorùbá–English low-resource setting, we show
that using images as an interlingua comes close to a speech trans-
lation system trained with speech–text translation pairs. In our
analysis, we also show that the same system can be used in an
English–English audio-to-text system that produces reasonable
paraphrases of the English audio input (again using images as
intermediate modality). By situating our results in terms of three
toplines, we conclude that it is neither the image captioning
component nor the audio-to-text architecture that limits the per-
formance; rather, other methodological changes may be required
to close the gap to human-level performance.

2. Related work
Our approach is an example of cross-modal learning (also re-
ferred to as cross-modal knowledge distillation). This type of
learning is applied to transfer knowledge across different modali-
ties, for example, from vision to depth data [11] or from vision to
radio signals [12]. In terms of vision and audio—the modalities
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Figure 2: Our audio-to-text model is a transformer that gener-
ates text autoregressively conditioned on audio. The network
consists of learnable (b) cross-attention layers interspersed in
a frozen (µ) GPT-2 decoder to integrate wav2vec audio features.

of interest here—Ayatar et al. [13] used visual information to
perform scene detection on audio, while Owens et al. [14] used
ambient sound to learn visual scene information. The work of
Kamper et al. [8, 15] is more similar to our approach since it
works on speech audio. But, as previously mentioned, they only
transfer unstructured information (image tags for a fixed number
of classes) rather than trying to capture the richness of natural
language. In this direction, Kim and Rush [16] transfer natural
text by distilling the output of large translation models to smaller
ones; we differ by working across modalities.

Recently, the community has also explored aligning audio
features to CLIP’s [17] visual features using audio–image pairs
[2, 18]. This approach allows to implicitly align the audio to a
text embedding (via the visual channel), since CLIP provides
by default a visual–text alignment. However, these methods are
unable to directly generate novel text: they can only provide
a compatibility score for a given text–audio input pair. These
models are therefore used for retrieval or keyword detection.

3. Method
Our task is speech translation: given an audio in a foreign low-
resource language (Yorùbá) we want to generate a natural lan-
guage translation in a high-resource language (English). To this
end, we learn an audio-to-text network that generates text au-
toregressively conditioned on the input audio signal. We assume
that training data consists only of images paired with audio files
that describe the contents of the corresponding image. However,
in order to be able to train the audio-to-text network we need
audio–text pairs. We propose to use existing state-of-the-art
image captioning systems (such as BLIP [19] and GIT [20]) to
generate captions for the images in the training set. These text
captions paired with the associated audio files then serve as data
to train a speech translation model.

While translation is our main task, our method does not
make any assumptions on the input and output languages. If
the two languages are the same, for example both the audio
files and the image captions are in English, then our system will

perform a type of paraphrasing: both the input audio and output
target text would describe the same semantic information present
in the image, but not necessarily using the same words. This
speech paraphrasing task is related but different from the more
standard task of automatic speech recognition, where the output
text should contain exactly the same words as the spoken input.

3.1. Audio-to-text model

As illustrated in Figure 2, our audio-to-text model is a trans-
former model that is composed of two pretrained unimodal mod-
els. The encoder is the wav2vec2 XLS-R 2B model [21], which
maps the input audio to a sequence of 1920-dimensional embed-
dings. The decoder is the GPT-2 model [22], which generates
text in an autoregressive manner. We couple the encoder and
decoder through cross-attention layers, which are inserted after
the self-attention layers in each of the twelve GPT-2 blocks. All
parameters of our model are kept fixed, with the exception of the
cross-attention layers and a projection layer that maps the audio
embeddings (1920D) down to the text space (768D). Leveraging
existing strong pretrained models directly allows for efficient
learning in our low-resource setting. Concretely, our combined
transformer has over 2.3B parameters, but only 1.3% of those
(29M) are learnable, making our model lean and more efficient
to train. Our architecture is reminiscent of Flamingo [23] or
SmallCap [24], but these operate on different modalities (images
and text) and have not been employed in our tasks.

We also experimented with an alternative audio-to-text vari-
ant: mapping the audio to a soft prompt to guide the decod-
ing [25, 26]. But we found the proposed architecture to work
better for our problem. Another variant that we tried was map-
ping the audio to image features (instead of text) and use those
as input to a frozen image captioner. But we were not able to
make this alternative work as we found it difficult to model the
continuous and high-dimensional image embedding space.

4. Experimental setup
Datasets. We use two datasets in our experiments: the

Flickr8k Audio Caption Corpus (FACC) [27,28] for speech para-
phrasing and its Yorùbá counterpart (YFACC) [29] for speech
translation. FACC is derived from Flickr8k [27], which con-
tains 8k images, each annotated with five text captions. Audio
recordings of these captions were subsequently collected by Har-
wath and Glass [28], resulting in 65 hours of data. YFACC [29]
consists of a subset of the FACC data (one caption per image)
that was translated and recorded by a single speaker in Yorùbá;
YFACC totals 13.3 hours. Although Yorùbá is spoken by roughly
44M people as a first language in West Africa, it is still consid-
ered a low-resource language.

Metric. To evaluate our model, we employ the BLEU metric,
a common measure of the similarity of natural texts. Intuitively,
BLEU measures the precision of a hypothesis against a set of
reference sentences: what fraction of the n-grams in a prediction
occurs in any of the reference sentences. We include up to
four n-grams, referred to as BLEU-4. We use the sacrebleu
library [30]. Both the speech translation and speech paraphrasing
tasks are evaluated using BLEU.

Implementation. We experiment with three families of
image captioning systems (BLIP [19], BLIP2 [31], GIT [20])
and three types of text decoding techniques (beam search, multi-
nomial sampling, diverse beam search decoding [32]). Some
examples are displayed in Figure 3. For each image we gener-
ate five captions using the image captioner. When training the
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beam sample diverse

A young boy standing
on a dirt road next to a

field of sunflowers.

Many small kids on a
path running through a

field.

A young boy standing
on a dirt road in a field.

A young boy standing
on a dirt road next to a

field.

A boy is standing and
taking photos of his

plants on a dirt road.

A small child standing
in the middle of a dirt

road.

A young boy standing
on a dirt road in a field.

A little boy using a
camera to look for

watermelons.

A child standing on a
dirt road in the middle

of a field.

Figure 3: Sample captions for the image on top using three types
of decoding on the GIT image captioning model.

audio-to-text model we randomly pair each of the five spoken
captions with each of the five generated captions. We use the
AdamW optimizer [33] with a learning rate of 1 · 10−4, warmed
up linearly for 200 steps and then decayed linearly until the end
of training. Training is run for 50 epochs and it takes around
six hours on four Tesla T4 GPUs on the YFACC dataset. We
keep the best model as monitored on the development set. For
the translation experiments, we initialize the audio-to-text model
from the best model trained on English (FACC), since this was
shown to work better than random initialization [29, 34]. Our
implementation is based on the HuggingFace library [35] and is
available at https://github.com/danoneata/strim.

5. Experimental results
We present our main results and then do a sensitivity analysis to
measure the impact of different image captioning methods.

5.1. Main results

Our main results are given in Table 1. These are given in terms
of the BLEU score (higher is better) against a variable number
n of references (captions) for each image, where n ranges from
one to five. With more references, the model gets credit if a
predicted n-gram occurs in any of the references; this is reason-
able since different people could translate the same sentence
differently. The subset of references is randomly selected from
the five captions available for each image. We repeat each ex-
periment five times and report the mean and two times standard
deviation. The results for three visually grounded speech models
(bottom section) are contextualized with three topline systems
(top section).

Speech translation with images. The results for our visu-
ally grounded speech translation system are given in rows 4 and
5. We consider two variants, both using captions generated with
the GIT image captioning model, but differing in the type of
decoding used: beam search (row 4) or diverse beam search (row
5), as described in Section 4. We see that using more diverse cap-
tions rather than beam search give slightly better performance.
Performance in absolute terms are modest, but BLEU can be
difficult to interpret; so to give a qualitative indication of perfor-
mance, the top part of Figure 4 shows sample predictions. We
see that while the audio files are not transcribed verbatim, the
predictions do capture the gist of the message being conveyed.
The predictions are valid English sentences, but they tend to be
shorter and more direct then the ground truth transcripts. There
are some semantic failures, as the model hallucinates the exis-

input audio (Yorùbá)

groundtruth transcript (Yorùbá)

O. kùnrin kan dúró leti
omi nitosi àpáta.

Eniyan kan fò ninu
afé. fé. .

O. mo. kùnrin kan ninu
s. okoto penpe pupa ti
nmu bó. ò. lù inu agbo. n

bó. ò. lù lori pápá.

groundtruth translation (English)

A man stands at the
edge of the water near

the rocks.

A snowboarder flies in
the air.

A boy with red shorts is
holding a basketball in

a basketball court.

model prediction (English)

A man standing on a
rock with a camera.

A person jumping in the
air on a skateboard.

A young boy is playing
soccer on a field.

input audio (English)

groundtruth transcript (English)

The brown dog is
walking through a river
surrounded by bushes.

Two women in white
shirts talking.

A woman holding a
small ball chasing after

a small boy.

model prediction (English)

A dog running through
the water with its mouth

open.

A couple of women
standing next to each

other.

A young boy holding a
baseball bat on a field.

Figure 4: Examples of Yorùbá-to-English translations (top)
and English-to-English paraphrases (bottom) for the visually
grounded speech models trained on captions generated by GIT
with diverse beam search.

tence of “camera” in one example and mistakes “snowboard” for
“skateboard” and “basketball” for “soccer” in the other two cases.

Comparison to humans. To situate the speech translation
results quantitatively, we can compare them to the three topline
approaches at the top of Table 1. The first (row 1) can be seen
as human performance on this dataset [36]: for a given image,
we measure how well the caption given by one annotator (hy-
pothesis) matches the captions of others annotators (reference
set). Since each image has five captions, the reference set is
limited to a maximum n of four. The results remain moderate
in the absolute: humans reach a BLEU score of only 21.59%
for n = 4. This suggests that even among humans there is a
noticeable variance on how they describe the images. Our best
visually grounded speech model, achieving 14.22% with n = 4,
is only 7.36% behind this topline in absolute BLEU.

Comparison to supervised speech translation. Next we
consider a direct audio-to-text speech translation model trained
on ground truth text annotations (row 2, Table 1). This model cor-
responds to the typical speech translation model and we include
it to both validate our architecture and put a limit on what is
achievable for the visually grounded speech models. The results
are even better than the annotator topline for low values of n. For
this experiment (as for all those using audio at the input, rows 4–
6) we always include the caption of the input audio caption in the
reference set (hence the zero variance when n = 1). So although
it might seem surprising at first that this model outperforms the
annotators, the model has the advantage of having access to the
Yorùbá audio. As such, this speech translation model can infer
the exact words used, while the humans are likely to use different
words to cover the semantics. Comparing this topline to our best
visually grounded speech translation approach, we see at n = 5
that we are 6.19% behind in absolute BLEU.
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Table 1: BLEU scores against the English annotations from the Flickr8k test set (rows 1, 3, 6) or its corresponding Yorùbá subset (rows
2, 4, 5). All experiments involving generated captions (rows 3–6) use the GIT image captioning model.

input targets num. references

method language language decoding 1 2 3 4 5

Toplines
1 annotator N/A N/A N/A 8.32±0.5 13.95±1.0 17.84±0.9 21.59±0.7 N/A
2 translation Yorùbá → English annotations 15.23±0.0 18.25±0.3 19.87±0.4 21.07±0.3 22.01±0.0
3 generated captions N/A English beam search 9.62±0.9 17.07±1.0 22.16±0.8 25.88±0.6 29.37±0.6

Visually grounded speech models
4 translation Yorùbá → English beam search 6.65±0.0 9.37±0.5 11.32±0.5 12.72±0.2 13.71±0.0
5 translation Yorùbá → English diverse 6.10±0.0 9.54±0.6 12.28±0.9 14.22±0.4 15.82±0.0
6 paraphrasing English → English diverse 6.56±0.5 10.45±0.8 13.10±0.7 15.45±0.4 17.46±0.9

How well can we translate with generated captions? To
answer this question, we consider the performance of the gener-
ated image captions (row 3, Table 1), which are used as targets by
our speech translation system. For each image we pick a random
image-generated caption as the hypothesis and n annotations
as the reference set. The captions are generated using the GIT
model and beam search decoding. We see that the image cap-
tions yield strong results relative to the human annotations, even
surpassing the inter-annotator agreement: a BLEU of 25.88% for
n = 4. This might be caused by the fact that the BLEU metric,
being a precision metric, prefers simpler descriptions, which are
typically output by image captioning systems. The performance
here are therefore the real upper bound for our visually grounded
approach; by comparing our best BLEU of 15.82% to the 29.37%
at n = 5, we can conclude that the generated captions are not
the bottleneck if we want to improve performance. Rather, other
methodological improvements are needed to take advantage of
the rich supervision signal present in images.

Paraphrasing with images. As mentioned in Section 3, by
using English speech input, we can easily use exactly the same
approach as above to do visually grounded speech paraphrasing.
Results for this model is given in row 6 of Table 1. We see that
this speech paraphrasing model comes closer to the annotator
and generated caption toplines (rows 1 and 2) than the speech
translation models (rows 4 and 5). But note here that this English–
English model is trained and evaluated on the full FACC data,
which contains five times more utterances for each image than the
YFACC data used for the Yorùbá-to-English speech translation
experiments. The improvement over the Yorùbá–English variants
(rows 4 and 5) is therefore presumably due to a combination of
the larger training dataset and the language match between input
and output. For a qualitative view, sample paraphrases are given
in the bottom of Figure 4.

5.2. Impact of image captioning

The image captioning system directly influences the speech trans-
lation results since it provides the targets for the audio-to-text
module. We therefore conduct a sensitivity analysis on three
aspects: the image captioning model, the text decoding strategy,
and the number of generated captions.

Concretely, we consider three image captioning models
(BLIP, BLIP2, GIT) and three decoding techniques (beam search,
diverse beam search, multinomial sampling) and evaluate all
nine combinations. Figure 5 shows the performance of the im-
age captions and of the resulting visually grounded models (both
translation and paraphrasing). The translation models are initial-
ized from the best paraphrasing system. In terms of the captions
performance (Figure 5-left), we observe that multinomial sam-
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Figure 5: Performance in terms of the BLEU score of the gener-
ated captions, speech translation and speech paraphrasing, for
all nine combinations of image models and decoding strategies.

pling performs consistently worse than the other two variants,
with beam provides attaining the best results. The performance
across image models is more comparable, but the best results are
achieved by the BLIP2 system.

However, these conclusions do not translate for the tasks
of interest: the best variant for translation is the GIT image
model with multinomial sampling (Figure 5-middle), while for
paraphrasing it is BLIP2 with diverse beam search (Figure 5-
right). Notably, multinomial sampling (bottom row) now yields
the best performance for translation when coupled with the GIT
or BLIP2 models. This suggests that more diverse targets, as
illustrated in Figure 3, are important to prevent overfitting.

Since diversity is an important factor, we generated for the
translation task a varying number of captions (from one to ten)
using GIT captioning with multinomial sampling. Indeed, when
the number of captions is very low (one or two) the performance
suffers (9 to 12% BLEU), but after three captions, the perfor-
mance stabilizes at around 15% BLEU score, with the maximum
of 17.21% being reached when the number of captions is nine.

6. Conclusions
We have shown that it is possible to translate Yorùbá audio to
English text using only visual information present in images.
We are able to achieve this by training an audio-to-text model
supervised by the text output of an image captioning system. To
build an efficient model, we leverage state-of-the-art components
such as wav2vec and GPT-2, and train only a small subset of
parameters. The output predictions convey the semantics of the
spoken message in natural language, but they tend to be simpler
and shorter than human translations. A limitation of our model
is that it tends to hallucinate words, especially when training
data is limited. Future work will explore confidence estimation
techniques [37] to flag these unreliable predictions.
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