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EXECUTIVE SUMMARY 
One of the main goals of the HEREDITARY project is establishing secure and scalable 
computing infrastructures in local medical centres to support federated learning. These 
infrastructures enable data processing and collaboration without centralising sensitive 
data. These infrastructures include managed services, computational resources, and 
storage facilities, ensuring medical centres can actively contribute to the federated 
learning process while maintaining data privacy. 

This deliverable's milestone is setting up the necessary computing and storage 
infrastructures in medical centres, specifically at UCD, RUMC, UNITO, and UNIPD, and 
testing the communication protocol that connects these centres to the federated learning 
infrastructure. This deliverable will show that each medical centre is advancing toward 
meeting these infrastructure goals and that initial communication protocols have been 
tested and verified. 

Task 2.6 aims to implement the federated learning infrastructure. However, in the context 
of Deliverable D2.14, the critical objective is to establish computing infrastructures in 
UCD, RUMC, UNITO, and UNIPD, ensuring that they have the necessary facilities to 
host federated learning components, process their data locally, and communicate 
securely with other partners. 

We are reporting on the progress in setting up computing infrastructures at UCD, RUMC, 
UNITO, and UNIPD, including: 

• UCD, RUMC, and UNIPD have the required infrastructure in place. 
• UNITO is in the process of acquiring the necessary infrastructure. 
• Initial communication protocols have been tested between UCD, HES-SO, 

RUMC, SURF, and UNIPD. Once their infrastructure is ready, further expansion 
is planned for full collaboration with UNITO. 

Additionally, the HES-SO workshop conducted earlier this year successfully 
demonstrated communication between these medical centres, providing evidence of 
networking and data-sharing capabilities in a federated learning environment.  
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LIST OF ABBREVIATIONS 

Abbreviation Expanded form 
AAU Aalborg University 

AI Artificial Intelligence 
API Application Programming Interface 

BMC Baseboard Management Controller 
Ceph A distributed storage system 

CPU Central Processing Unit 
CIFAR Canadian Institute for Advanced Research (dataset) 

DP Differential Privacy 
ECC Error-Correcting Code 
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EUDAT European Data Infrastructure 

FeTS Federated Tumor Segmentation 
FL Federated Learning 

Flower A Federated Learning Framework 

GDPR General Data Protection Regulation 
GiB Gibibyte 

GPU Graphics Processing Unit 
GPFS General Parallel File System 
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HE Homomorphic Encryption 

HES-SO University of Applied Sciences and Arts Western Switzerland 
HIPAA Health Insurance Portability and Accountability Act 

HPC High-Performance Computing 
HPC4AI High-Performance Computing for Artificial Intelligence 

iRODS Integrated Rule-Oriented Data System 
ML Machine Learning 

MLflow Machine Learning Workflow (Open-source platform for ML lifecycle) 
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RUMC Radboud University Medical Center 
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US United States 
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W&B Weights & Biases (Machine Learning Experiment Tracking) 

WSL2 Windows Subsystem for Linux 2 
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1 Introduction 
One of the main goals of the HEREDITARY project is building a cutting-edge federated 
learning and analytics infrastructure that leverages secure (super)computing 
environments to enable distributed machine learning across multiple clients, ensuring 
data privacy and model security. This infrastructure facilitates collaborative learning while 
preventing data centralisation, which is particularly important when working with 
sensitive medical data. 

This report describes the current effort in setting up the federated learning infrastructure 
defined in Task 2.6. 

1.1 Overview of the Federated Learning infrastructure 
This infrastructure supports data-centric and model-centric federated learning 
approaches (Jakubik2024), accommodating various stakeholders with differing 
computational resources and privacy requirements. Clients can process data locally 
while utilising the computational power of secure supercomputing environments to 
perform large-scale machine learning on privatised and transferable data. The federated 
infrastructure employs advanced privacy-preserving techniques, such as differential 
privacy and homomorphic encryption, ensuring that data confidentiality is maintained 
throughout the learning process. 

The infrastructure also provides a protected communication channel between clients and 
the central server, enabling secure model updates and ensuring that even clients with 
fewer resources can participate fully in the training process. 

1.2 Objectives of Task 2.6 
The primary objective of Task 2.6 is to implement a federated learning infrastructure that 
is efficient, scalable, and capable of maintaining the privacy and security of data and 
models across a wide range of clients. To achieve this, several critical infrastructure 
components have been designed and tested, including: 

• Data management to ensure secure data preprocessing, storage, and retrieval 
while adhering to privacy standards. 

• Model management to facilitate efficient, reproducible training, validation, and 
deployment of machine learning models using frameworks like TensorFlow and 
PyTorch. 

• Communication to establish secure communication between clients and the 
central server, using technologies such as gRPC to protect data and model 
transmissions (Beutel2020). 

• Resource management to optimises resource allocation, load balancing, and 
fault tolerance, ensuring that clients with varying computational resources can 
contribute to the training process (Geyer2017). 

The federated learning infrastructure is designed to scale across diverse computing 
environments, integrating on-premises infrastructure at medical centres with centralised 
computational resources provided by secure supercomputing platforms like SURF. 
Privacy-enhancing mechanisms such as differential privacy, Secure MultiParty 
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Computation (SMPC) (Miller2020), and homomorphic encryption are key to maintaining 
confidentiality throughout training. 

1.3 Verification of milestone M4 - local computing infrastructures 
The M4 milestone coincides with deliverable 2.14 from Task 2.6, which details the 
successful establishment of local infrastructures and testing communication protocols 
between the UNITO, UCD, RUMC, UNIPD, and SURF centres involved in federated 
learning. As of month 9, the HEREDITARY project has significantly progressed in 
developing the federated learning infrastructure. Key achievements include the design 
of core components, initial testing in sandbox environments, and the development of 
guidelines for future implementation phases. You can also find details of existing 
hardware in Annexes 1, 2, 3 and 4. 

Certain aspects of the infrastructure still need to be put under active development. Efforts 
have been made to establish sandbox environments for early testing and to provide 
guidelines for setting up local infrastructures at medical centres. Communication 
protocols between medical partners are also being tested to ensure smooth collaboration 
and data exchange within the federated learning system. 

The formal verification of Milestone M4 involves two key objectives: 

• Setup of computing infrastructures. This includes the completion of computing 
and storage setups at the medical centres. These infrastructures are required 
to support federated learning by enabling local data processing, secure model 
training, and privacy-preserving computations. Centres like UCD, RUMC, and 
UNIPD have completed their setups, and UNITO is finalising them. These 
centres have high-performance servers equipped with GPUs to handle the 
heavy computational loads required for medical data processing. 

• Testing of communication protocols. This ensures seamless data exchange 
between medical centres and the central federated learning server. This testing 
was conducted through a workshop, where UCD, AAU, RUMC, HES-SO, 
SURF, and UNIPD participated in a successful simulation of networking and 
data-sharing processes. The protocol test suggests the infrastructure 
facilitates secure, real-time communication during federated learning tasks. 

The progress made so far in setting up the infrastructure, as outlined in Deliverable 2.14, 
verifies Milestone M4. The upcoming focus will be on completing the infrastructure setup 
at all medical centres, further refining the communication and resource management 
systems, and continuing to test and integrate advanced privacy mechanisms to ensure 
compliance with privacy regulations like the GDPR. 

Annex 5 presents the codebase to run federated learning methods within the 
HEREDITARY infrastructure and the code adopted to run the communication tests within 
the consortium. 

This deliverable outlines the progress made in setting up the computing infrastructures 
at medical centres (UCD, RUMC, UNIPD, and ongoing work at UNITO) and testing the 
communication protocols that enable secure collaboration between these centres. The 
infrastructure setup is crucial for allowing the federated learning processes required by 
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the HEREDITARY project, and future work will focus on expanding the infrastructure's 
reach and improving its efficiency and security. 

 

2 Infrastructure design document 
This section presents the design and implementation of the federated learning 
infrastructure for the HEREDITARY project. The infrastructure has been designed to 
balance flexibility, scalability, and security while maintaining compliance with data privacy 
regulations. The document outlines the core elements of the system architecture, 
emphasising the integration of key technologies for managing data, models, 
communication, and resources. 

This section provides an overview of the architectural components and covers the current 
implementation status across participating medical centres, highlighting progress made 
and ongoing efforts. Finally, it discusses the rationale behind the selected frameworks 
and technologies, ensuring the infrastructure meets the complex needs of federated 
learning while maintaining robust security and privacy. 

2.1 Architecture overview 
The architecture of the HEREDITARY federated learning infrastructure is designed to be 
modular, flexible, and secure. It consists of several core components, each responsible 
for different aspects of the federated learning process: 

• The data management infrastructure handles data preprocessing, storage, and 
retrieval, ensuring data privacy and security through technologies like iRODS 
(iRODS Consortium2021), dCache (Fuhrmann2006), and b2share 
(EUDAT2021), as well as the built-in capabilities of federated learning 
frameworks. Adopting a data mesh approach (Fowler2021), the infrastructure 
decentralises data management by embedding computational policies directly 
within the federated system (McMahan2017, Ryffel2018), making data 
management a first-class concern. This enables each data domain to manage its 
data, ensuring scalability and governance.  

• The model management infrastructure supports efficient and reproducible 
training, validation, and deployment of models using machine learning 
frameworks like TensorFlow and PyTorch through (self-)hosted tools like MLflow. 

• The communication infrastructure ensures secure and efficient communication 
between clients and the central server, utilising technologies such as gRPC. 

• The resource management infrastructure manages load balancing, resource 
allocation, and fault tolerance, integrating tools like Flower.io and PySyft 
(Ziller2018). 

2.2 Technical implementation progress and choices 
This section outlines the progress in implementing the federated learning infrastructure 
at various medical centres, highlighting the setup status and the technical choices that 
guide the infrastructure's development. The decisions surrounding framework selection, 
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server hosting, and communication protocols are discussed, emphasising the project's 
focus on privacy, scalability, and flexibility. Additionally, this section covers ongoing 
infrastructure efforts, such as communication tests and integration of advanced privacy-
preserving technologies. 

2.2.1 Medical centre infrastructure setup progress 
This section briefly overviews month 9's progress in implementing local infrastructures. 

2.2.1.1 UCD: completed setup 
UCD completed the setup of the necessary computing and storage infrastructure, 
allowing it to contribute fully to the federated learning infrastructure. 

The infrastructure includes high-performance computing (HPC) capabilities for local data 
processing and secure communication channels connecting to the central server. 

2.2.1.2 UNIPD: completed setup 
UNIPD also completed its infrastructure setup with computational and storage facilities 
like UCD. 

UNIPD participated in communication tests during the HES-SO workshop, confirming 
that its data can be securely integrated into the federated learning infrastructure. 

2.2.1.3 RUMC: completed setup 
RUMC is in the process of establishing its infrastructure for federated learning. For local 
experiments, model development, and analytics, RUMC is utilising several computing 
resources: 

• The DIAG group at RUMC is using the SOL cluster for local experiments and 
model development. The SOL cluster is designed for medical data processing 
and machine learning tasks and offers a robust computing environment. 

• This cluster is dedicated to fMRI-related experiments, providing RUMC with the 
necessary computational resources for medical imaging tasks. 

For federated learning, RUMC will use an Azure node provided by RTC Data 
Stewardship, the details of which are still being finalised. Additionally, RUMC plans to 
utilise the Snellius supercomputer for large-scale federated learning experiments. 

RUMC will participate in federated learning communication tests once the infrastructure 
setup is complete. 

2.2.1.4 UNITO: in progress 
UNITO is in the process of acquiring the necessary computing and storage infrastructure. 
Progress has been made to ensure that their local data can be processed securely and 
they can participate fully in federated learning. 

Once the infrastructure is in place, UNITO will join the ongoing communication tests with 
other medical centres. 

2.2.2 Framework selection 
We have chosen to implement our federated learning infrastructure using the Flower 
framework due to its ease of implementation, flexibility, and robust support for various 
machine learning libraries. Flower's framework-agnostic (Beutel2020) nature allows us 
to easily integrate with existing codebases and tailor the infrastructure to specific needs. 
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We considered several frameworks based on model support, aggregation methods, 
privacy functionality, technical complexity, and maintainability. We analysed Nvidia flare, 
Flower, Pysyft, Substra, Vantage6, Openfl, FedML, and HeteroFL based on these 
dimensions. 

As a fallback, we have integrated PySyft, a framework known for its robust privacy 
features, including secure multiparty computation and differential privacy. This fallback 
provides additional privacy assurances for scenarios requiring heightened security 
measures. 

We’ve extensively searched multiple frameworks to support this choice, resulting in a 
score based on support for models, aggregation (Bonawitz2017), privacy, technical 
complexity , and maintainability. 

This choice also sets up the communication process in this case, so gRPC (Flower), 
since we foresee a need for efficiency and scalability, having the option to fallback onto 
WebSockets (PySyft) if the need arises for advanced privacy-preserving protocols like 
SMPC and homomorphic encryption. 

2.2.3 Server hosting 
The central federated learning server is hosted at SURF, taking advantage of this 
environment's computational resources, security infrastructure, and connectivity. There 
are several servers hosted in a virtualised environment. There is a Flower server – client, 
MLflow, and Wights&Biases (W&B) servers. 

The medical centres run their versions of these instances as the deployment process 
and configuration are available. 

2.2.4 Communication protocol testing 
We conducted a workshop at HES-SO to test the communication protocols, where UCD, 
HES-SO, SURF, RUMC, and UNIPD participated in networking and data-sharing 
simulations. This workshop demonstrated that the medical centres could securely 
exchange model updates and data within the federated learning framework. 

Although UNITO was separate from the initial workshop due to ongoing infrastructure 
acquisition, they will be included in future communication tests once their setup is 
complete. 

Similarly, we will investigate integration with RUMC cloud-based resources, which, 
although supported by our current infrastructure solution, wasn’t tested during the 
workshop. 
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3 Adapting the codebase for Federated Learning 
In this section, we delve into adapting existing machine learning codebases for federated 
learning. We compare a vanilla federated learning implementation with a customised 
solution tailored for specific applications like the FeTS (Federated Tumor Segmentation) 
project. We used the FETS project to illustrate code changes needed and tradeoffs. This 
knowledge will be applied to the codebase produced by the Hereditary consortium. 
Additionally, we provide a step-by-step guide to assist developers in modifying their 
codebases to support federated learning, ensuring compatibility, efficiency, and privacy 
compliance. 

3.1 Vanilla codebase vs. customised implementation 
Adapting a codebase for federated learning can involve using a standard, out-of-the-box 
implementation or developing a highly customised solution that meets specific project 
requirements. 

3.1.1 Vanilla Federated Learning implementation 
The vanilla implementation of federated learning using Flower involves basic server-
client communication. Each client processes its data locally and sends updates to the 
central server. 

The medical centres with infrastructure in place (UCD, UNIPD) are currently operating 
with a simple version of this setup to ensure communication channels are secure and 
data is processed correctly before advancing to more complex tasks. 

This implementation involves setting up a central server that coordinates training across 
multiple client nodes, each of which processes its data locally. The basic steps are as 
follows: 

• The server orchestrates the training process. It initialises the model, receives 
model updates from the clients, aggregates these updates, and sends the 
aggregated model back to the clients. (This is server.py in the GitHub codebase) 

• Each client trains the model on its local data and periodically sends updates to 
the server. The client code is generally straightforward, focusing on loading the 
data, performing local training, and communicating with the server. (This is 
client.py in the GitHub codebase) 

3.1.2 Customised FeTS implementation 
We implemented a solution for the FeTS (Federated Tumor Segmentation) project to 
validate the infrastructure beyond basic tutorial support. This requires handling 
specialised medical data. We ensured the infrastructure could support complex model 
architectures and enhanced privacy features. We also provide these changes for the toy 
example for the Medical MNIST dataset. This involves customising the data loading and 
preprocessing steps to ensure compatibility with the federated learning setup. (This is 
fets_data_provider.py in the GitHub codebase) 

The models used in FeTS are tailored for medical image analysis and require 
adjustments to the training and evaluation processes. (The entire codebase is in the 
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vit_example; additional examples are provided in the central repository through the 
*_medical_mnist.py examples.) 

3.2 Adapting a codebase for Federated Learning 
This section provides a step-by-step methodology for adapting a non-federated learning 
codebase to meet specific project needs, including data handling, model customisation, 
and privacy integration. 

Step 1: Analyze requirements 

• Evaluate the data characteristics and understand the nature of your data, 
including format, size, and preprocessing needs. 

• Asses model complexity and whether your current model architecture suits 
federated learning or needs adjustments. 

• Identify privacy needs, determining the level of confidentiality required based 
on regulations and data sensitivity. 

Step 2: Select an appropriate Federated Learning framework 

For framework evaluation and selection, compare Flower, PySyft, and NVIDIA FLARE 
based on compatibility, scalability, and privacy features. For instance, Flower offers 
flexibility and ease of use, while PySyft provides advanced privacy mechanisms. 

Step 3: Modify Data Handling Procedures 

• Local data processing ensures that all data preprocessing and augmentation 
occur locally for each client to maintain data privacy. 

• Adapt data loaders to handle local datasets, considering variations in data 
formats and structures across clients. 

• Implement strategies to address non-independent and identically distributed 
(non-IID) data scenarios. 

Step 4: Adapt the model architecture 

• Model refactoring: Modify the model to be compatible with federated learning, 
which may involve layers, activation functions, or parameter initialisation 
changes. 

o Batch Normalization layers rely on batch statistics, which can vary 
significantly across clients due to non-IID (Independent and Identically 
Distributed) data. This can lead to model divergence. BatchNorm layers 
can be fixed by replacing them with GroupNorm or LayerNorm layers, 
which use instance-level statistics instead of batch-level statistics. 

o Clients with limited computational resources may need help with complex 
models. Reducing the number of layers, neurons, or filters can be 
beneficial. Use depthwise separable convolutions or reduce the size of 
fully connected layers. 

o Use activation functions that are efficient and widely supported, like 
ReLU, Leaky ReLU, or ELU. 

o Convergence must ensure all clients start training using the same initial 
model parameters. It is advisable to use a common initialisation method 
and, if necessary, a fixed random seed. 
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o Some federated learning frameworks may have specific requirements for 
model definitions. In Hereditary, we decided that Flower and PySyft would 
cover all our existing and future models. 

o It’s important to ensure your model does not rely on global states that 
could differ between clients. So, it’s advisable to encapsulate all model-
related variables within the model class or client instance. 

• Model serialisation: Implement serialisation methods for transmitting model 
parameters between the server and clients. For PyTorch this would be 
state_dict() and load_state_dict(), while for TensorFlow they are 
model.get_weights() and model.set_weights() 

o We can compress the data through libraries like gzip, zlib, or lz4 for 
improved serialisation performance. 

o If your model includes custom layers or data types, ensure they are 
serialisable. 

• Resource optimisation: Optimize the model for performance across clients with 
different computational capabilities. This can be done by applying 16-bit (FP16) 
or 8-bit (INT8) quantisation, eliminating weights that contribute least to the 
model's performance, choosing models designed for efficiency like MobileNet, 
SqueezeNet, or EfficientNet, or by using knowledge distillation. 

Step 5: Implement Federated Training logic 

Please revisit section 3.1 for a practical implementation of the training logic. The general 
steps are straightforward: 

• Develop a training loop within the federated learning framework, handling local 
epochs and batching.  

• Customise the server's aggregation method (e.g., FedAvg, FedProx) based on 
the project's convergence and performance requirements. 

• Utilise secure and efficient communication protocols like gRPC or WebSockets 
as your chosen framework supports. 

Step 6: Integrate privacy-preserving techniques 

This complex step will be addressed in more detail in the following section (section 4). 
The techniques we have currently in scope for Hereditary are: 

• Implementing noise mechanisms to model updates before sending them to the 
server. 

• Defining and monitoring the privacy budget (epsilon, delta) to balance privacy 
and model utility. 

• Dividing model parameters into shares distributed among clients or secure 
servers. 

• Ensuring computations are performed without decrypting the data. This is done 
by applying encryption that allows computations on ciphertexts, producing an 
encrypted result that, when decrypted, matches the result of operations 
performed on the plaintext. 
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4 Incorporating privacy mechanisms in Federated 
Learning Infrastructure 

Privacy is a fundamental concern in the HEREDITARY project because we deal with 
sensitive medical data. Federated learning (FL) allows model training across multiple 
decentralised devices or servers holding local data samples without exchanging them. 
However, even in FL, unintended information leakage through model updates is risky. To 
mitigate these risks, we integrate various privacy-enhancing techniques into our 
federated learning infrastructure (Kairouz2021). These techniques include differential 
privacy (DP), secure multiparty computation (SMPC), and homomorphic encryption 
(HE). They help ensure compliance with data protection regulations like GDPR and 
HIPAA, safeguarding patient confidentiality throughout the model training process. 

4.1 Introduction to privacy in Federated Learning 
Federated learning enables collaborative model training while keeping data localised, 
essential for maintaining sensitive medical records' privacy. Despite this advantage, 
model updates transmitted between clients and servers can inadvertently leak 
information about the underlying data. To address this concern, we incorporate advanced 
privacy mechanisms into our FL infrastructure, ensuring that individual data points 
cannot be reconstructed or inferred from shared information. 

4.2 Implementing Differential Privacy using Flower 
Differential privacy (DP) provides a mathematical framework to quantify and control the 
privacy loss incurred when computing sensitive data. By adding controlled noise to the 
model updates, DP ensures that the inclusion or exclusion of a single data point does 
not significantly affect the computation's output, thereby protecting individual privacy. 

Implementing DP in federated learning involves several critical steps: 

1. Understanding the complexity of setting privacy parameters 

Setting appropriate values for the privacy parameters epsilon (ε) and delta (δ) is 
crucial but challenging. These parameters control the trade-off between privacy and 
model utility: 

o Epsilon (ε) represents the privacy budget. A smaller ε provides 
stronger privacy guarantees but may reduce model accuracy. 

o Delta (δ) represents the probability that the privacy guarantee does 
not hold. It is usually set to be less than the inverse of the dataset 
size. 

Determining suitable values for ε and δ involves: 

o Data sensitivity assessment involves evaluating the sensitivity of the 
medical data, considering factors like potential harm from disclosure 
and data uniqueness. 

o Consulting legal requirements and guidelines may specify acceptable 
ranges for ε and δ. 
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o Investigate using methods like the Privacy Loss Distribution (PLD) or 
Moments Accountant to compute the cumulative privacy loss over 
multiple training iterations. 

o Conducting experiments to observe the impact of different ε and δ 
values on model performance and privacy, aiming for a balance that 
meets project requirements. 

 

2. Integrating DP into the training process 

To incorporate differential privacy into our federated learning system using 
Flower, we modify the client-side code to add noise to the model updates. Flower 
supports DP through its built-in mechanisms, allowing clients to perturb their 
updates before sending them to the server. An example implementation can be 
found in the mock_dp.py file in the central repository. 

# Example using PyTorch and Opacus library 

import torch 

from opacus import PrivacyEngine 

 

model = ...  # Your model 

optimizer = ...  # Your optimizer 

data_loader = ...  # Your data loader 

 

privacy_engine = PrivacyEngine( 

    model, 

    batch_size=batch_size, 

    sample_size=len(data_loader.dataset), 

    alphas=[10, 100], 

    noise_multiplier=noise_multiplier, 

    max_grad_norm=max_grad_norm, 

) 

privacy_engine.attach(optimizer) 

 

3. Configuring the server for DP 

On the server side, we ensure that the aggregation process accommodates the 
differentially private updates from the clients. The server must coordinate and 
enforce differential privacy across all clients by: 
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• Ensuring all clients adhere to the agreed-upon DP parameters. 

• Using techniques that prevent the server from inferring individual client 
updates. 

 

4. Monitoring and adjusting privacy levels 

It is essential to track the cumulative privacy loss throughout training and adjust 
parameters as needed. This involves keeping a record of the privacy budget 
consumed during training and changing the noise multiplier based on training 
progress and privacy loss. 

 

4.3 Exploring additional privacy mechanisms 
While differential privacy is a key component of our privacy strategy, we are also 
exploring other techniques to enhance security in specific scenarios. 

Secure multiparty computation (SMPC) 

Secure multiparty computation allows multiple parties to jointly compute a function over 
their inputs while keeping those inputs private. Using SMPC, we can calculate shared 
data without exposing the underlying values. We utilise PySyft to facilitate SMPC in our 
infrastructure. For example, model parameters can be split into shares and distributed 
among parties. Operations are then performed on these shares without revealing the 
underlying data. 

 

# PySyft SMPC example 

import syft as sy 

# Assume alice and bob are virtual workers 

alice = sy.VirtualWorker(hook, id="alice") 

bob = sy.VirtualWorker(hook, id="bob") 

# Secret sharing the data 

shared_data = data.share(alice, bob) 

# Operations can now be performed on shared_data 

 

Homomorphic encryption (HE) 

Homomorphic encryption allows computations to be performed directly on encrypted 
data without decryption. Although we have yet to fully integrate HE, we are investigating 
its potential use to enhance privacy in our federated learning system. We can ensure 
that sensitive information remains confidential even during processing by applying 
encryption schemes like Paillier (Paillier1997) or CKKS (Cheon2017) to model updates. 
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However, HE introduces challenges such as computational overhead and 
implementation complexity. We assess the feasibility of integrating HE without 
significantly impacting training times or disrupting existing machine learning frameworks. 

4.4 Practical considerations and challenges 
Implementing privacy-preserving techniques in federated learning brings several 
practical challenges that must be addressed to ensure the success of the HEREDITARY 
project.  

Techniques like DP, SMPC, and HE can introduce computational and communication 
overheads. For instance, adding noise in DP or performing cryptographic operations in 
SMPC and HE increases the computational load on clients and servers. This can be 
particularly challenging for clients with limited hardware capabilities. These issues can 
be mitigated by utilising efficient algorithms and libraries optimised for performance, 
taking advantage of them, and distributing the computational load where possible to 
improve efficiency. In the case of DP, increased computational requirements may limit 
hardware availability. We are carefully balancing the level of privacy with the 
computational resources required. As participating medical centres grow, maintaining 
efficiency and privacy becomes more complex. Scalability challenges include managing 
increased communication overhead and ensuring consistent performance across 
diverse hardware environments. We plan to address scalability by implementing 
hierarchical federated learning and organising clients into clusters or groups to reduce 
the load on the central server and improve communication efficiency. 

Our privacy measures are designed to comply with data protection regulations such as 
GDPR and HIPAA. Ensuring legal and ethical compliance is essential for the project's 
success. 

To achieve this, we are: 

• Conducting legal reviews by consulting with legal teams to validate compliance 
with relevant regulations. 

• By seeking guidance on ethical considerations related to data usage and privacy. 

4.5 Federated Analytics with Flower and PySyft 
In this section we will briefly describe our approach to achieve federated analytics 
through Flower and PySyft.  

4.5.1 Federated Analytics using Flower 
Federated analytics allows for data analysis across distributed datasets without 
centralising the data. Using Flower, federated analytics can be achieved by leveraging 
the framework’s flexible aggregation methods.  

An example can be found in federated_analytics_client.py.  

• Each client loads local data using the FetsDataProvider.  
• Clients perform local analysis (in this case, calculating the mean of a feature 

column) and send aggregated results (e.g., the regional mean) to the server.  
• The server collects local analytics results from clients and aggregates them using 

a weighted average.  
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Federated analytics does not involve training; it focuses on collecting aggregated data 
insights without sharing the raw data.  

4.5.2 Federated Analytics using PySyft 
PySyft enables secure federated analytics through privacy-preserving techniques like 
SMPC. This allows data to be analysed and decentralised while keeping individual data 
points secure.  

• An example can be found in the federate_analytics_client_pysyft.py.          
• The encrypted sums are aggregated to compute a global sum and global mean, 

ensuring no client’s raw data is exposed.  
• The final result is decrypted and returned in clear text for the aggregated result.  

This implementation ensures secure federated analytics through PySyft’s SMPC, 
maintaining data privacy while enabling data aggregation. 

4.6 Future work and enhancements 
We plan to continue exploring advanced privacy techniques and rigorously test our 
implementations to ensure robust security and compliance. 
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5 Setting up the Federated Learning infrastructure on 
your local computer 

5.1 Introduction 
Setting up the federated learning infrastructure on a local machine allows you to 
experiment with the codebase, run simulations, and contribute to the project's 
development. To get everyone started, we had some online consultations and conducted 
an in-person workshop with the consortium members, using both EU and US-based 
servers to ensure broad accessibility and collaboration. 

This section provides a step-by-step guide to setting up the infrastructure locally, 
including running the code using Docker for easy deployment. The codebase is available 
on GitHub, and we will reference specific repositories and files that you will need to clone 
and execute. 

5.2 Prerequisites 
Before setting up the environment, ensure that your system meets the following 
prerequisites: 

• Operating System: Linux, macOS, or Windows with WSL2 

• Python: Version 3.7 or higher 

• Docker: Installed and running (Docker Desktop for Windows and macOS) 

• Git: Installed and configured for cloning repositories 

5.3 Cloning the repository 
Begin by cloning the Hereditary project repository from GitHub:  

 

git clone https://github.com/sara-nl/Hereditary.git 

 

This repository contains all the necessary code for the federated learning setup, including 
server and client implementations and specific datasets like CIFAR and Medical MNIST. 

5.4 Running the Federated Learning setup with Docker 
We have provided Docker configurations to simplify the setup process. Docker 
containers ensure that the environment is consistent across different systems, reducing 
the chances of compatibility issues. 

1. Navigate to the root directory of the cloned repository and run  

docker-compose build 

This command creates the necessary Docker images for the server and client 
components and pulls them in depending on the environment. 

https://github.com/sara-nl/Hereditary.git%60
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2. To start the server, run the following command: 

docker-compose up server 

This launches the federated learning server using Flower, configured to handle 
multiple client requests. 

3. To start one or more clients, use the following command: 

docker-compose up client 

You can run multiple client instances by repeating this command in separate 
terminal windows or by scaling the Docker service:  

docker-compose upscale client=3 

This command starts three client instances connected to the server for federated 
learning. 

4. Docker Compose displays logs in the terminal, allowing you to monitor the server 
and client interactions. You can also use Docker’s built-in commands to view logs 
for specific services: `  

docker logs <service_name> 

5.5 Running inference 
Once the training is complete, you can run inference on the trained models locally: 

1. The trained model will be saved on the server container. You can access it using 
Docker’s file system commands or configuring a shared volume during the setup. 

2. Use the following command to run the inference script:  

docker-compose run client python inference.py 

This script loads the trained model and run inference on a test dataset. 

5.6 Adjusting the codebase 
You can directly modify the files in the cloned repository if you need to adjust the 
codebase to work with different datasets or models. Critical files you might want to edit 
include: 

• client.py and server.py for basic federated learning setup 

• client_medical_mnist.py and server_medical_mnist.py for specialised 
datasets 

• flower_tutorial.py for examples and further customisation 

After making changes, rebuild the Docker images and restart the services: 

docker-compose build && docker-compose up 
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5.7 Workshops and consortium collaboration 
We have conducted two workshops to help consortium members set up and start working 
with the federated learning infrastructure.  

The first workshop was held in presence at HES-SO on 16 and 17 May 2024 with 
representatives from HES-SO, UNIPD, UCD, SURF, RUMC, AAU and ONTO. The 
second workshop was held online on 1 July 2024.  

These workshops covered: 

• Introduction to Federated Learning: Basic concepts and the rationale behind 
using frameworks like Flower and PySyft. 

• Setting up the environment: This section provides step-by-step guidance on 
setting up the environment, cloning the repository, and running the code locally. 

• Running distributed training: Demonstrations on how to run federated learning 
across EU and US-based servers, ensuring cross-border collaboration. 

• Hands-on sessions: Practical sessions where participants configured their 
environments, ran the provided code, and contributed to the project. 

 

  



 
 
 
 
 
 

 
 
DELIVERABLE 2.14 
27/09/2024, V1.5  GA 101137074    26 | 28 

6 REFERENCES 
The bibliographic entries are arranged in lexicographical order based on the key, following the APA style. 
This enables us to place the entries and citations in the table and text in any sequence, allowing for later 
sorting while ensuring consistency. 

Key Reference 

Beutel2020 

Beutel, D., Topal, T., Mathur, A., Qiu, X., Parcollet, T., & Zhao, Y. 
(2020). Flower: A friendly federated learning research framework. 
Proceedings of the 2020 IEEE International Conference on Big 
Data (Big Data), 1001–1010. 
https://doi.org/10.1109/BigData50022.2020.9377766  

Bonawitz2017 

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, 
H. B., Patel, S., & Song, S. (2017). Practical secure aggregation 
for federated learning on user-held data. Proceedings of the 2017 
ACM SIGSAC Conference on Computer and Communications 
Security (CCS '17), 1175–1191. 
https://doi.org/10.1145/3133956.3133982  

 

Cheon2017 

Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic 
encryption for arithmetic of approximate numbers. In T. Takagi & 
T. Peyrin (Eds.), Advances in Cryptology—ASIACRYPT 2017 (pp. 
409–437). Springer. https://doi.org/10.1007/978-3-319-70694-
8_15  

EUDAT2021 
EUDAT. (2021). B2SHARE: EUDAT's secure, reliable and trusted 
service for storing and sharing research data. 
https://b2share.eudat.eu 

Fowler2021 
Fowler, M. (2021). Data mesh: Principles and logical architecture. 
martinfowler.com. Retrieved from 
https://martinfowler.com/articles/data-mesh-principles.html 

 

Fuhrmann2006 
Fuhrmann, P., & German, V. (2006). dCache, Storage System for 
the Future. European Organization for Nuclear Research (CERN). 
https://dcache.org 

Geyer2017 

Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private 
federated learning: A client level perspective. Proceedings of the 
2017 IEEE International Conference on Privacy, Security, Risk 
and Trust (PASSAT '17), 216-227. 
https://doi.org/10.1109/PASSAT.2017.109  

iRODS 
Consortium2021 

iRODS: Integrated Rule-Oriented Data System (Version 4.2.10) 
[Software]. https://irods.org  

Jakubik2024 
Jakubik, J., Vössing, M., Kühl, N., Walk, J., & Satzger, G. (2024). 
Data-centric artificial intelligence. arXiv preprint 
arXiv:2212.11854v4. https://doi.org/10.48550/arXiv.2212.11854  

Kairouz2021 
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., 
Bhagoji, A. N., & Zhao, S. (2021). Advances and open problems 
in federated learning. Foundations and Trends® in Machine 
Learning, 14(1), 1–210. https://doi.org/10.1561/2200000083  

https://doi.org/10.1109/BigData50022.2020.9377766
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://martinfowler.com/articles/data-mesh-principles.html
https://dcache.org/
https://doi.org/10.1109/PASSAT.2017.109
https://irods.org/
https://doi.org/10.48550/arXiv.2212.11854
https://doi.org/10.1561/2200000083


 
 
 
 
 
 

 
 
DELIVERABLE 2.14 
27/09/2024, V1.5  GA 101137074    27 | 28 

Key Reference 

McMahan2017 

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & y Arcas, 
B. A. (2017). Communication-efficient learning of deep networks 
from decentralized data. Proceedings of the 20th International 
Conference on Artificial Intelligence and Statistics (AISTATS '17), 
1273-1282. https://arxiv.org/abs/1602.05629 

Miller2020 

Miller, A., Fritsch, L., Jepsen, T. H., Williams, J. E., & Guo, M. 
(2020). Secure multi-party computation in federated learning. 
Proceedings of the 2020 IEEE International Conference on Big 
Data (Big Data), 3197–3204. 
https://doi.org/10.1109/BigData50022.2020.9377857  

Paillier1997 
Paillier, P. (1999). Public-key cryptosystems based on composite 
degree residuosity classes. In J. Stern (Ed.), Advances in 
Cryptology—EUROCRYPT '99 (pp. 223–238). Springer. 
https://doi.org/10.1007/3-540-48910-X_16  

Ryffel2018 
Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert, 
D., & Passerat-Palmbach, J. (2018). A generic framework for 
privacy-preserving deep learning. arXiv preprint 
arXiv:1811.04017. https://arxiv.org/abs/1811.04017 

Ziller2018 

Ziller, M., Peters, A., & Wagner, M. (2018). Secure aggregation for 
federated learning using PySyft. Proceedings of the 2018 
International Conference on Privacy, Security, Risk and Trust 
(PASSAT '18), 412-422. 
https://doi.org/10.1109/PASSAT.2018.153  

 
  

https://arxiv.org/abs/1602.05629
https://doi.org/10.1109/BigData50022.2020.9377857
https://doi.org/10.1007/3-540-48910-X_16
https://arxiv.org/abs/1811.04017
https://doi.org/10.1109/PASSAT.2018.153


 
 
 
 
 
 

 
 
DELIVERABLE 2.14 
27/09/2024, V1.5  GA 101137074    28 | 28 

7 Annexes 
Number Name 
1 UNIPD Medical Server (Hardware Overview) 

2 UNITO HPC4AI System (Hardware Overview) 
3 SURF Snellius Supercomputing System (System Overview) 

4 RUMC computational resources (Hardware Overview) 
5 Codebase for the execution of federated learning methods 

 


