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Abstract  —  Predicted clear sky irradiance depends on 

atmospheric composition as well as solar position and extra-
terrestrial irradiance. The effects on clear sky irradiance of year 
to year variations in atmospheric composition were studied using 
measurements of aerosol optical depth (AOD) and precipitable 
water (Pwat) at seven locations in the United States. Three clear 
sky models were evaluated, including one that uses Linke 
turbidity (TL). This model was evaluated using historical, static 
TL as well as updated values derived from real-time AOD and Pwat 
measurements. The average annual error in predicted clear sky 
irradiance using static TL did not differ significantly from year to 
year. Annual average error in predicted GHI was less than 5% 
for all models with no significant difference between models. The 
model with static TL had the lowest DNI errors, and the Bird 
model had the smallest GHI error but the largest DNI error. On 
average DNI and GHI were under-predicted. 

Index Terms — clear sky, irradiance, aerosol optical depth, 
precipitable water. 

I. INTRODUCTION 

Predicting clear sky irradiance is important for estimating 

energy generation by solar power systems. Clear sky models 

predict the direct normal (DNI), diffuse horizontal (DHI) and 

global horizontal (GHI) components of irradiance on a 

cloudless day. Since the concentration of aerosol and water 

vapor in the atmosphere can affect all three of these irradiance 

components, they can also influence power production. We 

analyzed the effects of aerosol optical depth (AOD) and 

precipitable water (Pwat) on irradiance predictions from three 

clear sky models by comparing them with irradiance 

measurements at seven US locations. This paper is a report on 

our analysis. 

II. METHODS 

This section describes the differences between the clear sky 

models and the sources of atmospheric composition and 

irradiance measurements used in our analysis. 

A. Clear Sky Models 

Several numerical models are available for prediction of 

clear sky irradiance. Ineichen recently published a study of 

seven clear sky models [1], evaluating them using atmospheric 

data from the Monitoring Atmospheric Composition and 

Climate (MACC) project of the Copernicus Atmospheric 

Monitoring Service (CAMS). This data is provided by the 

European Center for Medium-Range Weather Forecasts 

(ECMWF). Ineichen concluded that the Simplified Solis 

model [2] demonstrated the smallest long term variance from 

measurements at twenty two irradiance stations mostly in 

Europe over an 8 year period. The National Renewable Energy 

Laboratory (NREL) performed a similar study [3] with 

irradiance and atmospheric data from the National Oceanic 

and Atmospheric Administration (NOAA) Earth System 

Research Laboratory (ESRL) Surface Radiation Network 

(SURFRAD) and found the Bird model [4]–[7] to be a better 

fit. We analyzed these models as well as the Ineichen-Perez 

model, popular due to its long-established implementation in 

PVsyst and in the PVLIB MATLAB and Python modeling 

libraries [8]–[10]. 

We compared the accuracies of Bird, Simplified Solis, and 

Ineichen-Perez models using PVLIB-Python. The Bird and 

Simplified Solis models take inputs of Pwat and broadband 

AOD measurements directly, but the Ineichen-Perez model 

[11], [12] uses Linke turbidity (TL) [13] as a parameter to 

represent both components of the atmosphere. PVLIB-Python 

provides a gridded static set of monthly TL values from 2003, 

obtained from the SoDa Pro website. We re-calculated the TL 

values from AOD and Pwat measurements using the method 

described in the next section and compared irradiance 

predictions from both the static and re-calculated TL values to 

demonstrate year to year variability. 

B. Measurements of Atmospheric Composition 

We used measurements of AOD and Pwat from the CAMS 

MACC project provided by ECMWF. This data is derived 

from an atmospheric model that assimilates satellite data from 

MODIS and is calibrated with independent ground 

measurements from AERONET [14]. Aerosol data at several 

wavelengths and total column water vapor are available over 

the entire globe at 0.75° increments every 3 hours from 2003 

to 2012. 

In our analysis, we calculated TL from broadband AOD and 

Pwat using Eq. (1) in which AM is airmass, calculated using the 

NREL solar position algorithm (SPA) form PVLIB, and δtotal.is 

the total atmospheric attenuation, derived in Eq. (2). 
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The method developed by Kasten [17], [18] is explained in 

detail by Ineichen and Perez [12], [19]. The contributions from 

pure Rayleigh scattering, δRayleigh, through a hypothetical 

“clean dry atmosphere” are combined with water absorption, 

δwater, and the broadband AOD to get the total atmospheric 

attenuation, δtotal, in Eq. (2). 

 aerosolwaterRayleightotal    (2) 

There are several options for determining the broadband 

AOD, τaerosol. Molineaux [20] proposed using a single AOD 

measurement at 700 nm which is used in the Simplified Solis 

model. For the Bird model, Bird and Hulstrom [21] suggested 

two AOD measurements at 380 nm and 500 nm correlated by 

the expression in Eq. (3) where τ is AOD and λ is wavelength. 

 nmnmaerosol 500380 35.027583.0      (3) 

To calculate AOD at 380 nm, 500 nm and 700 nm, we 

obtained AOD at 550 nm and 1240 nm from the ECMWF 

MACC data. Then, assuming AOD is related to wavelength by 

the Angstrom turbidity model [15], [16], we calculated the 

Angstrom exponent, α, from AOD at the two wavelengths, and 

used α to obtain AOD at the desired wavelengths. This is 

demonstrated in Eq. (4). 
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C. Measurements of Clear Sky Irradiance 

To evaluate the clear sky irradiance models and the 

measurement sources of AOD and Pwat, predictions of DNI, 

DHI and GHI were compared to SURFRAD measurements of 

irradiance, ambient temperature, relative humidity and 

pressure at either 1-minute or 3-minute intervals. The 

SURFRAD stations listed in Table I were used for the years 

from 2003 to 2012. Down-sampled measurements at 3-minute 

intervals were filtered for clear sky conditions using PVLIB-

Python with a 30-minute window and clear sky calculated 

using Simplified Solis. Measurements below a GHI threshold 

of 200 W/m2 were also removed. 

Mean bias error (MBE) was calculated between the filtered 

measured data and the predictions using the formula in Eq. (5) 

in which N is the number of measurements. Relative error was 

obtained by dividing the calculated MBE by the average of the 

measurements. The analysis was done in a Python notebook 

that can be accessed from an online repository at 

https://github.com/mikofski/pvsc44-clearsky-aod. 
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TABLE I 

SURFRAD SURFACE RADIATION STATIONS 

Station 

Name 

Station 

ID 

Latitude Longitude Elevation 

(m) 

Bondville, 

IL 

bon 40.05 -88.37 213 

Table 

Mountain, 

CO 

tbl 40.13 -105.24 1689 

Desert 

Rock, NV 

dra 36.62 -116.02 1007 

Fort Peck, 

MT 

fpk 48.31 -105.10 634 

Goodwin 

Creek, MS 

gwn 34.25 -89.87 98 

Penn State, 

PA 

psu 40.72 -77.93 376 

Sioux Falls, 

SD 

sxf 43.73 -96.62 473 

III. RESULTS 

Fig. 1 to 4 compare monthly static TL at the Bondville, Fort 

Peck, Table Mountain and Desert Rock stations, monthly 

average TL values calculated from AOD and Pwat using Eq. (1) 

and (2) for all years in the study and the monthly average over 

all years of the calculated TL. Atmospheric data was filtered 

for clear sky and low light before calculating TL. The 

magnitude and shape of the historical and calculated TL were 

similar for Bondville, Sioux Falls, Goodwin Creek and Penn 

State, but deviated for Fort Peck, Table Mountain and Dessert 

Rock. For all stations, TL was greater in summer than winter. 

 
Fig. 1. Linke turbidity at Bondville, IL, from 2003 to 2012 
calculated using filtered AOD and Pwat as dotted lines, the average 
for all years as solid green line and the 2003 historical values as solid 
blue line. 

https://github.com/mikofski/pvsc44-clearsky-aod


 

 
Fig. 2. Linke turbidity at Fort Peck, MT, from 2003 to 2012 
calculated using filtered AOD and Pwat as dotted lines, the average 
for all years as solid green line and the 2003 historical values as solid 
blue line. 

 
Fig. 3. Linke turbidity at Table Mountain, CO, from 2003 to 2012 
calculated using filtered AOD and Pwat as dotted lines, the average 
for all years as solid green line and the 2003 historical values as solid 
blue line. 

 
Fig. 4. Linke turbidity at Desert Rock, NV, from 2003 to 2012 
calculated using filtered AOD and Pwat as dotted lines, the average 
for all years as solid green line and the 2003 historical values as solid 
blue line. 

In Fig. 5 and 6, different clear sky models are compared to 

measured data at Bondville, IL on July 16th, 2006. 

 
Fig. 5. Comparison of DNI at Bondville, IL on 7/16/2006 shows 
good agreement with Bird and Simplified Solis and poorer agreement 
with Ineichen-Perez using either historic or calculated TL. 

 
Fig. 6. Comparison of GHI at Bondville, IL on 7/16/2006. Bird 
and Simplified Solis with MACC data are slightly better than the 
historic or calculated TL. 

 

Fig. 7 to 14 show box plots of the distributions of average 

monthly relative errors, calculated using Eq. (5), for each clear 

sky model. The box bounds the the 2nd and 3rd quartiles, the 

whiskers show the 5% and 95% confidence bounds, the dashed 

red line is the mean, the solid black line is the median, and the 

flyers are values that fall outside of the confidence bounds. 

Fig. 7 and 8 show comparisons between clear sky models by 

year in different colors. Fig. 7 shows that there are no 

significant long term trends in DNI errors and no significant 

differences between models. The Ineichen-Perez model with 

static TL shows no trend from year to year while the models 

using ECMWF MACC data show an increasing negative error 

with time. The Bird model had the largest mean yearly error. 

Fig. 8 shows that there are no significant long term trends in 

GHI errors and no significant differences between models. The 

Ineichen-Perez model with static TL shows no trend from year 

to year while the models using ECMWF MACC data show an 



 

increasing negative error with time. The Simplified Solis 

model had the largest mean yearly error. 

From the year to year comparison, there does not appear to 

be significant difference between the use of static and real-

time atmospheric data in clear sky predictions. The increasing 

yearly mean bias observed in DNI and GHI year to year box 

plots for models using real-time AOD and Pwat may be an 

artifact of the measured atmospheric data. For GHI the 

increase in relative mean bias error is less than 5%. 

 
Fig. 7. Comparison of DNI errors at all stations by year (colors) 
and by model shows no statistical year to year variation and no 
statistical variation between models. The Ineichen-Perez model with 
static TL has no trend from year to year while the models using 
ECMWF MACC show increasing mean error over time. The Bird 
model has the largest mean yearly error. 

 
Fig. 8. Comparison of GHI errors at all stations by years (colors) 
and by model show no statistical year to year variation and no 
statistical variation between models. The Ineichen-Perez model with 
static TL has no trend from year to year while the models using 
ECMWF MACC show increasing mean error over time. The 
Simplified Solis has the largest mean yearly error. 

 

Fig. 9 and 10 show seasonal variations in error between 

clear sky models by month in different colors. The average 

monthly relative errors are grouped by month across all years. 

There are no significant differences in DNI errors by month or 

by model. The Bird model has the largest mean monthly 

errors. There is a seasonal bias in GHI errors for all models, 

including the Ineichen-Perez model with static TL, so the 

seasonal bias cannot be an artifact of the AOD and Pwat 

measurements unless it arises from a common instrument 

error. The seasonal bias under-predicts GHI in summer, with a 

delta between the summer and winter mean error of less than 

5%. 

 
Fig. 9. Comparison of DNI errors at all stations by months (colors) 
shows no statistical differences by month or model. 

 
Fig. 10. Comparison of GHI errors at all stations by months (colors) 
show a seasonal bias, with a delta between summer and winter mean 
error of less than 5%. 

 

Fig. 11 and 12 show regional variations in error between 

clear sky models by stations in different colors. The average 

monthly errors are grouped by station for all months and years. 

Fig. 8 shows the errors in DNI by station. The stations that had 

small differences between calculated TL and static values have 

roughly consistent errors for all models. Two of the stations 

that had calculated TL that deviated from the static values, Fort 

Peck and Desert Rock, show lower errors in both DNI and 

GHI with the Ineichen-Perez model using static TL. The other 

station with calculated TL that differed from the static values 

was the Table Mountain station, and it shows lower errors in 

both DNI and GHI with the Ineichen-Perez model using 

ECMWF MACC data. These three stations, Fort Peck, Desert 



 

Rock and Table Mountain, were also the stations with the 

highest elevation and highest average DNI. 

 
Fig. 11. Comparison of monthly DNI errors grouped by station 
(colors) show roughly the same mean error except for Fort Peck, 
Desert Rock, and Table Mountain, which were also the stations that 
had calculated TL that differed from static values. 

 
Fig. 12. Comparison of monthly GHI errors grouped by station 
(colors) show the mean error is less than 5% for all stations and 
models. 

 

Fig. 13 and 14 show average relative error in DNI and GHI 

for all stations sorted by model. There were significant 

differences between GHI errors, although all models had 

average errors less than 5%. The Simplified Solis had the 

largest GHI error, and the Bird model had the lowest median 

error in this study but was not significantly different from the 

Ineichen-Perez model with either historical or real-time TL. 

The Ineichen-Perez model with static TL had the smallest 

errors in DNI, but was not statistically different from the 

Ineichen-Perez model with ECMWF MACC data or the 

Simplified Solis model. The Bird model had the largest DNI 

errors. 

 
Fig. 13. Comparison of DNI errors for all stations by model show 
significant difference between Bird and other models. 

 
Fig. 14. Comparison of GHI errors for all stations by model show 

significant differences between the models in this study but all errors 

are less than 5%. 

IV. CONCLUSIONS 

A study of variations in clear sky irradiance due to AOD and 

Pwat has shown that for the seven stations and the ten-year 

period examined in this study there is no significant 

improvement in model accuracy when using real-time AOD 

and Pwat measurements. There is a seasonal bias in the GHI 

error that does not appear to be caused by the real-time AOD 

and Pwat measurements because it also appears in the errors 

from model using static TL. The average monthly errors in 

GHI were not significantly different between models and were 

all less than 5%. The Ineichen-Perez model with static TL had 

the lowest errors for DNI, but were not significantly different 

than the Simplified Solis model. The Bird model had 

significantly larger errors for DNI, but had the lowest GHI 

median error. 



 

ACKNOWLEDGMENTS 

Sandia National Laboratories is a multi-mission laboratory 

managed and operated by National Technology and 

Engineering Solutions of Sandia, LLC., a wholly owned 

subsidiary of Honeywell International, Inc., for the U.S. 

Department of Energy’s National Nuclear Security 

Administration under contract DE-NA0003525. 

REFERENCES 

[1] P. Ineichen, “Validation of models that estimate the clear sky 
global and beam solar irradiance,” Sol. Energy, vol. 132, pp. 
332–344, 2016. 

[2] P. Ineichen, “A broadband simplified version of the Solis clear 
sky model,” Sol. Energy, vol. 82, no. 8, pp. 758–762, 2008. 

[3] M. Sengupta and P. Gotseff, “Evaluation of Clear Sky Models 
for Satellite-Based Irradiance Estimates,” 2013. 

[4] R. E. Bird and R. L. Hulstrom, “Simplified Clear Sky Model for 
Direct and Diffuse Insolation on Horizontal Surfaces,” 1981. 

[5] R. E. Bird and R. L. Hulstrom, “Review, Evaluation, and 
Improvement of Direct Irradiance Models,” J. Sol. Energy Eng., 
vol. 103, no. 3, p. 182, 1981. 

[6] D. R. Myers, “Solar radiation modeling and measurements for 
renewable energy applications: data and model quality,” Energy, 
vol. 30, no. 9, pp. 1517–1531, Jul. 2005. 

[7] R. L. Hulstrom, Solar Resources. MIT Press, 1989. 
[8] W. F. Holmgren, R. W. Andrews, A. T. Lorenzo, and J. S. Stein, 

“PVLIB Python 2015,” in Photovoltaic Specialists Conference 
(PVSC), 2015 IEEE 42nd, 2015, pp. 1–5. 

[9] R. W. Andrews, J. S. Stein, C. Hansen, and D. Riley, 
“Introduction to the open source PV LIB for python 
Photovoltaic system modelling package,” 2014 IEEE 40th 
Photovolt. Spec. Conf. PVSC 2014, pp. 170–174, 2014. 

[10] J. S. Stein, W. F. Holmgren, J. Forbess, and C. W. Hansen, 
“PVLIB: Open Source Photovoltaic Performance Modeling 

Functions for Matlab and Python,” IEEE 43rd Photovolt. Spec. 
Conf., pp. 3–8, 2016. 

[11] R. Perez, P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. 
George, and F. Vignola, “A New Operational Satellite-to-
Irradiance Model - Description and Validation,” Sol. Energy, 
vol. 73, no. 5, pp. 307–317, 2002. 

[12] P. Ineichen and R. Perez, “A new airmass independent 
formulation for the Linke turbidity coefficient,” Sol. Energy, 
vol. 73, no. 3, pp. 151–157, Sep. 2002. 

[13] F. Linke, “Transmissions-Koeffizient und Trubungsfaktor,” 
Beitrage zur Phys. der Atmosphare, vol. 10, pp. 91–103, 1922. 

[14] V. Cesnulyte, A. V. Lindfors, M. R. A. Pitkänen, K. E. J. 
Lehtinen, J. J. Morcrette, and A. Arola, “Comparing ECMWF 
AOD with AERONET observations at visible and UV 
wavelengths,” Atmos. Chem. Phys., vol. 14, no. 2, pp. 593–608, 
2014. 

[15] A. Angstrom, “On the Atmospheric Transmission of Sun 
Radiation and On Dust in the Air,” Geogr. Ann., vol. 11, pp. 
156–166, 1929. 

[16] A. ÅNGSTRÖM, “Techniques of Determinig the Turbidity of 
the Atmosphere,” Tellus A, vol. 13, no. 2, pp. 214–223, 1961. 

[17] F. Kasten, “A simple parameterization of the pyrheliometric 
formula for determining the Linke turbidity factor,” Meteorol. 
Rundschau, vol. 33, pp. 124–127, 1980. 

[18] F. Kasten, “The linke turbidity factor based on improved values 
of the integral Rayleigh optical thickness,” Sol. Energy, vol. 56, 
no. 3, pp. 239–244, Mar. 1996. 

[19] P. Ineichen, “Conversion function between the Linke turbidity 
and the atmospheric water vapor and aerosol content,” Sol. 
Energy, vol. 82, no. 11, pp. 1095–1097, Nov. 2008. 

[20] B. Molineaux, P. Ineichen, and N. O’Neill, “Equivalence of 
pyrheliometric and monochromatic aerosol optical depths at a 
single key wavelength.,” Appl. Opt., vol. 37, no. 30, pp. 7008–
18, Oct. 1998. 

[21] R. E. Bird and R. L. Hulstrom, “Direct Insolation Models,” 
1980. 

 

 


