

Deliverable 2.14

Computing infrastructures

HetERogeneous sEmantic Data integratIon for the guT-bRain interplaY

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 3 | 28

EXECUTIVE SUMMARY
One of the main goals of the HEREDITARY project is establishing secure and scalable
computing infrastructures in local medical centres to support federated learning. These
infrastructures enable data processing and collaboration without centralising sensitive
data. These infrastructures include managed services, computational resources, and
storage facilities, ensuring medical centres can actively contribute to the federated
learning process while maintaining data privacy.

This deliverable's milestone is setting up the necessary computing and storage
infrastructures in medical centres, specifically at UCD, RUMC, UNITO, and UNIPD, and
testing the communication protocol that connects these centres to the federated learning
infrastructure. This deliverable will show that each medical centre is advancing toward
meeting these infrastructure goals and that initial communication protocols have been
tested and verified.

Task 2.6 aims to implement the federated learning infrastructure. However, in the context
of Deliverable D2.14, the critical objective is to establish computing infrastructures in
UCD, RUMC, UNITO, and UNIPD, ensuring that they have the necessary facilities to
host federated learning components, process their data locally, and communicate
securely with other partners.

We are reporting on the progress in setting up computing infrastructures at UCD, RUMC,
UNITO, and UNIPD, including:

• UCD, RUMC, and UNIPD have the required infrastructure in place.
• UNITO is in the process of acquiring the necessary infrastructure.
• Initial communication protocols have been tested between UCD, HES-SO,

RUMC, SURF, and UNIPD. Once their infrastructure is ready, further expansion
is planned for full collaboration with UNITO.

Additionally, the HES-SO workshop conducted earlier this year successfully
demonstrated communication between these medical centres, providing evidence of
networking and data-sharing capabilities in a federated learning environment.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 4 | 28

DOCUMENT INFORMATION
Deliverable ID D2.14

Deliverable Title Computing infrastructures

Work Package WP2

Lead Partner SURF

Due date 30.09.2024

Date of submission 27.09.2024

Type of deliverable OTHER

Dissemination level PU

AUTHORS
Name Organisation
Damian Podareanu (Author) SURF
Daniele Dell'Aglio (Reviewer) AAU
Anna Romanovych (Contributor) UNIPD
Gianmaria Silvello (Contributor) UNIPD

REVISION HISTORY
Version Date Author Document history/approvals

1.0 2/09/2024 Damian
Podareanu Initial deliverable version.

1.1 10/09/2024 Damian
Podareanu

Updated references, corrected
deliverables and task titles, added
additional information about the medical
center implementation.

1.1 19/09/2024 Daniele Dell’Aglio Provided revision of the version and left
feedback on the deliverable.

1.2 23/09/2024 Damian
Podareanu

Implemented the feedback from AAU
and UNITO. Clarified sections 2,3,4.
Added missing text and made grammar
corrections.

1.3 23/09/2024 Gianmaria
Silvello Overall revision and minor fixes.

1.4 24/09/2024 Anna
Romanovych Corrections of the format and annexes.

1.4 25/09/2024 Daniele Dell’Aglio Provided feedbacks on the revised
deliverables.

1.5 27/09/2024 Damian
Podareanu

Added RUMC hardware description,
minor formatting and referencing
corrections.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 5 | 28

Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. Neither the European Union nor the
granting authority can be held responsible for them.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 6 | 28

Contents
1 Introduction .. 10

1.1 Overview of the Federated Learning infrastructure 10
1.2 Objectives of Task 2.6 ... 10
1.3 Verification of milestone M4 - local computing infrastructures 11

2 Infrastructure design document .. 12
2.1 Architecture overview .. 12
2.2 Technical implementation progress and choices .. 12

2.2.1 Medical centre infrastructure setup progress .. 13
2.2.2 Framework selection ... 13
2.2.3 Server hosting ... 14
2.2.4 Communication protocol testing .. 14

3 Adapting the codebase for Federated Learning ... 15
3.1 Vanilla codebase vs. customised implementation ... 15

3.1.1 Vanilla Federated Learning implementation .. 15
3.1.2 Customised FeTS implementation .. 15

3.2 Adapting a codebase for Federated Learning ... 16
4 Incorporating privacy mechanisms in Federated Learning Infrastructure 18

4.1 Introduction to privacy in Federated Learning ... 18
4.2 Implementing Differential Privacy using Flower .. 18
4.3 Exploring additional privacy mechanisms ... 20
4.4 Practical considerations and challenges ... 21
4.5 Federated Analytics with Flower and PySyft ... 21

4.5.1 Federated Analytics using Flower ... 21
4.5.2 Federated Analytics using PySyft ... 22

4.6 Future work and enhancements ... 22
5 Setting up the Federated Learning infrastructure on your local computer ... 23

5.1 Introduction ... 23
5.2 Prerequisites ... 23
5.3 Cloning the repository ... 23
5.4 Running the Federated Learning setup with Docker 23
5.5 Running inference ... 24
5.6 Adjusting the codebase ... 24
5.7 Workshops and consortium collaboration ... 25

6 REFERENCES .. 26

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 7 | 28

7 Annexes ... 28

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 8 | 28

LIST OF ABBREVIATIONS

Abbreviation Expanded form
AAU Aalborg University

AI Artificial Intelligence
API Application Programming Interface

BMC Baseboard Management Controller
Ceph A distributed storage system

CPU Central Processing Unit
CIFAR Canadian Institute for Advanced Research (dataset)

DP Differential Privacy
ECC Error-Correcting Code

EU European Union
EUDAT European Data Infrastructure

FeTS Federated Tumor Segmentation
FL Federated Learning

Flower A Federated Learning Framework

GDPR General Data Protection Regulation
GiB Gibibyte

GPU Graphics Processing Unit
GPFS General Parallel File System

HBM2 High Bandwidth Memory 2
HE Homomorphic Encryption

HES-SO University of Applied Sciences and Arts Western Switzerland
HIPAA Health Insurance Portability and Accountability Act

HPC High-Performance Computing
HPC4AI High-Performance Computing for Artificial Intelligence

iRODS Integrated Rule-Oriented Data System
ML Machine Learning

MLflow Machine Learning Workflow (Open-source platform for ML lifecycle)

MNIST Modified National Institute of Standards and Technology (dataset)
NVMe Non-Volatile Memory Express

PySyft A Python Library for Secure and Private Deep Learning
RAM Random Access Memory

RUMC Radboud University Medical Center
SMPC Secure Multiparty Computation

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 9 | 28

Abbreviation Expanded form
SSD Solid-State Drive

SURF Dutch National Supercomputing Center
SFP+ Enhanced Small Form-factor Pluggable

TiB Tebibyte
UNIPD University of Padua (Università degli Studi di Padova)

UNITO University of Turin (Università degli Studi di Torino)
UCD University of Colorado Denver

US United States

vCPU Virtual Central Processing Unit
W&B Weights & Biases (Machine Learning Experiment Tracking)

WSL2 Windows Subsystem for Linux 2

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 10 | 28

1 Introduction
One of the main goals of the HEREDITARY project is building a cutting-edge federated
learning and analytics infrastructure that leverages secure (super)computing
environments to enable distributed machine learning across multiple clients, ensuring
data privacy and model security. This infrastructure facilitates collaborative learning while
preventing data centralisation, which is particularly important when working with
sensitive medical data.

This report describes the current effort in setting up the federated learning infrastructure
defined in Task 2.6.

1.1 Overview of the Federated Learning infrastructure
This infrastructure supports data-centric and model-centric federated learning
approaches (Jakubik2024), accommodating various stakeholders with differing
computational resources and privacy requirements. Clients can process data locally
while utilising the computational power of secure supercomputing environments to
perform large-scale machine learning on privatised and transferable data. The federated
infrastructure employs advanced privacy-preserving techniques, such as differential
privacy and homomorphic encryption, ensuring that data confidentiality is maintained
throughout the learning process.

The infrastructure also provides a protected communication channel between clients and
the central server, enabling secure model updates and ensuring that even clients with
fewer resources can participate fully in the training process.

1.2 Objectives of Task 2.6
The primary objective of Task 2.6 is to implement a federated learning infrastructure that
is efficient, scalable, and capable of maintaining the privacy and security of data and
models across a wide range of clients. To achieve this, several critical infrastructure
components have been designed and tested, including:

• Data management to ensure secure data preprocessing, storage, and retrieval
while adhering to privacy standards.

• Model management to facilitate efficient, reproducible training, validation, and
deployment of machine learning models using frameworks like TensorFlow and
PyTorch.

• Communication to establish secure communication between clients and the
central server, using technologies such as gRPC to protect data and model
transmissions (Beutel2020).

• Resource management to optimises resource allocation, load balancing, and
fault tolerance, ensuring that clients with varying computational resources can
contribute to the training process (Geyer2017).

The federated learning infrastructure is designed to scale across diverse computing
environments, integrating on-premises infrastructure at medical centres with centralised
computational resources provided by secure supercomputing platforms like SURF.
Privacy-enhancing mechanisms such as differential privacy, Secure MultiParty

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 11 | 28

Computation (SMPC) (Miller2020), and homomorphic encryption are key to maintaining
confidentiality throughout training.

1.3 Verification of milestone M4 - local computing infrastructures
The M4 milestone coincides with deliverable 2.14 from Task 2.6, which details the
successful establishment of local infrastructures and testing communication protocols
between the UNITO, UCD, RUMC, UNIPD, and SURF centres involved in federated
learning. As of month 9, the HEREDITARY project has significantly progressed in
developing the federated learning infrastructure. Key achievements include the design
of core components, initial testing in sandbox environments, and the development of
guidelines for future implementation phases. You can also find details of existing
hardware in Annexes 1, 2, 3 and 4.

Certain aspects of the infrastructure still need to be put under active development. Efforts
have been made to establish sandbox environments for early testing and to provide
guidelines for setting up local infrastructures at medical centres. Communication
protocols between medical partners are also being tested to ensure smooth collaboration
and data exchange within the federated learning system.

The formal verification of Milestone M4 involves two key objectives:

• Setup of computing infrastructures. This includes the completion of computing
and storage setups at the medical centres. These infrastructures are required
to support federated learning by enabling local data processing, secure model
training, and privacy-preserving computations. Centres like UCD, RUMC, and
UNIPD have completed their setups, and UNITO is finalising them. These
centres have high-performance servers equipped with GPUs to handle the
heavy computational loads required for medical data processing.

• Testing of communication protocols. This ensures seamless data exchange
between medical centres and the central federated learning server. This testing
was conducted through a workshop, where UCD, AAU, RUMC, HES-SO,
SURF, and UNIPD participated in a successful simulation of networking and
data-sharing processes. The protocol test suggests the infrastructure
facilitates secure, real-time communication during federated learning tasks.

The progress made so far in setting up the infrastructure, as outlined in Deliverable 2.14,
verifies Milestone M4. The upcoming focus will be on completing the infrastructure setup
at all medical centres, further refining the communication and resource management
systems, and continuing to test and integrate advanced privacy mechanisms to ensure
compliance with privacy regulations like the GDPR.

Annex 5 presents the codebase to run federated learning methods within the
HEREDITARY infrastructure and the code adopted to run the communication tests within
the consortium.

This deliverable outlines the progress made in setting up the computing infrastructures
at medical centres (UCD, RUMC, UNIPD, and ongoing work at UNITO) and testing the
communication protocols that enable secure collaboration between these centres. The
infrastructure setup is crucial for allowing the federated learning processes required by

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 12 | 28

the HEREDITARY project, and future work will focus on expanding the infrastructure's
reach and improving its efficiency and security.

2 Infrastructure design document
This section presents the design and implementation of the federated learning
infrastructure for the HEREDITARY project. The infrastructure has been designed to
balance flexibility, scalability, and security while maintaining compliance with data privacy
regulations. The document outlines the core elements of the system architecture,
emphasising the integration of key technologies for managing data, models,
communication, and resources.

This section provides an overview of the architectural components and covers the current
implementation status across participating medical centres, highlighting progress made
and ongoing efforts. Finally, it discusses the rationale behind the selected frameworks
and technologies, ensuring the infrastructure meets the complex needs of federated
learning while maintaining robust security and privacy.

2.1 Architecture overview
The architecture of the HEREDITARY federated learning infrastructure is designed to be
modular, flexible, and secure. It consists of several core components, each responsible
for different aspects of the federated learning process:

• The data management infrastructure handles data preprocessing, storage, and
retrieval, ensuring data privacy and security through technologies like iRODS
(iRODS Consortium2021), dCache (Fuhrmann2006), and b2share
(EUDAT2021), as well as the built-in capabilities of federated learning
frameworks. Adopting a data mesh approach (Fowler2021), the infrastructure
decentralises data management by embedding computational policies directly
within the federated system (McMahan2017, Ryffel2018), making data
management a first-class concern. This enables each data domain to manage its
data, ensuring scalability and governance.

• The model management infrastructure supports efficient and reproducible
training, validation, and deployment of models using machine learning
frameworks like TensorFlow and PyTorch through (self-)hosted tools like MLflow.

• The communication infrastructure ensures secure and efficient communication
between clients and the central server, utilising technologies such as gRPC.

• The resource management infrastructure manages load balancing, resource
allocation, and fault tolerance, integrating tools like Flower.io and PySyft
(Ziller2018).

2.2 Technical implementation progress and choices
This section outlines the progress in implementing the federated learning infrastructure
at various medical centres, highlighting the setup status and the technical choices that
guide the infrastructure's development. The decisions surrounding framework selection,

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 13 | 28

server hosting, and communication protocols are discussed, emphasising the project's
focus on privacy, scalability, and flexibility. Additionally, this section covers ongoing
infrastructure efforts, such as communication tests and integration of advanced privacy-
preserving technologies.

2.2.1 Medical centre infrastructure setup progress
This section briefly overviews month 9's progress in implementing local infrastructures.

2.2.1.1 UCD: completed setup
UCD completed the setup of the necessary computing and storage infrastructure,
allowing it to contribute fully to the federated learning infrastructure.

The infrastructure includes high-performance computing (HPC) capabilities for local data
processing and secure communication channels connecting to the central server.

2.2.1.2 UNIPD: completed setup
UNIPD also completed its infrastructure setup with computational and storage facilities
like UCD.

UNIPD participated in communication tests during the HES-SO workshop, confirming
that its data can be securely integrated into the federated learning infrastructure.

2.2.1.3 RUMC: completed setup
RUMC is in the process of establishing its infrastructure for federated learning. For local
experiments, model development, and analytics, RUMC is utilising several computing
resources:

• The DIAG group at RUMC is using the SOL cluster for local experiments and
model development. The SOL cluster is designed for medical data processing
and machine learning tasks and offers a robust computing environment.

• This cluster is dedicated to fMRI-related experiments, providing RUMC with the
necessary computational resources for medical imaging tasks.

For federated learning, RUMC will use an Azure node provided by RTC Data
Stewardship, the details of which are still being finalised. Additionally, RUMC plans to
utilise the Snellius supercomputer for large-scale federated learning experiments.

RUMC will participate in federated learning communication tests once the infrastructure
setup is complete.

2.2.1.4 UNITO: in progress
UNITO is in the process of acquiring the necessary computing and storage infrastructure.
Progress has been made to ensure that their local data can be processed securely and
they can participate fully in federated learning.

Once the infrastructure is in place, UNITO will join the ongoing communication tests with
other medical centres.

2.2.2 Framework selection
We have chosen to implement our federated learning infrastructure using the Flower
framework due to its ease of implementation, flexibility, and robust support for various
machine learning libraries. Flower's framework-agnostic (Beutel2020) nature allows us
to easily integrate with existing codebases and tailor the infrastructure to specific needs.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 14 | 28

We considered several frameworks based on model support, aggregation methods,
privacy functionality, technical complexity, and maintainability. We analysed Nvidia flare,
Flower, Pysyft, Substra, Vantage6, Openfl, FedML, and HeteroFL based on these
dimensions.

As a fallback, we have integrated PySyft, a framework known for its robust privacy
features, including secure multiparty computation and differential privacy. This fallback
provides additional privacy assurances for scenarios requiring heightened security
measures.

We’ve extensively searched multiple frameworks to support this choice, resulting in a
score based on support for models, aggregation (Bonawitz2017), privacy, technical
complexity , and maintainability.

This choice also sets up the communication process in this case, so gRPC (Flower),
since we foresee a need for efficiency and scalability, having the option to fallback onto
WebSockets (PySyft) if the need arises for advanced privacy-preserving protocols like
SMPC and homomorphic encryption.

2.2.3 Server hosting
The central federated learning server is hosted at SURF, taking advantage of this
environment's computational resources, security infrastructure, and connectivity. There
are several servers hosted in a virtualised environment. There is a Flower server – client,
MLflow, and Wights&Biases (W&B) servers.

The medical centres run their versions of these instances as the deployment process
and configuration are available.

2.2.4 Communication protocol testing
We conducted a workshop at HES-SO to test the communication protocols, where UCD,
HES-SO, SURF, RUMC, and UNIPD participated in networking and data-sharing
simulations. This workshop demonstrated that the medical centres could securely
exchange model updates and data within the federated learning framework.

Although UNITO was separate from the initial workshop due to ongoing infrastructure
acquisition, they will be included in future communication tests once their setup is
complete.

Similarly, we will investigate integration with RUMC cloud-based resources, which,
although supported by our current infrastructure solution, wasn’t tested during the
workshop.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 15 | 28

3 Adapting the codebase for Federated Learning
In this section, we delve into adapting existing machine learning codebases for federated
learning. We compare a vanilla federated learning implementation with a customised
solution tailored for specific applications like the FeTS (Federated Tumor Segmentation)
project. We used the FETS project to illustrate code changes needed and tradeoffs. This
knowledge will be applied to the codebase produced by the Hereditary consortium.
Additionally, we provide a step-by-step guide to assist developers in modifying their
codebases to support federated learning, ensuring compatibility, efficiency, and privacy
compliance.

3.1 Vanilla codebase vs. customised implementation
Adapting a codebase for federated learning can involve using a standard, out-of-the-box
implementation or developing a highly customised solution that meets specific project
requirements.

3.1.1 Vanilla Federated Learning implementation
The vanilla implementation of federated learning using Flower involves basic server-
client communication. Each client processes its data locally and sends updates to the
central server.

The medical centres with infrastructure in place (UCD, UNIPD) are currently operating
with a simple version of this setup to ensure communication channels are secure and
data is processed correctly before advancing to more complex tasks.

This implementation involves setting up a central server that coordinates training across
multiple client nodes, each of which processes its data locally. The basic steps are as
follows:

• The server orchestrates the training process. It initialises the model, receives
model updates from the clients, aggregates these updates, and sends the
aggregated model back to the clients. (This is server.py in the GitHub codebase)

• Each client trains the model on its local data and periodically sends updates to
the server. The client code is generally straightforward, focusing on loading the
data, performing local training, and communicating with the server. (This is
client.py in the GitHub codebase)

3.1.2 Customised FeTS implementation
We implemented a solution for the FeTS (Federated Tumor Segmentation) project to
validate the infrastructure beyond basic tutorial support. This requires handling
specialised medical data. We ensured the infrastructure could support complex model
architectures and enhanced privacy features. We also provide these changes for the toy
example for the Medical MNIST dataset. This involves customising the data loading and
preprocessing steps to ensure compatibility with the federated learning setup. (This is
fets_data_provider.py in the GitHub codebase)

The models used in FeTS are tailored for medical image analysis and require
adjustments to the training and evaluation processes. (The entire codebase is in the

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 16 | 28

vit_example; additional examples are provided in the central repository through the
*_medical_mnist.py examples.)

3.2 Adapting a codebase for Federated Learning
This section provides a step-by-step methodology for adapting a non-federated learning
codebase to meet specific project needs, including data handling, model customisation,
and privacy integration.

Step 1: Analyze requirements

• Evaluate the data characteristics and understand the nature of your data,
including format, size, and preprocessing needs.

• Asses model complexity and whether your current model architecture suits
federated learning or needs adjustments.

• Identify privacy needs, determining the level of confidentiality required based
on regulations and data sensitivity.

Step 2: Select an appropriate Federated Learning framework

For framework evaluation and selection, compare Flower, PySyft, and NVIDIA FLARE
based on compatibility, scalability, and privacy features. For instance, Flower offers
flexibility and ease of use, while PySyft provides advanced privacy mechanisms.

Step 3: Modify Data Handling Procedures

• Local data processing ensures that all data preprocessing and augmentation
occur locally for each client to maintain data privacy.

• Adapt data loaders to handle local datasets, considering variations in data
formats and structures across clients.

• Implement strategies to address non-independent and identically distributed
(non-IID) data scenarios.

Step 4: Adapt the model architecture

• Model refactoring: Modify the model to be compatible with federated learning,
which may involve layers, activation functions, or parameter initialisation
changes.

o Batch Normalization layers rely on batch statistics, which can vary
significantly across clients due to non-IID (Independent and Identically
Distributed) data. This can lead to model divergence. BatchNorm layers
can be fixed by replacing them with GroupNorm or LayerNorm layers,
which use instance-level statistics instead of batch-level statistics.

o Clients with limited computational resources may need help with complex
models. Reducing the number of layers, neurons, or filters can be
beneficial. Use depthwise separable convolutions or reduce the size of
fully connected layers.

o Use activation functions that are efficient and widely supported, like
ReLU, Leaky ReLU, or ELU.

o Convergence must ensure all clients start training using the same initial
model parameters. It is advisable to use a common initialisation method
and, if necessary, a fixed random seed.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 17 | 28

o Some federated learning frameworks may have specific requirements for
model definitions. In Hereditary, we decided that Flower and PySyft would
cover all our existing and future models.

o It’s important to ensure your model does not rely on global states that
could differ between clients. So, it’s advisable to encapsulate all model-
related variables within the model class or client instance.

• Model serialisation: Implement serialisation methods for transmitting model
parameters between the server and clients. For PyTorch this would be
state_dict() and load_state_dict(), while for TensorFlow they are
model.get_weights() and model.set_weights()

o We can compress the data through libraries like gzip, zlib, or lz4 for
improved serialisation performance.

o If your model includes custom layers or data types, ensure they are
serialisable.

• Resource optimisation: Optimize the model for performance across clients with
different computational capabilities. This can be done by applying 16-bit (FP16)
or 8-bit (INT8) quantisation, eliminating weights that contribute least to the
model's performance, choosing models designed for efficiency like MobileNet,
SqueezeNet, or EfficientNet, or by using knowledge distillation.

Step 5: Implement Federated Training logic

Please revisit section 3.1 for a practical implementation of the training logic. The general
steps are straightforward:

• Develop a training loop within the federated learning framework, handling local
epochs and batching.

• Customise the server's aggregation method (e.g., FedAvg, FedProx) based on
the project's convergence and performance requirements.

• Utilise secure and efficient communication protocols like gRPC or WebSockets
as your chosen framework supports.

Step 6: Integrate privacy-preserving techniques

This complex step will be addressed in more detail in the following section (section 4).
The techniques we have currently in scope for Hereditary are:

• Implementing noise mechanisms to model updates before sending them to the
server.

• Defining and monitoring the privacy budget (epsilon, delta) to balance privacy
and model utility.

• Dividing model parameters into shares distributed among clients or secure
servers.

• Ensuring computations are performed without decrypting the data. This is done
by applying encryption that allows computations on ciphertexts, producing an
encrypted result that, when decrypted, matches the result of operations
performed on the plaintext.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 18 | 28

4 Incorporating privacy mechanisms in Federated
Learning Infrastructure

Privacy is a fundamental concern in the HEREDITARY project because we deal with
sensitive medical data. Federated learning (FL) allows model training across multiple
decentralised devices or servers holding local data samples without exchanging them.
However, even in FL, unintended information leakage through model updates is risky. To
mitigate these risks, we integrate various privacy-enhancing techniques into our
federated learning infrastructure (Kairouz2021). These techniques include differential
privacy (DP), secure multiparty computation (SMPC), and homomorphic encryption
(HE). They help ensure compliance with data protection regulations like GDPR and
HIPAA, safeguarding patient confidentiality throughout the model training process.

4.1 Introduction to privacy in Federated Learning
Federated learning enables collaborative model training while keeping data localised,
essential for maintaining sensitive medical records' privacy. Despite this advantage,
model updates transmitted between clients and servers can inadvertently leak
information about the underlying data. To address this concern, we incorporate advanced
privacy mechanisms into our FL infrastructure, ensuring that individual data points
cannot be reconstructed or inferred from shared information.

4.2 Implementing Differential Privacy using Flower
Differential privacy (DP) provides a mathematical framework to quantify and control the
privacy loss incurred when computing sensitive data. By adding controlled noise to the
model updates, DP ensures that the inclusion or exclusion of a single data point does
not significantly affect the computation's output, thereby protecting individual privacy.

Implementing DP in federated learning involves several critical steps:

1. Understanding the complexity of setting privacy parameters

Setting appropriate values for the privacy parameters epsilon (ε) and delta (δ) is
crucial but challenging. These parameters control the trade-off between privacy and
model utility:

o Epsilon (ε) represents the privacy budget. A smaller ε provides
stronger privacy guarantees but may reduce model accuracy.

o Delta (δ) represents the probability that the privacy guarantee does
not hold. It is usually set to be less than the inverse of the dataset
size.

Determining suitable values for ε and δ involves:

o Data sensitivity assessment involves evaluating the sensitivity of the
medical data, considering factors like potential harm from disclosure
and data uniqueness.

o Consulting legal requirements and guidelines may specify acceptable
ranges for ε and δ.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 19 | 28

o Investigate using methods like the Privacy Loss Distribution (PLD) or
Moments Accountant to compute the cumulative privacy loss over
multiple training iterations.

o Conducting experiments to observe the impact of different ε and δ
values on model performance and privacy, aiming for a balance that
meets project requirements.

2. Integrating DP into the training process

To incorporate differential privacy into our federated learning system using
Flower, we modify the client-side code to add noise to the model updates. Flower
supports DP through its built-in mechanisms, allowing clients to perturb their
updates before sending them to the server. An example implementation can be
found in the mock_dp.py file in the central repository.

Example using PyTorch and Opacus library

import torch

from opacus import PrivacyEngine

model = ... # Your model

optimizer = ... # Your optimizer

data_loader = ... # Your data loader

privacy_engine = PrivacyEngine(

 model,

 batch_size=batch_size,

 sample_size=len(data_loader.dataset),

 alphas=[10, 100],

 noise_multiplier=noise_multiplier,

 max_grad_norm=max_grad_norm,

)

privacy_engine.attach(optimizer)

3. Configuring the server for DP

On the server side, we ensure that the aggregation process accommodates the
differentially private updates from the clients. The server must coordinate and
enforce differential privacy across all clients by:

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 20 | 28

• Ensuring all clients adhere to the agreed-upon DP parameters.

• Using techniques that prevent the server from inferring individual client
updates.

4. Monitoring and adjusting privacy levels

It is essential to track the cumulative privacy loss throughout training and adjust
parameters as needed. This involves keeping a record of the privacy budget
consumed during training and changing the noise multiplier based on training
progress and privacy loss.

4.3 Exploring additional privacy mechanisms
While differential privacy is a key component of our privacy strategy, we are also
exploring other techniques to enhance security in specific scenarios.

Secure multiparty computation (SMPC)

Secure multiparty computation allows multiple parties to jointly compute a function over
their inputs while keeping those inputs private. Using SMPC, we can calculate shared
data without exposing the underlying values. We utilise PySyft to facilitate SMPC in our
infrastructure. For example, model parameters can be split into shares and distributed
among parties. Operations are then performed on these shares without revealing the
underlying data.

PySyft SMPC example

import syft as sy

Assume alice and bob are virtual workers

alice = sy.VirtualWorker(hook, id="alice")

bob = sy.VirtualWorker(hook, id="bob")

Secret sharing the data

shared_data = data.share(alice, bob)

Operations can now be performed on shared_data

Homomorphic encryption (HE)

Homomorphic encryption allows computations to be performed directly on encrypted
data without decryption. Although we have yet to fully integrate HE, we are investigating
its potential use to enhance privacy in our federated learning system. We can ensure
that sensitive information remains confidential even during processing by applying
encryption schemes like Paillier (Paillier1997) or CKKS (Cheon2017) to model updates.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 21 | 28

However, HE introduces challenges such as computational overhead and
implementation complexity. We assess the feasibility of integrating HE without
significantly impacting training times or disrupting existing machine learning frameworks.

4.4 Practical considerations and challenges
Implementing privacy-preserving techniques in federated learning brings several
practical challenges that must be addressed to ensure the success of the HEREDITARY
project.

Techniques like DP, SMPC, and HE can introduce computational and communication
overheads. For instance, adding noise in DP or performing cryptographic operations in
SMPC and HE increases the computational load on clients and servers. This can be
particularly challenging for clients with limited hardware capabilities. These issues can
be mitigated by utilising efficient algorithms and libraries optimised for performance,
taking advantage of them, and distributing the computational load where possible to
improve efficiency. In the case of DP, increased computational requirements may limit
hardware availability. We are carefully balancing the level of privacy with the
computational resources required. As participating medical centres grow, maintaining
efficiency and privacy becomes more complex. Scalability challenges include managing
increased communication overhead and ensuring consistent performance across
diverse hardware environments. We plan to address scalability by implementing
hierarchical federated learning and organising clients into clusters or groups to reduce
the load on the central server and improve communication efficiency.

Our privacy measures are designed to comply with data protection regulations such as
GDPR and HIPAA. Ensuring legal and ethical compliance is essential for the project's
success.

To achieve this, we are:

• Conducting legal reviews by consulting with legal teams to validate compliance
with relevant regulations.

• By seeking guidance on ethical considerations related to data usage and privacy.

4.5 Federated Analytics with Flower and PySyft
In this section we will briefly describe our approach to achieve federated analytics
through Flower and PySyft.

4.5.1 Federated Analytics using Flower
Federated analytics allows for data analysis across distributed datasets without
centralising the data. Using Flower, federated analytics can be achieved by leveraging
the framework’s flexible aggregation methods.

An example can be found in federated_analytics_client.py.

• Each client loads local data using the FetsDataProvider.
• Clients perform local analysis (in this case, calculating the mean of a feature

column) and send aggregated results (e.g., the regional mean) to the server.
• The server collects local analytics results from clients and aggregates them using

a weighted average.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 22 | 28

Federated analytics does not involve training; it focuses on collecting aggregated data
insights without sharing the raw data.

4.5.2 Federated Analytics using PySyft
PySyft enables secure federated analytics through privacy-preserving techniques like
SMPC. This allows data to be analysed and decentralised while keeping individual data
points secure.

• An example can be found in the federate_analytics_client_pysyft.py.
• The encrypted sums are aggregated to compute a global sum and global mean,

ensuring no client’s raw data is exposed.
• The final result is decrypted and returned in clear text for the aggregated result.

This implementation ensures secure federated analytics through PySyft’s SMPC,
maintaining data privacy while enabling data aggregation.

4.6 Future work and enhancements
We plan to continue exploring advanced privacy techniques and rigorously test our
implementations to ensure robust security and compliance.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 23 | 28

5 Setting up the Federated Learning infrastructure on
your local computer

5.1 Introduction
Setting up the federated learning infrastructure on a local machine allows you to
experiment with the codebase, run simulations, and contribute to the project's
development. To get everyone started, we had some online consultations and conducted
an in-person workshop with the consortium members, using both EU and US-based
servers to ensure broad accessibility and collaboration.

This section provides a step-by-step guide to setting up the infrastructure locally,
including running the code using Docker for easy deployment. The codebase is available
on GitHub, and we will reference specific repositories and files that you will need to clone
and execute.

5.2 Prerequisites
Before setting up the environment, ensure that your system meets the following
prerequisites:

• Operating System: Linux, macOS, or Windows with WSL2

• Python: Version 3.7 or higher

• Docker: Installed and running (Docker Desktop for Windows and macOS)

• Git: Installed and configured for cloning repositories

5.3 Cloning the repository
Begin by cloning the Hereditary project repository from GitHub:

git clone https://github.com/sara-nl/Hereditary.git

This repository contains all the necessary code for the federated learning setup, including
server and client implementations and specific datasets like CIFAR and Medical MNIST.

5.4 Running the Federated Learning setup with Docker
We have provided Docker configurations to simplify the setup process. Docker
containers ensure that the environment is consistent across different systems, reducing
the chances of compatibility issues.

1. Navigate to the root directory of the cloned repository and run

docker-compose build

This command creates the necessary Docker images for the server and client
components and pulls them in depending on the environment.

https://github.com/sara-nl/Hereditary.git%60

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 24 | 28

2. To start the server, run the following command:

docker-compose up server

This launches the federated learning server using Flower, configured to handle
multiple client requests.

3. To start one or more clients, use the following command:

docker-compose up client

You can run multiple client instances by repeating this command in separate
terminal windows or by scaling the Docker service:

docker-compose upscale client=3

This command starts three client instances connected to the server for federated
learning.

4. Docker Compose displays logs in the terminal, allowing you to monitor the server
and client interactions. You can also use Docker’s built-in commands to view logs
for specific services: `

docker logs <service_name>

5.5 Running inference
Once the training is complete, you can run inference on the trained models locally:

1. The trained model will be saved on the server container. You can access it using
Docker’s file system commands or configuring a shared volume during the setup.

2. Use the following command to run the inference script:

docker-compose run client python inference.py

This script loads the trained model and run inference on a test dataset.

5.6 Adjusting the codebase
You can directly modify the files in the cloned repository if you need to adjust the
codebase to work with different datasets or models. Critical files you might want to edit
include:

• client.py and server.py for basic federated learning setup

• client_medical_mnist.py and server_medical_mnist.py for specialised
datasets

• flower_tutorial.py for examples and further customisation

After making changes, rebuild the Docker images and restart the services:

docker-compose build && docker-compose up

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 25 | 28

5.7 Workshops and consortium collaboration
We have conducted two workshops to help consortium members set up and start working
with the federated learning infrastructure.

The first workshop was held in presence at HES-SO on 16 and 17 May 2024 with
representatives from HES-SO, UNIPD, UCD, SURF, RUMC, AAU and ONTO. The
second workshop was held online on 1 July 2024.

These workshops covered:

• Introduction to Federated Learning: Basic concepts and the rationale behind
using frameworks like Flower and PySyft.

• Setting up the environment: This section provides step-by-step guidance on
setting up the environment, cloning the repository, and running the code locally.

• Running distributed training: Demonstrations on how to run federated learning
across EU and US-based servers, ensuring cross-border collaboration.

• Hands-on sessions: Practical sessions where participants configured their
environments, ran the provided code, and contributed to the project.

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 26 | 28

6 REFERENCES
The bibliographic entries are arranged in lexicographical order based on the key, following the APA style.
This enables us to place the entries and citations in the table and text in any sequence, allowing for later
sorting while ensuring consistency.

Key Reference

Beutel2020

Beutel, D., Topal, T., Mathur, A., Qiu, X., Parcollet, T., & Zhao, Y.
(2020). Flower: A friendly federated learning research framework.
Proceedings of the 2020 IEEE International Conference on Big
Data (Big Data), 1001–1010.
https://doi.org/10.1109/BigData50022.2020.9377766

Bonawitz2017

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan,
H. B., Patel, S., & Song, S. (2017). Practical secure aggregation
for federated learning on user-held data. Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security (CCS '17), 1175–1191.
https://doi.org/10.1145/3133956.3133982

Cheon2017

Cheon, J. H., Kim, A., Kim, M., & Song, Y. (2017). Homomorphic
encryption for arithmetic of approximate numbers. In T. Takagi &
T. Peyrin (Eds.), Advances in Cryptology—ASIACRYPT 2017 (pp.
409–437). Springer. https://doi.org/10.1007/978-3-319-70694-
8_15

EUDAT2021
EUDAT. (2021). B2SHARE: EUDAT's secure, reliable and trusted
service for storing and sharing research data.
https://b2share.eudat.eu

Fowler2021
Fowler, M. (2021). Data mesh: Principles and logical architecture.
martinfowler.com. Retrieved from
https://martinfowler.com/articles/data-mesh-principles.html

Fuhrmann2006
Fuhrmann, P., & German, V. (2006). dCache, Storage System for
the Future. European Organization for Nuclear Research (CERN).
https://dcache.org

Geyer2017

Geyer, R. C., Klein, T., & Nabi, M. (2017). Differentially private
federated learning: A client level perspective. Proceedings of the
2017 IEEE International Conference on Privacy, Security, Risk
and Trust (PASSAT '17), 216-227.
https://doi.org/10.1109/PASSAT.2017.109

iRODS
Consortium2021

iRODS: Integrated Rule-Oriented Data System (Version 4.2.10)
[Software]. https://irods.org

Jakubik2024
Jakubik, J., Vössing, M., Kühl, N., Walk, J., & Satzger, G. (2024).
Data-centric artificial intelligence. arXiv preprint
arXiv:2212.11854v4. https://doi.org/10.48550/arXiv.2212.11854

Kairouz2021
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M.,
Bhagoji, A. N., & Zhao, S. (2021). Advances and open problems
in federated learning. Foundations and Trends® in Machine
Learning, 14(1), 1–210. https://doi.org/10.1561/2200000083

https://doi.org/10.1109/BigData50022.2020.9377766
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://martinfowler.com/articles/data-mesh-principles.html
https://dcache.org/
https://doi.org/10.1109/PASSAT.2017.109
https://irods.org/
https://doi.org/10.48550/arXiv.2212.11854
https://doi.org/10.1561/2200000083

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 27 | 28

Key Reference

McMahan2017

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & y Arcas,
B. A. (2017). Communication-efficient learning of deep networks
from decentralized data. Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics (AISTATS '17),
1273-1282. https://arxiv.org/abs/1602.05629

Miller2020

Miller, A., Fritsch, L., Jepsen, T. H., Williams, J. E., & Guo, M.
(2020). Secure multi-party computation in federated learning.
Proceedings of the 2020 IEEE International Conference on Big
Data (Big Data), 3197–3204.
https://doi.org/10.1109/BigData50022.2020.9377857

Paillier1997
Paillier, P. (1999). Public-key cryptosystems based on composite
degree residuosity classes. In J. Stern (Ed.), Advances in
Cryptology—EUROCRYPT '99 (pp. 223–238). Springer.
https://doi.org/10.1007/3-540-48910-X_16

Ryffel2018
Ryffel, T., Trask, A., Dahl, M., Wagner, B., Mancuso, J., Rueckert,
D., & Passerat-Palmbach, J. (2018). A generic framework for
privacy-preserving deep learning. arXiv preprint
arXiv:1811.04017. https://arxiv.org/abs/1811.04017

Ziller2018

Ziller, M., Peters, A., & Wagner, M. (2018). Secure aggregation for
federated learning using PySyft. Proceedings of the 2018
International Conference on Privacy, Security, Risk and Trust
(PASSAT '18), 412-422.
https://doi.org/10.1109/PASSAT.2018.153

https://arxiv.org/abs/1602.05629
https://doi.org/10.1109/BigData50022.2020.9377857
https://doi.org/10.1007/3-540-48910-X_16
https://arxiv.org/abs/1811.04017
https://doi.org/10.1109/PASSAT.2018.153

DELIVERABLE 2.14
27/09/2024, V1.5 GA 101137074 28 | 28

7 Annexes
Number Name
1 UNIPD Medical Server (Hardware Overview)

2 UNITO HPC4AI System (Hardware Overview)
3 SURF Snellius Supercomputing System (System Overview)

4 RUMC computational resources (Hardware Overview)
5 Codebase for the execution of federated learning methods

