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EXECUTIVE SUMMARY 
This report presents the definition of the Neurodegenerative Use Cases that constitute 
the core of HEREDITARY.   

Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and other 
related disorders, are complex and challenging to treat due to their multifaceted 
pathophysiology. The current approach to neurodegenerative diseases focuses on 
symptom-based classification, which often fails to capture the underlying biological 
heterogeneity. There is therefore a pressing need for innovative approaches that 
leverage advanced data integration and analytics to uncover deeper insights into these 
diseases. 

HEREDITARY aims to address these challenges by integrating multimodal data, and 
particularly combining genetic, clinical, biomarker and imaging data to provide a 
comprehensive understanding of neurodegenerative diseases.  

The tasks presented in this deliverable will employ the multimodal data framework in a 
research setting, aiming to refine prediction and patient classification in 
neurodegenerative disorders and uncover novel disease-related biomarkers and 
etiological mechanisms. The development of a multimodal data framework will enhance 
predictive analysis and patient classification, Improving the discovery of novel disease-
related biomarkers or etiological mechanisms.  

HEREDITARY will integrate diverse data types from different centres using a federated 
learning infrastructure. This approach allows for secure, large-scale data analysis without 
compromising patient privacy by implementing privacy-preserving federated analytics. 
The effectiveness of the HEREDITARY framework within the realm of neurodegenerative 
diseases will be assessed primarily in two use cases designed to (a) advance the 
understanding of ALS by identifying endophenotypes through the integration of 
comprehensive data modalities and (b) detect biologically informed clusters within 
neurodegenerative diseases. These two use cases will integrate with three additional 
clinical applications of HEREDITARY, which will be the focus of future tasks. These 
additional use cases will concentrate on the early detection of Parkinson's disease using 
multimodal data and exploring the gut-brain axis in health and disease. Together, these 
five use cases will demonstrate the broad applicability and effectiveness of the 
HEREDITARY framework. 

The outcomes of the Neurodegenerative Use Cases of HEREDITARY will improve our 
understanding of neurodegenerative disorders. This approach will pave the way for 
improved patient classification and the development of effective treatment strategies, 
uncovering deeper insights into the underlying mechanisms of these diseases and 
ultimately leading to more targeted and personalized interventions. 
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1 INTRODUCTION 
This report presents the Neurodegenerative Use Cases of HEREDITARY. In these Use 
Cases, HEREDITARY seeks to uncover novel disease-associated mechanisms and 
improve patients’ classification, thus enabling significant advancement in the research of 
neurodegenerative diseases. The project's objectives will be achieved through the 
development of a robust, interoperable, trustworthy, and secure framework that 
integrates multimodal health data, including genetic information, while ensuring 
compliance with cross-national privacy-preserving policies. 

The Neurodegenerative Use Cases were designed in collaboration with stakeholders to 
align with HEREDITARY's core objectives: 

• Multimodal data integration and Interoperability 
• Utilization of a multimodal semantic ontology: by enabling efficient and 

meaningful data access and querying, HEREDITARY addresses the need for 
integrating diverse linguistic and multimodal data (e.g., text, imaging, genetic 
data) for comprehensive analysis, ensuring the platform meets the varied 
requirements of policy-makers, researchers, clinicians, and patients. 

• Enhancement of predictive analysis and support for complex data integration: by 
implementing privacy-preserving federated analytics and learning methods, 
HEREDITARY will ensure that data remains distributed and secure while still 
being accessible for global analysis and learning, which is crucial for handling 
sensitive medical data. 

• Integration of genetic and clinical data to uncover deeper insights into disease 
mechanisms and patient outcomes. 

Through the utilization of advanced federated analytics and learning workflows, 
HEREDITARY will empower clinicians, researchers, and policymakers to better 
understand neurodegenerative diseases and develop more effective treatment 
strategies. 

This report begins by introducing the state of the art regarding multimodal data 
integration in neurodegenerative diseases. Section 3 describes Use Cases 1 and 2 in 
detail. Finally, Section 4 briefly explores how Use Cases 1 and 2 integrate with the other 
use cases from Work Package 2. 
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2 STATE OF THE ART 
One of the fundamental challenges in addressing neurodegenerative diseases is their 
complex pathophysiology, which complicates treatment development. 
Neurodegeneration begins at the molecular level, leading to cellular death. However, the 
physiological onset of the disease and the manifestation of symptoms occur only after 
significant and irreversible neuronal loss. Consequently, neurodegenerative diseases 
are age-related, often taking years to decades to manifest. By this time, the mechanisms 
that initiated the disease may have been overtaken by those that sustain the 
neurodegenerative process. Therefore, targeting the initial causal mechanisms may 
have limited efficacy in slowing or stopping disease progression. The primary challenge 
in developing treatments lies in identifying all pathological events leading to cell death 
and targeting these to rescue afflicted neurons. 

To accelerate progress in developing effective treatments, the field of neurodegeneration 
requires new and innovative approaches. A holistic investigation is urgently needed to 
fully capture the genetics and biology of neurodegenerative diseases, including gene-
drug interactions and potential causal mechanisms. In Use Cases 1 and 2, we propose 
that federated learning on multimodal data can identify robust, complementary 
endophenotypes—closer to the underlying aetiology—leading to a deeper understanding 
of the biological mechanisms behind neurodegenerative diseases. This approach could 
help identify clusters of patients with similar biological backgrounds, moving beyond the 
traditional symptom-based classification. 

2.1 Multimodal data analysis in neurodegenerative disorders 
Recent studies have demonstrated the benefits of multimodal data analysis and the 
integration of different data types to achieve a better understanding of human brain 
health. For example, linking genomic data with magnetic resonance imaging (MRI) of the 
brain has been useful in investigating the mechanisms underlying brain ageing. Recent 
studies have focused on the brain age gap (BAG), the difference between chronological 
age and the apparent age of the brain estimated from imaging data, which is widely 
considered an indicator of brain health (Cole et al., 2017; Cole & Franke, 2017; Franke 
et al., 2010). 

The typical approach uses one or more imaging modalities, often relying on a single 
structural image from each subject (Smith et al., 2019). The data is pre-processed, and 
features are identified for brain age prediction. Structural images may be warped into a 
standard space, and grey matter segmentation carried out. Alternatively, more 
condensed features, such as volumes of grey and white matter within multiple brain 
regions, may be derived. The resulting dataset, comprising multiple subjects’ feature sets 
and their true ages, is then passed into a supervised learning algorithm that learns to 
predict the subjects’ ages from their brain imaging features. The true age is subtracted 
from the estimated brain age to create a delta, with potential corrections for biases. 

Combining all factors into a single estimate of brain age can provide a useful summary 
metric and the most accurate single estimate of a subject’s age from imaging data. 
However, this may obscure important information about the distinctions between multiple 
biological factors, making it harder to understand the various causes of brain aging. 
Factors such as physical exercise, education, alcohol intake, smoking, dietary patterns, 
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hypertension, and obesity likely contribute to brain aging in different ways (Leonardsen 
et al., 2022; Steffener et al., 2016; Wrigglesworth et al., 2021), affecting different aspects 
of brain structure and function as viewed through multiple imaging modalities. Therefore, 
using multiple brain imaging modalities allows for the investigation of distinct biological 
factors related to aging, thus gaining a greater understanding of brain aging 
mechanisms. In this context, genome-wide association studies (GWAS) have associated 
BAG with common genetic variants (e.g., single nucleotide polymorphisms, SNPs) 
(Jonsson et al., 2019; Karolinska Schizophrenia Project (KaSP) et al., 2019; Ning et al., 
2020; Smith et al., 2020). However, focusing on a single outcome does not 
comprehensively capture the genetic architecture of brain aging mechanisms. Machine 
learning methods integrating multimodal imaging data have instead improved the yield 
of genetic associations (Patel et al., 2024). Interindividual variations in the predicted brain 
age of individuals with the same chronological age and their underlying genetic factors 
correlate with neurological and mental disorders, such as dementia, schizophrenia, 
major depressive disorder, bipolar disorder, and mortality (Elliott et al., 2021; Gaser et 
al., 2013; Han et al., 2021; Karolinska Schizophrenia Project (KaSP) et al., 2019; 
Schnack et al., 2016). 

These results emphasize the complex architecture of brain age and provide insights into 
the causal relationships between brain age and neurological and neuropsychiatric 
disorders. This approach can be extended to study environmental factors associated 
with disease. For instance, higher educational attainment may protect against 
Alzheimer’s risk by increasing or maintaining an individual's brain reserve. Brain reserve 
refers to individual differences in brain structure that enable some individuals to preserve 
cognitive and functional status despite neuropathology (Stern, 2012; Stern et al., 2020). 
Structural alterations associated with Alzheimer’s disease, such as cortical thinning and 
grey matter atrophy, can be measured in vivo using MRI, and their pre-morbid levels may 
serve as proxies for brain reserve capacity (Arenaza-Urquijo et al., 2013; Querbes et al., 
2009; Solé-Padullés et al., 2009). 

The relationship between factors that increase brain reserve capacity and their role in 
Alzheimer’s diseases can then be further delineating using techniques like Mendelian 
Randomization (MR), a valuable tool to investigate cause-effect relationships between 
risk factors and disorders (Wen et al., 2024). For example, MR models have inferred the 
causally protective role of increased educational attainment on Alzheimer’s risk but 
demonstrated that this protective effect is not mediated via an increased brain reserve 
or structural brain changes (Groot et al., 2018; Seyedsalehi et al., 2023). This suggests 
that higher education might protect through increasing cognitive reserve or through 
alternative biological mechanisms requiring further investigation. 

Thus, the approaches discussed here can help identify numerous risk or protective 
lifestyle factors and neurobiological processes that may exert independent, synergistic, 
antagonistic, sequential, or differential influences on human brain health. 

Toward a biological-based classification 

A popular approach to discovering genetic variants relevant for neurodegenerative 
diseases is the use of whole-exome/genome sequencing to assess common and rare 
variants globally and then associate each variant with disease status. However, it is well 
established that neurodegeneration results from a combination of pathways, including 
inflammation, cholesterol metabolism, and endosome or ubiquitin-related functioning. 
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Individuals with the same symptoms can differ regarding the pathways contributing to 
their symptoms (Cornblath et al., 2020; Emon et al., 2020; Koretsky et al., 2023; P. Li et 
al., 2015; Villoslada et al., 2020). Additionally, different genetic factors may influence 
various aspects of the diseases. Studying disease status as a single outcome may mask 
genetic effects that only impact specific pathways or patient subsets. Identifying genetic 
variants that influence correlated traits may be key to understanding the genetic 
architecture of the disease. 

To overcome these limitations, a pathway approach has been proposed, analysing 
variants in relation to distinct pathological processes reflected by different disease 
biomarkers. This can be achieved by applying statistical methods that identify 
independent clusters of biomarkers representing different biological processes. These 
approaches are not only conceptually appealing but may also improve the power of 
traditional GWAS. 

However, traditional approaches for genotype-phenotype studies have limitations. While 
appealing, recent commentaries have highlighted inherent limitations from modelling 
pre-selected outcomes, necessitating a priori selections of measures that are expected 
to be relevant, with the risk of overlooking others. Additionally, although many studies 
analyse each of these phenotypes separately, the joint analysis of multivariate 
phenotypes has recently become popular because it can increase statistical power to 
detect genetic loci. Integrating association signals at a single SNP over multiple 
correlated dependent variables in a single comprehensive framework is not always 
straightforward. Therefore, the power to determine the full genetic basis of the disease 
could be improved by techniques that identify features from multimodal data representing 
different potential pathways, which could serve as outcomes for genetic (and other 
omics) investigations (Aschard et al., 2014). 

Currently, the diagnosis of neurodegenerative diseases remains clinical, based on both 
inclusion and exclusion criteria. However, it is well known that the underlying 
degenerative process exists for years before patients present with classical clinical 
features. In recent years, fluid, tissue, and imaging biomarkers for these diseases have 
advanced to the point where a biological classification of neurodegenerative disorders 
can be considered. These techniques now allow for the objective identification of genetic 
risk, pathological processes, and neurodegeneration. 

Neurodegenerative diseases are acknowledged as an extremely heterogeneous group 
of disorders, even regarding the underlying pathological changes. Rather than 
simplifying and homogenizing these disorders, any new biological approach needs to 
address and incorporate this heterogeneity. A biological classification is more appropriate 
than attempting to establish a single biological definition. Characterizing symptomatic 
patients based on specific biological and clinical profiles will significantly advance a 
broad range of research studies (e.g., epidemiology, neuroimaging, biomarker discovery, 
clinical trials) that are currently limited by pure clinical classifications or studies 
classifying patients based on a single biological criterion (e.g., a pathogenic genetic 
variant or single neuroimaging feature). A similar approach has been recently proposed 
for Parkinson's Disease (Höglinger et al., 2024). 

This would be an important initial step in classifying and characterizing patients at the 
earliest pathological stages, advancing the successful development of precision 
medicine-based effective disease-modifying therapies that are sorely needed. 
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2.2 The advantages of federated learning in this research setting 
Federated Learning (FL) is a recently proposed machine learning (ML) paradigm that 
addresses privacy concerns by enabling advanced ML methods, such as deep learning 
(DL), to be trained and tested collaboratively without requiring the exchange of sensitive 
data between partners. FL was initially introduced as a distributed ML paradigm to train 
a centralized model using privacy-sensitive data from numerous clients. Given the similar 
privacy concerns associated with medical imaging and sequencing data, the FL 
paradigm has recently been applied to various life sciences applications, showing 
promising results. FL-based data analysis and ML methods have been proposed for 
analysing health records and medical imaging data, such as MRI and fMRI (X. Li et al., 
2020a), the meta-analysis of biomedical data (Brisimi et al., 2018), and the analysis of 
genomic data, including gene expression (Zolotareva et al., 2021) and GWAS (Aziz et 
al., 2022). 

One major challenge in studying neurodegenerative diseases, especially rare diseases 
like amyotrophic lateral sclerosis, is the lack of robustness due to the small sample sizes 
available at single centres and the high clinical and biological variability of the data. 
Increasing the sample size is the simplest and most effective way to address this issue. 
However, this is non-trivial due to the computational intensity, expense, and time required 
for data collection, as well as limited sample availability and the inability to share and 
pool existing data due to personal data protection laws. This concern is particularly 
significant for next-generation sequencing data and neuroimaging data, from which 
subjects can be identified under certain conditions. Although several open resources are 
now publicly available, their utility in clinical and phenotypic analysis is often limited due 
to inherent privacy issues, as they require relevant clinical metadata (e.g., patient sex, 
age, and disease characteristics) that may be identifying when combined. 

These limitations are well exemplified in the case of genomic data. One major limitation 
of traditional GWAS is that it can only perform association tests on local data. If multiple 
cohorts want to conduct collaborative GWAS to benefit from larger sample sizes, they 
must pool their data for joint analysis. The field has also established methods for meta-
analysis of individual studies, where only the results and summary statistics of the 
individual analyses are exchanged. Aggregated analysis requires cohorts to pool their 
private data for joint analysis, while meta-analysis aggregates the summary statistics 
from cohorts to estimate combined p-values. 

The federated framework holds instead the potential to combine the advantages of 
aggregated analysis and meta-analysis, providing robustness against heterogeneous 
data while enhancing the privacy of cohorts’ data (Cho et al., 2018; Raimondi et al., 2023; 
Wu et al., 2021). 

  



 
 
 
 
 
 

 
 
DELIVERABLE 2.16 
28 JUNE 2024, VERSION 1.0  GA 101137074    11 | 27 

3 NEURODEGENERATIVE USE CASES DESCRIPTION 

3.1 Use Case 1: Neurodegenerative diseases phenotyping and 
prognosis evaluation 

3.1.1 Participating partners 
UNITO, UNIPD, AAU and SURF 

3.1.2 Overall aim of the Use Case 
The objective of this Use Case is to advance the understanding of amyotrophic lateral 
sclerosis (ALS) by identifying and characterizing endophenotypes by integrating a 
comprehensive array of data modalities. 

By employing advanced machine learning techniques, this study aims to detect 
combinations of genomic variants and biological pathways that correlate with specific 
clinical features (including patient survival) and endophenotypes in ALS. This integrated 
multimodal framework could detect novel mechanisms involved in the disease or clinical 
features important for patients’ prognosis and stratification, ultimately leading to the 
discovery of new biomarkers and potential therapeutic strategies for ALS. 

3.1.3  Background 
Amyotrophic lateral sclerosis (ALS) is a complex and fatal neurodegenerative disease 
that affects motor neurons, leading to progressive muscle weakness and death from 
respiratory paralysis. Despite advances in understanding the genetic basis of ALS, the 
diverse pathogenic mechanisms and the variability in disease progression among 
patients have represented a paramount challenge, complicating the identification of 
effective therapeutic strategies. Consequently, there is an urgent need for novel 
approaches that can both enhance our understanding of the disrupted biological 
pathways in ALS and uncover biomarkers that could improve our phenotypic 
categorization of patients. These approaches should aim to detect structural, functional, 
and metabolic changes that constitute novel biomarkers for accurate phenotyping and 
prognosis evaluation of ALS patients, thus enabling the discovery of novel genetic factors 
contributing to ALS. 

3.1.4  Rationale 
Understanding the basis of amyotrophic lateral sclerosis (ALS) requires novel models 
capable of disentangling the multitude of molecular interactions and clinical phenotypes 
that characterize the disease. The combined effects of genetic variants, gene-gene 
interactions, and the multifaceted ALS phenotype have often been overlooked. 

Traditional approaches frequently fail due to their omission of genetic data integration 
with biological network information, such as gene or protein interactions. This integration 
could provide more holistic and accurate insights into the underlying biological 
processes. Gene-gene interactions can play significant roles in ALS, yet single-locus 
tests and genome-wide association studies (GWAS) are often blind to these interactions, 
as they typically rely on additive genetic models. 

Advancements in machine learning have enhanced our ability to study the biological 
processes underlying ALS. Multi-omics analyses have identified distinct molecular 
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signatures in ALS linked to mechanisms such as stress responses and 
neuroinflammation. Additionally, machine-learning applications to ALS patient data have 
uncovered specific transcriptional and epigenetic patterns associated with different ALS 
genotypes and have been used to stratify sporadic ALS patients into molecular 
subgroups. These findings highlight the potential of advanced methods to dissect ALS 
complexity and facilitate the identification of therapeutic candidates targeting specific 
biological processes. 

Another limitation hindering our progress in understanding ALS is that genetic 
association findings based on ALS risk do not fully explain the genetic architecture of 
ALS, as the complexity underlying the disease is not entirely captured by disease status 
only. A strategy to overcome this limitation involves studying the genetic underpinnings 
of ALS-related endophenotypes based on clinical data and biomarkers. 

A deeper and more comprehensive understanding of neurodegenerative diseases could 
emerge by integrating genetics with other biomarkers, potentially uncovering previously 
undetected pathomechanisms. Neuroimaging, for example, can investigate the impact 
of genetic variations on brain structure and help delineate the molecular mechanisms 
induced by both common and rare genetic variants linked to ALS. The goal of integrating 
multimodal phenotypes with genomic approaches is not only to identify the effects of 
gene variants on disease risk but also to characterize the systems that directly influence 
ALS pathophysiology. 

Efforts in this direction have been constrained by small sample sizes, lack of 
reproducibility across cohorts, and unclear definitions of the disease features to study. 
These limitations have hindered the identification of novel ALS-risk genes and 
endophenotypes associated with ALS variants. Multimodal learning approaches hold the 
potential to overcome these limitations and expand the repository of genetic variants and 
pathways involved in ALS, thereby enhancing the study of genotypic-phenotypic 
correlations. 

3.1.5 Scientific Approach 
Study Population 

• Patients with ALS from: 
o Piemonte and Aosta Register for ALS, a population-based register 

(UNITO) 
o an Italian ALS Centre (UNIPD) 

• open data (Answer ALS). 

Data modalities 

• Genomics (WGS, GWAS) 
• Clinical (Longitudinal) 
• Neuroimaging (Brain 18F-FDG PET, Brain MRI) 
• Laboratory (Blood Exams) 
• Neurophysiological (Electromyography) 

Variable selection 

First, the variables to include in the analysis will be evaluated. This could prove 
necessary in light of the characteristics of genomic data (millions of variants with different 
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frequencies) and the collinearity among clinical variables. For example, genetic variants 
will be filtered to retain only those with a higher probability of association with the disease. 
This includes variants in genes already known to be associated with neurodegenerative 
processes, variants with known functional effects on biological pathways, or rare variants 
with a higher likelihood of altering protein function.  

The genetic analysis will focus on single nucleotide polymorphisms and samples passing 
standard whole-genome sequencing-type quality controls. As rare variants can be 
problematic, a separate analytical framework will be adopted for common (minor allele 
frequency > 1% or > 5%) and rarer variants. The specific methodologies and relative 
threshold will also be selected according to the phenotype investigated and the relative 
sample size. The association of the variants with ALS will be evaluated based on the 
summary statistics of genome-wide association studies (GWAS) or rare variant burden 
analysis (Nicolas et al., 2018; van Rheenen et al., 2021). Genetic variations will be 
integrated with relevant expression data (expression quantitative trait loci, eQTL) (Zhu 
et al., 2016; Xu et al., 2021). Rare variants will instead be prioritised based on the genes 
(gene expression levels in the central nervous system, protein network, involvement in 
neurodegenerative disease) (Li et al., 2020b; Katsonis et al., 2022), in silico 
computational analysis and prediction on the effect of the protein. To harmonize data 
from different Centres or different genome-sequencing protocols, variants will be aligned 
to the same Reference Genome, and identical annotation tools and variant filtering 
criteria will be adopted. 

Similarly, neuroimaging analysis will focus on specific features extracted from the data, 
such as cortical volume or signal intensities. Anatomical images will be divided into 
distinct brain regions (cortical, subcortical and brainstem); cortical thickness and regional 
volumes will be measured using standard automatic procedures for volumetric 
measurements (van der Burgh et al., 2016; Kuan et al., 2023). Similarly, intensity values 
will be estimated for atlas-based regions of interest (ROIs) using automated pipelines. 
Diffusion tensor imaging metrics will be derived to reconstruct white matter tracts. Brain 
networks will be reconstructed by selecting the interconnecting tracts. Neuroimaging 
data provided to the consortium have already been acquired and quality control 
procedures have already been employed in each Centre. Additional quality control 
measures and standardized preprocessing pipeline will be adopted; similarly, 
standardized harmonization techniques and statistical methods to adjust for batch effects 
and site-specific variations will be adopted to ensure data harmonization. 

Several clinical features will be included: the ALS Functional Rating Scale-Revised 
(ALSFRS-R) score, neurological examination, neuropsychological testing and cognitive 
classification (including the Edinburgh Cognitive and Behavioural ALS Screen), symptom 
duration, region of disease onset, years of education, comorbidities, handedness, age at 
disease onset, survival and sex. 

For neurophysiological data (electromyography, EMG), semiquantitative scores for acute 
and chronic denervation will be calculated for the bulbar, cervical and lumbosacral 
regions. Different body regions and muscles will be evaluated for score calculation: 
bulbar region, right arm, left arm, right lower limb, and left lower limb. For each of these 
body regions a score will be assigned according to the amount of positive sharp waves 
and fibrillation potentials for active denervation and characteristics of motor unit action 
potentials for chronic denervation (Colombo et al., 2023). Laboratory data will be 
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selected to include markers of muscle loss (Hertel et al., 2022), inflammation (Murdock 
et al., 2021) and lipid metabolism (Ingre et al., 2020).  

If possible, raw data will be used as input for the model in additional analyses. 

Unsupervised Learning: 

Unsupervised learning models will then be used to detect (a) endophenotypes from 
multimodal clinical data and (b) combinations of genomic variants and biological 
pathways related to clinical features in ALS. Particular focus will be given to genetic 
variants and clinical features correlating with patient survival. 

Association Analysis: 

Standard association methods, such as genome-wide association studies (GWAS) and 
rare variant association studies, will be employed to identify or validate the genetic basis 
of the identified endophenotypes. Additional analysis will be performed to assess 
whether the genetic and clinical features extracted from the unsupervised learning 
improve prognostic prediction and thus could be translated in the clinical setting, 

Secondary analysis will then be performed to explore whether the biological pathways 
or endophenotypes identified in the previous steps are associated with specific 
environmental exposures. If relevant biological pathways are identified, this information 
will be used to prioritize potential therapeutic targets. 

3.1.6 Challenges and Risks: 
The complexity of the genetic basis of ALS, likely resulting from a combination of 
common and rare genetic variants, is one of the key challenges which this Use Case 
aims to tackle. Moreover, the interpretation of the results (both regarding 
endophenotypes, potential novel biomarkers or genetic signals) and their meaningful 
translation in a clinical setting will require careful consideration. 

ALS is a rare and heterogeneous disease, and despite the inclusion of two large and 
well-characterized cohorts, the sample size may be insufficient to obtain significant 
results. Finally, it is worth noting that the two study cohorts come from the same ancestry, 
and therefore, the findings of the use case will necessitate replication in other cohorts 
before being considered generalizable.  
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3.2 Use Case 2: Next-generation diagnosing and treatment response 
for neurodegenerative diseases 

3.2.1  Participating partners 
UNITO, UNIPD, CRG, SURF, HESSO 

3.2.2 Overall aim of the Use Case 
The primary objective of this Use Case is to develop a system to identify biologically 
informed, biomarker-driven classification for neurodegenerative diseases. Leveraging 
machine learning techniques and multidimensional data (genetic, clinical, and 
biomarkers) could prompt a change in how we stratify patients with neurodegenerative 
disorders, integrating clinical diagnosis with putative aetiology mechanisms and 
molecular or anatomical markers. These methods will help delineate clusters of patients 
with shared biological backgrounds, paving the way towards precision-medicine 
approaches, including the development of disease-modifying therapies. 

3.2.3 Background 
Advances in the establishment of the genetic basis and in vivo biomarkers of 
neurodegenerative disease have placed the field in the crucial position of shifting from 
largely clinically based diagnostic criteria to an emphasis on the biological underpinnings 
of a disease. Such biological classification could be invaluable as a framework for future 
biomarker-based stratification and staging systems that will allow the implementation of 
precision medicine approaches to disease modification. Biomarker-based stratification 
can enhance the detection of effective drugs by ensuring that therapeutic interventions 
are tested on more homogeneous patient populations, thereby reducing variability in 
treatment response. Moreover, this approach can facilitate the identification of responder 
patients, enabling personalized treatment strategies that target the specific 
pathophysiological processes active in each subgroup. 

3.2.4  Rationale 
Growing evidence is establishing that neurodegenerative diseases — to date considered 
as distinct and uniform clinicopathological entities — have various genetic or 
environmental causes that initiate the disease along different, only partly overlapping 
pathways. Genetic and multi-omics advances have helped to clarify the differences 
between neurodegenerative diseases in the same clinical spectrum but, at the same 
time, have also challenged the traditional boundaries between disorders related to 
neurodegeneration. For instance, large genomic studies have demonstrated that even 
established pathogenic mutations are often neither sufficient nor necessary for the 
development of a clinically defined disease, as some patients carrying a mutation may 
not have neurological symptoms or manifest features overlapping between diseases. 

 

In this regard, genetic, fluid, and imaging biomarkers are attracting growing interest, as 
they potentially allow for objective identification of genetic risk, pathological processes, 
and neurodegeneration. However, despite these advances, the current diagnostic criteria 
and clinical subgrouping of neurodegenerative disease are based entirely on the 
identification of clinical features. Furthermore, there is no single neurobiologically based 
disease construct. A biologically informed classification and diagnosis of 
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neurodegenerative disease could serve as the basis for objective clinical diagnosis and 
staging and for accurate subdivision of patients according to pathogenic mechanisms. A 
biological diagnosis could also advance research in multiple fields, such as 
epidemiology, biomarker discovery, and precision medicine, including the development 
of disease-modifying therapies. Indeed, one of the main reasons behind the difficulties 
in discovering disease-modifying therapies might reside in the exclusive reliance on 
clinical diagnosis without adequate biological stratification. 

Machine learning techniques can be particularly effective in this context. These methods 
can group patients based on multi-dimensional data without prior knowledge of the 
outcomes, allowing for the discovery of novel subtypes driven by genetic, clinical, 
imaging, and environmental interactions. By reconstructing the network of interactions 
among these variables, researchers can gain a comprehensive understanding of the 
disease mechanisms at play in different patient subgroups. 

The identification of clusters based on clinical features and biomarkers holds significant 
promise in revealing different pathophysiological profiles of patients manifesting similar 
symptoms, as well as grouping together patients with different clinical manifestations but 
sharing the same biological background and drug-response likelihood.  

3.2.5  Scientific Approach 
 
Study Population 

• Patients with ALS from UNITO and UNIPD (see Use Case 1) 
• Patients with Frontotemporal Dementia (FTD) from UNITO (optional) 
• Patients with Multiple Sclerosis (MS) from UNITO and UNIPD (optional) 
• AD individuals from public access cohort (optional) 

Data modalities 

• For ALS: see Use Case 1 
• For MS: Imaging (Brain & spinal cord MRI), clinical scales, immunological data; 

Optical Coherence Tomography (OCT) 
• For FTD: Imaging (Brain 18F-FDG-PET), whole-exome sequencing (FTD) 

Variable selection 

Variable selection will adopt a similar approach to Use Case 1. 

For genomic data on ALS, FTD, and MS, genetic analysis will concentrate on SNPs from 
whole-genome sequencing and GWAS data. Given the challenges posed by rare 
variants, a separate analytical framework will be used for common and rare variants. The 
methodologies and thresholds will be tailored to the specific phenotype under 
investigation and the sample size. Variant associations with ALS will be evaluated using 
summary statistics from genome-wide association studies (GWAS) or rare variant 
burden analysis. Genetic variations will be integrated with relevant expression data, such 
as eQTL. Rare variants will be prioritized based on factors like gene expression levels in 
the central nervous system, involvement in neurodegenerative diseases, protein-network 
analysis, and in silico computational protein impact predictions. 



 
 
 
 
 
 

 
 
DELIVERABLE 2.16 
28 JUNE 2024, VERSION 1.0  GA 101137074    17 | 27 

For neuroimaging analysis in ALS and FTD, the focus will be on extracting specific 
features such as cortical volume and signal intensities. Anatomical images will be 
segmented into distinct brain regions (cortical, subcortical, and brainstem), with cortical 
thickness and regional volumes measured using standard automated. Intensity values 
will be estimated for atlas-based regions of interest (ROIs) using automated pipelines. 
Diffusion tensor imaging (DTI) metrics will be used to reconstruct white matter tracts, and 
brain networks will be mapped by selecting the interconnecting tracts. 

For MS, additional measures will be included (Eshagi et al., 2016; Andorra et al., 2024), 
such as evidence of disease activity evaluated through lesion activity (presence of 
gadolinium-enhancing lesions) and lesion load (new or enlarging T2 lesions and T2 
lesion volume). Total lesion volume and the evaluation of normal-appearing white matter 
for each ROI will also be considered. 

Section 3.1.5 details the clinical and neurophysiological features of ALS to be included 
in the analysis. For MS, clinical progression will be assessed through neurological 
examinations and the Expanded Disability Status Scale (EDSS), with the use of disease-
modifying drugs recorded. The presence and pattern of oligoclonal Ig bands in 
cerebrospinal fluid will serve as an immunological biomarker for MS. Additionally, retinal 
atrophy monitored by OCT will be included in the analysis (Martinez-Lapiscina et al., 
2017; Lin et al., 2021). 

Unsupervised learning 

Clinical data, neuroimaging, biomarkers and functional properties of disease-associated 
genetic variants (linked to biological and anatomical entities) are integrated to identify 
clusters of patients. This approach will be initially tested in ALS. Secondary analyses will 
be performed to validate the approach in other neurodegenerative disease (FTD or AD) 
or to a neurological disease of different nature (MS). 

Comparison with clinical data 

The integrated classification is compared to traditional clinical-based classification. 
Patients sharing a similar biological basis but different phenotypes will also be prioritized 
for the research or potential environmental modifiers, including treatment.  

3.2.6 Challenges and Risk 
 
Other than the challenges already described in Use Case 1, it should be noted that the 
available data may not adequately capture the effect of environmental exposures and 
treatment responses as they change over time, and the number of patients may be 
insufficient to study these aspects comprehensively. 

Furthermore, the identification and validation of novel endophenotypes depend on 
sufficiently large and representative sample sizes. Inadequate sample sizes can limit the 
statistical power and generalizability of the findings, potentially hindering the discovery 
of meaningful biological subgroups. Finally, the success of a biologically informed 
classification system relies on the availability of comprehensive and high-quality genetic, 
clinical, imaging, and biomarker data. Gaps in critical data elements may impede the 
development of robust classification models and reduce the accuracy of the identified 
endophenotypes. 
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4 INTEGRATION OF THE USE CASES WITHIN 
HEREDITARY 

4.1 Use Case 3: Signs of Parkinson’s disease in multimodal data 

4.1.1 Overview of the Use Case 
This Use Case enhances early diagnosis and monitoring of Parkinson's Disease (PD) 
using advanced retinal imaging techniques, including Optical Coherence Tomography 
(OCT). By identifying and validating retinal biomarkers that reflect PD-related 
neurodegeneration, the project seeks to predict the disease before clinical symptoms 
manifest. Early detection through retinal biomarkers can significantly improve disease 
management and the development of disease-modifying treatments. 

Then, retinal imaging will be integrated with other biomarkers such as neurological 
findings and neurophysiological data. Combining these diverse data sources allows for 
a more comprehensive characterization of PD, providing insights into the disease's 
progression and underlying pathophysiological mechanisms.  

This Use Case will leverage federated learning to ensure the robustness and 
generalizability of the developed models across multiple clinical sites. This collaborative 
approach helps validate the findings in diverse populations and clinical settings, 
enhancing the reliability of the retinal biomarkers identified. Ultimately, the goal is to 
create a comprehensive, non-invasive tool that integrates various biomarkers for early 
PD detection and management, potentially transforming the clinical approach to this 
neurodegenerative disorder. 

4.1.2 Scientific Approach 
Data modalities 

• Clinical (Longitudinal - (Clinical Scales, Cognitive testing) 
• Retinal imaging (fundus photos and OCT) 
• Neuroimaging (Brain MRI/PET/SPECT) 
• Neurophysiological data (EEG and Deep Brain Recording) 
• Biomarkers (plasma, cerebrospinal fluid) 

Variable selection 

To standardize the cohort, inclusion/exclusion criteria for the diagnosis of PD and related 
disorders will be adopted based on existing well-established criteria. Individuals with 
conditions that could interfere with the study outcomes will be excluded to maintain the 
integrity of our results. Collected clinical data include detailed records of disease history 
(disease duration, treatment history and disease severity using standardized), and 
neurological and ophthalmologic. Imaging data will be derived from high-quality and 
reproducible techniques. Strict quality control measures will be implemented to ensure 
that only high-quality images are included, and available tools will be used to harmonize 
data, ensuring consistency and accuracy in the data collected. 
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4.1.3 Integration with Use Cases 1 and 2 
This Use Case focuses on Parkinson’s Disease, a common neurodegenerative disorder, 
and thus shares similar goals and methodologies to Use Cases 1 and 2. Therefore, we 
expect the three use cases to reciprocally inform each other on tasks such as feature 
extraction, multimodal data integration (including imaging, neurophysiological, cognitive, 
and clinical data), and machine-learning methods. The collaboration among the partners 
involved in the Use Cases will provide valuable insights into how to combine multimodal 
data for disease prediction and classification. Additionally, they will share methodologies 
for harmonizing, sharing, and analysing data from multiple centres, fostering a unified 
approach to early disease detection and progression monitoring across the project. 

4.2 Use Cases 4 and 5: Phenotyping of the gut-brain axis in healthy 
individuals to understand deviations in disorders and Gut-Brain 
linkage and disease relevance 

4.2.1 Overview of the Use Cases 
These Use Cases aim to establish a comprehensive understanding of the gut-brain axis 
(GBA), a bidirectional communication system linking the central and enteric nervous 
systems, and its influence on health and disease. Recent research has highlighted the 
importance of the gut microbiota in these interactions, yet the extent of its impact on brain 
function remains unclear. By mapping the healthy gut-brain axis, these Use Cases will 
identify deviations associated with various diseases, providing a reference for future 
research and potential therapeutic interventions targeting the microbiome. 

To achieve this, the relationship between gut microbiome alterations, environmental 
factors, and health-related data will be investigated in a large population sample. This 
includes exploring associations between specific gut microbiome changes, 
environmental pollutants, genetic factors, and metabolic health outcomes. The goal is to 
create a detailed map of the healthy gut-brain axis, offering valuable insights for 
understanding the mechanisms behind these interactions and their implications for 
neurological and neuropsychiatric health. 

The approach involves the analysis of microbiome and metabolome data, histological 
data from colon biopsies, and functional MRI (fMRI) data from healthy individuals and 
psychiatric disorders. Using advanced neuroimaging techniques and neuroimaging-
omics, the project aims to visualize the impact of the gut microbiota on the human brain. 
Techniques such as Linked Independent Component Analysis (LICA) will be employed 
to integrate brain connectivity maps with microbiome data, uncovering patterns of 
variation shared between brain networks and gut microbiota. These findings will then be 
linked with health-related factors such as behaviour, stress, societal influences, and 
environmental conditions. By linking brain network connectivity and microbiome 
compositions to these factors, the project aims to elucidate the complex interactions 
within the gut-brain axis. This comprehensive approach will provide a foundation for 
identifying potential therapeutic targets and interventions, enhancing our understanding 
of the gut-brain connection in health and disease. 

4.2.2 Scientific Approach 
Data modalities 
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• Clinical (Longitudinal) 
• Microbiome and metabolome data 
• Histological data from colon biopsies 
• Functional MRI (fMRI) 

Variable selection 

Biosamples will be extracted from the Healthy Brain Study (HBS) database, which 
includes data from 700 individuals including repeated measures. These participants have 
undergone extensive phenotyping, including detailed information from various lifestyle 
and life-history questionnaires, cognitive tasks, saliva cortisol samples, stress-related 
measures. Microbiome and metabolome analysis will be performed on fecal samples. A 
relative abundance table will summarize the internal composition of the microbial 
community in each subject, while the pathway abundance table of the metabolic 
functionality will be used to map putative pathway activity on specific functional and 
metabolic activities. Functional and structural brain data will be acquired from Magnetic 
Resonance Imaging (MRI). Standard preprocessing, smoothing and filtering, and 
normalization procedures will be adopted to ensure the accuracy and comparability of 
the brain images. 

4.2.3 Integration with Use Cases 1 and 2 
Use Cases 4 and 5 will provide invaluable insights into how to integrate multiple --omics 
data, including metabolomics and brain imaging data. Furthermore, it will demonstrate 
how multimodal data integration can be applied to investigate environmental factors, thus 
enhancing this task in Use Cases 1 and 2. Additionally, Use Cases 4 and 5 will gain 
insights into the role of the gut-brain axis pathways in healthy individuals, which could be 
later leveraged to explore the role of the gut microbiome in neurodegenerative disease. 
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