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Part 1

Background and statistical concepts
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Functional enrichment analysis

Functional enrichment analysis is a broad term that refers to various methods used to
extract biological or functional insights from lists of biomolecules.

|ldentify biological functions, pathways, or molecular mechanisms that are significantly
associated with a subset of biological molecules, such as those that are differentially
expressed in a particular condition.
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Synonyms

- Enrichment analysis

- Pathway analysis

- Pathway enrichment analysis

- Functional annotation analysis
- Functional enrichment analysis
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FEA workflow
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FEA at a glance: Mouse diet experiment
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Functional enrichment analysis:
When?

Post-differential expression analysis

- Transcriptomics (eg high-fat diet vs. low-fat diet)

- Proteomics (eg tumor tissue vs. healthy tissue)

- Lipidomics (eg disease vs. healthy state)

- Metabolomics (eg diabetic vs. non-diabetic patients)
- Epigenomics (eg smokers vs. non-smokers)
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Functional enrichment analysis:
Why?
Once a large-scale omics study undertaken

- Summarise long list of many significant genes/proteins
- Extract meaningful bi
- Hypothesis generatiol & 9] 2 5

Dysregulation of DNA repair
mechanisms is a key driver in
tumor progression in this
specific cancer subtype.
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Functional enrichment analysis:
How?

Gene FC p-value Gene Rank
D t t d f M t d ADAR p.57 34E-06 ACLY 12.0898294
dla Capture rom an -omics stuady achoss b3 00634 ach1 b as374061
ADH18 D48 00574 ABCCA 0.48401106
ABCC4 p.17 00249 ACE 711197165
AcLY p.02 .98E-05 ADH1B 6.62515224
. ACP2 .94 75E-05 ADAR 6.59826379
- List of features acs hss psoros
ACTG2 .85 .00507 ACP2 6.37936782
ACE .82 025 ACADY 6.28101832
- Background set
. ACP1 .55 00273 ACAAL 6.14771005
- R an ked l_l St ADSL h.43 000453 ABAT 5.92969843
A2M 135 .00283 ACTG2 5.89740654
AEBP1 n.28 .002 ABHD11 5.86732359
= G e n e S etS AAK1 1.09 0238 ADSL 5.74621125
ACAA2 111 0156 A2M 5.63339695
ABCF1 128 .00147 ACADSB 5.52810629
A1BG 134 \15E-05 ABHD148 6.2311846
HALLMARK_ADIPOGENESIS httpSZ// ABCA1 ABCB8 ACAA2 ACOX3 1.41 10197 ACADS 6.3208579
. ACIN1 1.64 57E-05 ACSM3 6.386081
HALLMARK_ALLOGRAFT_REJECTION  https:/  AARS1 ~ ABCE1l  ABI1 ACHE s lieo P Aotio10 1047445
HALLMARK_ANDROGEN_RESPONSE  https:/  ABCC4 ABHD2 ACSL3 ABHD10 177 00182 A18G 6.441692
ACAAL 1.84 00414 ACYL 6.5349181
HALLMARK_ANGIOGENESIS https:// APOH APP CCND2 COL3A1 COL5A2 ACSL3 191 .00166 AAKL 6.6426254
. ABHD14B  f1.97 024 ACINL 6.9649449
HALLMARK_APICAL_JUNCTION https:/  ACTAL ACTB ACTC1 ACTG1 ACBD3 2 00044 nocF1 7 1039408
HALLMARK_APICAL_SURFACE https:/  ADAM10 ADIPOR2 AFAP1L2 ABAT 215 00403 ACOX3 7.1751947
ACSM3 2.28 000703 ACSL3 7.220302
ACSLL 2.68 000584 ACAA2 7.800639
ACYL 272 61E-05 ACSLL 8.0151174
ACACA 2.92 000124 ACBD3 8.5603888
ACSS1 3.04 .16E-05 ACSS1 1.00E+01
ABHD11 3.66 81E-06 ACACA 10.204292

THE UNIVERSITY OF

Australian @ MONASH N

BioCommons @ University




Concepts

Gene list

Gene set
- (Apoptotic process - genes involved in programmed cell death)
- (MAPK signaling pathway - genes involved in cell proliferation, differentiation, and survival)
- (Mitochondrial protein import - genes that help in importing proteins into mitochondria)
- (HALLMARK_HYPOXIA - genes involved in the cellular response to low oxygen levels)
- (TP53_TARGETS - genes regulated by the tumor suppressor TP53)
- (Neurogenesis gene set — genes that control the formation of neurons during brain

development)

P-value and false discovery rate (FDR)

Regulation

Background set

ID mapping

Annotation database
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Types of enrichment analysis

Input Over-Representation Analysis (ORA)

— 1 |Differentia|| | Differentially Number of DE and
2 I Expression

Expressed (DE) Reference Genes in

Ten Years of Pathway Analysis: Current Approaches and
Outstanding Challenges

Purvesh Khatri [&], Marina Sirota, Atul J. Butte

Published: February 23, 2012 « https://doi.org/10.1371/journal.pcbi. 1002375
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I; - Impact
l Factor

Pathway Topology

* Number of Reactions
* Position of Gene
* Type of Reaction
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Types of enrichment analysis

Over Representation Analysis (ORA) *Note: is not covered in our workshop.

- Modular Enrichment (WGCNA)

- Cell-Specific ORA . Requires good understanding of network
Gene Set Enrichment Analysis (GSEA) biology and pathway topology

- Pre-ranked GSEA Needs high-quality pathway topology
_SSGSEA : information (detailed pathway data), which
Topology-based Pathway Analysis (TPA) might not be always available for all

~SPIA : ”

- TopologyGSEA organisms or conditions

ORA and GSEA have been mostly used by

researchers

%, SYDNEY
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Why/when ORA/GSEA? Or both?

Inputs

Cutoffs

Statistical methods

Outputs

Pros

Cons

Research question

ORA

Predefined gene list (e.g., DEGs,
gene modules)

Requires cutoffs (logFC, p-value)

Fishers’ Exact test,
Hypergeometric test

Enriched terms with p values or
FDR

Simple, computationally efficient,
easier interpretation

Missing subtle yet biologically
important patterns, independence
assumption of genes

Which biological pathways are
over-represented in genes
upregulated in response to a
specific drug treatment?

GSEA

Full ranked gene list ordered by some sort of
statistical method

No cutoffs needed

Permutation tests like Kolmogorov—Smirnov (K-S)
test to calculate p values

Enrichment scores (ES) per gene set, normalised
enrichment scores (NES), p values or FDR

Captures subtle effects and coordinated trends
across all features

Rank bias, gene set size bias, complex statistical
framework, computationally intensive (depends on
permutations)

Is there enrichment of genes involved in immune
response pathways across the entire ranked gene list
in patients with a specific disease?



Statistics overview - ORA

‘..interm ‘..notinterm |Tota| ‘

Fisher’s Exact Test ngenelit EE - | Hypergeometric Test
‘..notingenelist (but in background) ‘200 ‘15900 |16100 ‘ PI’Oba bility theory
. ‘Total ‘250 ‘16000 | ‘
Ronald A. Fisher :
Contingency Table

Lady Tasting Tea

more Erease for small samﬁles Backgrouna more comﬁutatlonallx efficient

Category 1 Category 2 Total In Gene Set Not in Gene Set Total
Group 1 a b a+b In Gene List k n—k n
Group 2 c d c+d Not in Gene List K-k N-K-(n—k) N-n
Total a+e b+d a+b+c+d=N Total K N-K N
K\ (N-K
a+bl(c+d)(a+c)(b+ d)! -
p- latdletdlatoibrdl ;5 P(X=k) = W) -7 5re-54
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https://en.wikipedia.org/wiki/Muriel_Bristol

Statistics overview - GSEA

. . A Phenotype B Leading edge subset
Calculating enrichment score (ES) Classes —F Gene set S
: : A B
Walk down the ranked list of genes L, increment the BN Gone set S ( m

running sum by ((N-N,)/N, ) and decrement it by v/
(Nh/(N-Nh)), similar to the Kolmogorov-Smirnov
Permutations

Randomly assign phenotype labels to samples,
re-order genes, re-compute the ES of a gene set to
generate a null distribution of ES.

Using this null, compute an empirical, nominal p value
for any observed ES

Normalising enrichment score (NES)
Adjust for variation in gene set size
Multiple hypothesis testing

False Discovery Rate( FDR)
Family-Wise Error Rate (FWER)

Correlation with Phenotype

Random Walk

_____ M

Maximum deviation ~Gene List Rank
from zero provides the
enrichment score ES(S)
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Mitochondria
MAP kinase signalling pathway
Cell cycle control

- httis:iiwww.pnas.org/do'/epdf/lo.1073iiih
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https://github.com/ctlab/fgsea/issues/128

GSEA (null distribution)

Enrichment plot: HALLMARK_ANGIOGENESIS

Enrichment plot:
HALLMARK_INFLAMMATORY_RESPONSE
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Annotation Databases

' re Q Ct O m e :. : mgullg SiDgnEures

GENEONTOLOGY
Unifying Biology
s == Database

mF)Cﬁ:s!;Jca-[oin_ISyEsteRm é‘:‘%(/IKIPATHWAYs (@ STRIN G UniPro;t:}

=<
) CYC i0G € InterPro
\’ ’/ X B I O RI D Q m Classification of protein families
Genome Database Collection
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https://geneontology.org/
https://www.genome.jp/kegg/
https://reactome.org/
https://www.ebi.ac.uk/interpro/
http://pfam.xfam.org/
https://thebiogrid.org/
https://www.pantherdb.org/
https://www.wikipathways.org/
https://www.uniprot.org/
https://biocyc.org/
https://www.gsea-msigdb.org/gsea/index.jsp
https://string-db.org/

Annotation
Databases

Data

GENEONTOLOGY
EipeRle . )
Gene annotations and ontologies

Biological pathways

Curated biological pathways, mainly

“i’ reactome human-focused

=M SigDB Gene sets, pathways, and transcriptional
= Molecular Signat .
B < D:tae[::s:r ignatures Slgnatu res

PANTHER Gene ontology, protein classification,
Classification System hathways, and protein families

‘ . . .
@\WIKIPA . Community-curated biological pathways

@ STRl NG Protein-protein interaction networks,

functional associations

. ol Protein sequences, functional annotations,
UmPro.t.,' curated and predicted data

- 0
() CYC Metabolic pathways, genomes, gene
£ y

" Genome Database Collection reg u | ato ry netwo rks

BioGRID Protein, genetic, and chemical interactions

p‘ Protein families, domains, and functional
Q m sites

’) InterPro Protein families, domains, functional sites,
Classification of protein families protein sequence features

Application

Gene ontology mappings

Pathway mapping, system biology, drug
development

Cancer biology, immunology, cell signaling
Gene set enrichment analysis

Gene ontology mappings, evolutionary
analysis

Collaborative pathway curation, cross-species
analysis

Protein interaction network analysis

Protein sequence analysis, functional
annotation, gene ontology integration

Metabolic network analysis
Protein interaction networks, systems biology
Protein structure and function prediction

Functional domain identification, protein
classification


https://geneontology.org/
https://www.genome.jp/kegg/
https://reactome.org/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.pantherdb.org/
https://www.wikipathways.org/
https://string-db.org/
https://www.uniprot.org/
https://biocyc.org/
https://thebiogrid.org/
http://pfam.xfam.org/
https://www.ebi.ac.uk/interpro/

Pathways in Biology

Biological pathways are series of - Metabolic Pathways
interconnected biochemical reactions or - G.enetic Pathway.s
molecular events that occur within cells, - Signal Transduction Pathways

tissues, organs, or entire organisms - Immune Response Pathways
’ ’ ' - Cell Cycle Pathways

These pathways describe the flow of
biological information, matter, or energy that
leads to specific biological outcomes.
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Pathways in Biology
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Gene Ontology (GO)

- Controlled and structured hierarchical
vocabulary for describing the

properties and functions of gene Gene Ontology: tool for the
products unification of biology

72 © 2000 Nature America Inc. * http://genetics.nature.com Com men tary

- Hierarchical- parents and child terms Thie Gene Gatalogy Consortums
establish more-general and
o po . . Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological
more-s peCIf'I C deSCI’I ptO rs Of fu nCt| on functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one

organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to

produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of

N gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies

= DO mains accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological

BiOl,Ogica l Processes process, molecular function and cellular component.
- Molecular Functions
- Cellular Components

AUStrO“Oh MONASH THE UNIVERSITY OF
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Directed Acyclic Graph (DAG)

C0O:0008152

GO classes (terms) are

composed of a definition, a label, a
unique identifier, and several other

metabolic
process

« AisaB
« Bis partof C

C0:0044281 C0:0044238

GC0:0071704

GC0:0009058

" n « we can infer that Ais part of C
elements' small molecule primary organic biosynthetic
metabolic metabolic substance process
process process metabolic

C0:0005975

carbohydrate
metabolic
process

C0:1901576

organic
substance
biosynthetic

[ cytoplasm J ( organelle j

T—- part oi—I is aJ tpan of

mitochondrion

CO:0005996

monosaccharid

e metabolic
process

C0:0044283
small molecule

biosynthetic
process

C0:0016051

carbohydrate
biosynthetic
process

organelle membrane

oA R mitochondrion has two parents:
hexose monosaccharid
metabolic e biosynthetic ° |t I'S an organelle
* itis part of the cytoplasm

This reflect the fact that:
* biosynthetic process is a subtype of metabolic process e
* a hexose is a subtype of monosaccharide hexose

biosynthetic
process

process process
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GO Domains

Molecular Molecular-level activities performed by gene products. An example of GO annotation: human
Function . o o “cytochrome c™:
(MF) catalytic activity and transporter activity; molecular function oxidoreductase

adenylate cyclase activity or Toll-like receptor binding.

activity,

the biological process oxidative
phosphorylation, and

the cellular component mitochondrial
intermembrane space.

GO molecular functions are often appended with the word
“activity” (a protein kinase would have the GO molecular
function protein kinase activity).

Cellular A location, relative to cellular compartments and structures.
Component
(CC) cellular anatomical entities, includes cellular structures such as

the plasma membrane and the cytoskeleton, as well as
membrane-enclosed cellular compartments such as
the mitochondrion

Biological The larger processes, or ‘biological programs’ accomplished by ~ Note: a biological process is not
Process multiple molecular activities. equivalent to a pathway.
(BP) https://geneontology.org/docs/ontology-documentation

DNA repair or signal transduction.
pyrimidine nucleobase biosynthetic process or glucose
transmembrane transport.



http://amigo.geneontology.org/amigo/term/GO:0003824
http://amigo.geneontology.org/amigo/term/GO:0005215
http://amigo.geneontology.org/amigo/term/GO:0004016
http://amigo.geneontology.org/amigo/term/GO:0035325
http://amigo.geneontology.org/amigo/term/GO:0110165
http://amigo.geneontology.org/amigo/term/GO:0005886
http://amigo.geneontology.org/amigo/term/GO:0005856
http://amigo.geneontology.org/amigo/term/GO:0005739
http://amigo.geneontology.org/amigo/term/GO:0006281
http://amigo.geneontology.org/amigo/term/GO:0007165
http://amigo.geneontology.org/amigo/term/GO:0019856
http://amigo.geneontology.org/amigo/term/GO:1904659
http://amigo.geneontology.org/amigo/term/GO:1904659
https://geneontology.org/docs/ontology-documentation/

GO Evidence Codes

Experimental

Phylogenetically-inferred

Computational analysis

Author statement

Curator statement

Electronic annotation

Evidence Code

Inferred from Experiment (EXP)
Inferred from Direct Assay (IDA)
Inferred from Physical Interaction (IPI)
Inferred from Mutant Phenotype (IMP)
Inferred from Genetic Interaction (IGl)
Inferred from Expression Pattern (IEP)

Inferred from Biological aspect of Ancestor (IBA)
Inferred from Biological aspect of Descendant (IBD)
Inferred from Key Residues (IKR)

Inferred from Rapid Divergence (IRD)

Inferred from Sequence or structural Similarity (ISS)
Inferred from Sequence Orthology (ISO)

Inferred from Sequence Alignment (ISA)

Inferred from Sequence Model (ISM)

Inferred from Genomic Context (IGC)

Inferred from Reviewed Computational Analysis
(RCA)

Traceable Author Statement (TAS)
Non-traceable Author Statement (NAS)

Inferred by Curator (IC)
No biological Data available (ND)

Inferred from Electronic Annotation (IEA)

Example

Experimental results support annotation
Enzyme assays, Immunofluorescence
Co-puirification

Mutation assays

Phenotype suppression or enhancement
Expression experiments

Ancestral gene

Descendant gene

Lack of key sequence residues
Divergence from ancestral sequence

BLAST

Phylogenetic analysis

Alignment between a query to a reference
Predicted statistical model of a sequence
Proximity to other genes (like operons)
Predictions based on computational analyses
of large-scale experimental data sets

Review articles
UniProt Knowledgebase records

Not supported by any direct evidence
New gene sequenced, no biological evidence

Computational methods, no human review



Part 2

Functional enrichment analysis
In practice
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FEA workflow

GENEONTOLOGY
ONCLNTHER @Ronn] 57STRING

Conduct @ | #reoctome HE
-omics

experiment

UniProt §
X

@EI0CYe Pfam

FC, t-stat,
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Graphical or command line interface

-  FEA can be performed via:

o Graphical user interface (GUI) - web or “ [ web (33.89%)
desktop application \ | | stand-alone/JavarvBasic (14.77%)
P rss-pLussshiny (39.6%)
o R statistical programming language P cytoscape (1.68%)
: : Ween 2.35%)
- Key considerations: Wl eytnon (1.66%)
. CIC++/CH (2.35%)
o Type of analysis (ORA, GSEA) =Mmmwm o
o Database integration Wlcataxy (0:34%)

o Ease of use
FEA tools published 2001-2021 by platform

o  Which species you are studying Xie et al 2021

,‘,&;’)
*

o) SYDNEY
A
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Web platforms for FEA

Key advantages for using web platforms include: /ﬁmNG \\
- Simple user interface

- Database integration

Multiple Proteins by Names / Identifiers

Key disadvantages:

- Limited visualisation flexibility

- ‘Black box’ can affect reporting and reproducibility

- Not available to all species

g:Profiler
- T e B o
- Data security IR Sl .
# ;5 ¢ ¢ :
Ty F Qe -
%, Sog, o Y 4« y
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GUI tool

g:Profiler

STRING

Reactome

GSEA

GenePattern

WebGestalt

Enrichr

Metascape

DAVID

PANTHER

IPA

Databases

Several

STRING + several

Reactome

MSigDB

MSigDB

Several

Many

Several

Several

PANTHER,
Reactome, GO

IKB + others

Interface

Web

Web

Web

App

Web

Web

Web

Web

Web

Web

Licensed app

ORA
BG

v

GSEA

FIViz
app

Species
984

>12.5K + any
proteome

16

12 + custom

10

Some non-model

144

Notable for

Intuitive interface

Protein interaction networks;
non-model species

Pathways curated on
experimental data

Curated gene sets

Curated gene sets; many
functions

Visualisations; TPA

Extensive gene sets

Visualisations

Outdated interface

Curated pathways inferred
from phylogeny

Curated database



CO MMmMmon p |tfa l.l.S Urgent need for consistent standards in

functional enrichment analysis

Kaumadi Wijesooriyar', Sameer A. Jadaan(?, Kaushalya L. Pererag', Tanuveer Kaury',
Mark Ziemanng'*

B MOSt Web platforms for ORA do nOt 1 Deakin University, School of Life and Environmental Sciences, Geelong, Australia, 2 College of Health and
. . .« . Medical Technology, Middle Technical University, Baghdad, Iraq
emphasise the option for provision of
background gene list

* m.ziemann@ deakin.edu.au

Abstract

Gene set enrichment tests (a.k.a. functional enrichment analysis) are among the most fre-

- Can be difficult to obtain details sufficient quently used methods in computational biology. Despite this popularity, there are concerns
f t d d . b . '. t that these methods are being applied incorrectly and the results of some peer-reviewed pub-
orre pO ra ng andre p roaucipiu y lications are unreliable. These problems include the use of inappropriate background gene

lists, lack of false discovery rate correction and lack of methodological detail. To ascertain
the frequency of these issues in the literature, we performed a screen of 186 open-access
research articles describing functional enrichment results. We find that 95% of analyses
using over-representation tests did not implement an appropriate background gene list or
did not describe this in the methods. Failure to perform p-value correction for multiple tests
was identified in 43% of analyses. Many studies lacked detail in the methods section about
the tools and gene sets used. An extension of this survey showed that these problems are
not associated with journal or article level bibliometrics. Using seven independent RNA-seq
datasets, we show misuse of enrichment tools alters results substantially. In conclusion,
most published functional enrichment studies suffered from one or more major flaws,
highlighting the need for stronger standards for enrichment analysis.

https://doi.org/10.1371/journal.pcbi. 1009935

AUStrO“Oh MONASH THE UNIVERSITY OF
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https://doi.org/10.1371/journal.pcbi.1009935

R programming language for FEA

Key advantages for using R: Key disadvantage:
- Saved code provides thorough reproducibility - Steeper learning curve
- Dedicated FEA packages available to simplify - Can be slower than native web tools
analysis (external database calls depend on

your local internet speed)

- High flexibility and parameter control
- Comprehensive plot options

- Can be used for non-model species which lack
available web databases

- Can be performed offline, for maximum data
security

Australian @ MONASH
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Integrated development environments for R

e View Plots Session Buld Debug Profile Tools Help

- |IDEs help simplify working in R -1 61 5 |5 s
| nonmodel_FEA_clusterProfiler GO KEG...* @ Pezzini RRmd 7 Environment History Connections Tutorlal
KntonSave |/ A @Kk - - |- HRn - B- @ H To Console: Tosouce @ o
Visual Outine  Strictest_enrichment <- enricher(
. . gene = strictest_annotated_DEGs,
. report annotation per wet ) (v ) (a1) | Repiace Reptace || a1 pvaluecutoff = 0.05,
- opular choices include: b L
. background_genes,
489 | 10,
490 500,
451 oy z oo tern2gene,

H 493 # perforn ORA with Clusterprofiler’s ‘enricher’ function
- uailo 8 )
455 R enrichent <= enricher( # Extract results. This will apply the p value filter. you need
496 gene - strictest_annotated DEGs, Strictest_enrichnent_filt <- as.data. frame(strictest_enrichnent)
s # report number of significant enrichments

497 pvalueCutoff = 0.05,
498 padjustMethod - "BH", cat("Number of significant enrichments:", nrow(strictest_enrichm
# Print the first few lines

499 universe - background_genes,
20 e L head(strictest_enrichment_fi1t)

- O e Ol e tiermzatne cnetplot(strictest_enrichment, showCategory = 10, cex_label_gene
503 TERMINAME - go_term2name’ cnetplot(strictest_enrichnent, showCategory = 15, cex_label_gene
504 ) B strictest_enrichment <- pairwise_termsim(strictest_enrichment)
505 # plot
506 # Extract results. This will apply the P value filter. you need to convert the output to dataframe for the P value filter to be emapplot(strictest_enrichnent, showCategory = 15, max.overlaps =

applied <rricroct aneichment

507 enrichment_filt < as.data.frame(enrichment)

- o Fies Plots Packages Help Viewsr Presentation
509 # report number of significant enrichments A z00m Bepon - O &
510 cat("Number of significant enrichments:*, nrow(enrichment_filt), "\n") S
o p——— deva“ﬁ"‘j’“/com.fcaﬁon
512 # print the first few lines
513 head(enrichment_filt) growoosan heragpcation
A e — mcosa catabolic proce]

L-fucose metaboli

s Ao

L-fucose catab)
4 epidermis.dd

491 @ RnORA:

Console Terminal - Render - Background Jobs —
R 44.1 . ~/PIPE-5119-enrichment-workshop/axolot] —
> enrichment S » comifi
* ventricular cardiac muscle tissue devel
# over-representation test - 23
* pres—
#...Gorganism  UNKNOWN
#...Gontology  UNKNOWN
#...agene chr [1:145] - 144" 307" 8" g o
#...pvalues adjusted by 'BH' with cutoff <0.05
#...91 Enr\(hed terms found Avgxsoo0ms
data.frane’s 91 obs. of 9 varizble -
chr 048821 "Go: 0070268” "G0:0031424" "G0:0019317

S Des(nvllon chr e ylhn ocyte development” "cornification" "ker: aumza[vmv” "fucose catabolic process"
$ GeneRatio : chr "7/145" "7/145" "7/145" "5/145 [ ——
S BgRatio 1 chr  "45/15072" "46/15072" "48/15072" 13/15072" Loy / I}

pvalue num 2.20e-07 2.58e-07 3.49e-07 5.96e-07 5.96e-07 il / [ ¥

.adjust num  0.000266 0.000266 0.000266 0.000266 0.000266 J / \

@lie i num 0.000242 0.000242 0000242 0.000242 0.000242 oo [
5 57 J \
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R Tool

clusterProfiler

gprofiler2

enrichR

WebGestaltR

fgsea

STRINGdb

ReactomePA

topGO

Databases

Several

Several

Several

Several

MSigDB

STRING

Reactome

GO

ORA Network

ORA BG GSEA analysis Species
v/ v/ v/ - >10 K (KEGG)
v v - = 984
v/ X - - 7
v v v v 12 + custom
_ - v/ = 3
v/ v/ - v >125K
v/ v/ v/ - 16
v/ v/ - - 20

Notable for

Many functions for integrated
DBs; companion plotting tool
‘enrichplot’; novel species

Quick enrichment over many DBs
in one command

Extensive gene sets

Topology-based pathway
analysis (TPA); visualisations and
reports; novel species

Curated gene set analysis of
human and mouse

Protein interaction networks;
non-model species

Reactome DB analysis of model
species

Improve the specificity of GO
enrichment results



Suggested decision tree: GUIl or R

Highly atais no ganismis n
protected highly ailable on w
data protected platforms

No
esktop
pplication
SEA, IP.

RING (we
stom proteo

nnotation an
FEA

OK with N
\ using/learning R?

b or deskt
apps

Organism is
ailable on w
platforms




Tool choice will impact results

- Like any statistical analysis, small changes in method can lead to different results
- All analysis tools are doing things slightly differently, eg

o Different underlying statistical analysis method

O Different databases

o Different database versions

o  Different P value adjustment method

O Different default parameters

- Your gene list processing and arbitrary filtering choices will also impact results

Australian @ MONASH
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Different input filtering affects results

235
175
0

PO.O1FC15 : P 0.001 FC 2
P 0.05FC 2

P0.01FC1.5

Size of each list

v

g:Profiler over-representation
2 analysis of GO terms

jvenn: Bardou et al 2014
data: Pezzini et al 2016
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Different tools running on the same database
can also give different results

g:Profiler

Tool

Statistical
test

5 Padj cutoff

FDR method

Background

jvenn: Bardou et al 2014
data: Pezzini et al 2016

Australian @ MONASH
BioCommons @ University

UNIVERSITY OF

Y

g:Profiler Reactome

Hypergeometric  Hypergeometric

Default (0.05) Default (0.05)

Default (g:SCS) Default (BH)

Default Default (?)
(annotated
genes)




Different tools running on the same database
can also give different results

g:Profiler
Tool
Statistical
test
5 Padj cutoff
BH FDR method
Background
jvenn: Bardou et al 2014
data: Pezzini et al 2016
Aus‘tra“on MONASH '7‘;/'—% THE UNIVERSITY OF
. BioCommons @ University oo/ SYDNEY
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g:Profiler

g:Profiler Reactome

Hypergeometric  Hypergeometric

Default (0.05) Default (0.05)

Default (g:SCS) Default (BH) BH
Default Default (?)

(annotated

genes)



How to manage conflicting results

This can make it hard to know which results to trust

If you: “We believe the right attitude on the functional

enrichment analysis is to treat it as a guidance
to filter and rank pathways and processes, but

- Apply robust methods

- Use sensible parameter choices not to religiously believe in the absolute

numbers”
- Interpret your results in their biological context

Metascape, 2019

the results will be as valid as any other regardless of which platform you use

%, SYDNEY
___
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https://metascape.org/blog/?p=163

Robust and reproducible methods

To ensure robust methods, keep these things in mind:

ely maintai
re regularly upd
abases

~~ Report all methodological \

details in your methods to ensure
reproducibility, eg:

- Tool and tool version

- DB and DB version

- Filter thresholds

- Padj method

- Optional parameters applied
- Include background gene list

- Copy of R code/link to repository /

B2 e vaversity o
L‘ ;g.,, SYDNEY

Nl /
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Validating FEA results

- Cross-check findings with existing biological knowledge

- Are the enriched pathways relevant to your tissue type or biological condition?
- Validate results with independent datasets or alternative methods

- Consistent significant enrichment across multiple methods supports validity

- Reduce redundancy in terms (eg through REVIGO for GO terms) to help highlight the most
relevant processes

- Explore FEA workflow benchmarking, a complex but worthy topic, eg GSEABenchmarkeR
(Geistlinger at al 2020)

- Where possible, use laboratory validation (e.g., gPCR, Western blotting, knockout studies)
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5 things to remember when doing FEA

methods will retu

, as long as your metho
ults should be validate

roducibility!

BiEioqicaL ot terpret your results in their biological context!

ional categories are often broad and redundant. Use the FEA results
, hot the end point. Use visualisations to make sense of it all. Validat
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Further reading

- Zhao and Rhee 2023: Interpreting omics data with pathway enrichment analysis

- Gable et al 2022: Systematic assessment of pathway databases, based on a diverse collection of user-submitted
experiments

- Mubeen et al 2019: The Impact of Pathway Database Choice on Statistical Enrichment Analysis and Predictive
Modeling

- Timmons et al 2015: Multiple sources of bias confound functional enrichment analysis of global -omics data

- Wijesooriya et al 2022: Urgent need for consistent standards in functional enrichment analysis

- Reimand et al 2019 (Nature Protocol): Pathway enrichment analysis and visualization of omics data using g:Profiler,
GSEA, Cytoscape and EnrichmentMap

- Geistlinger et al 2020: Toward a gold standard for benchmarking gene set enrichment analysis
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https://www.sciencedirect.com/science/article/abs/pii/S0168952523000185
https://academic.oup.com/bib/article/23/5/bbac355/6695266
https://academic.oup.com/bib/article/23/5/bbac355/6695266
https://pmc.ncbi.nlm.nih.gov/articles/PMC6883970/#:~:text=Pathway%2Dcentric%20approaches%20are%20widely,the%20context%20of%20precision%20medicine
https://pmc.ncbi.nlm.nih.gov/articles/PMC6883970/#:~:text=Pathway%2Dcentric%20approaches%20are%20widely,the%20context%20of%20precision%20medicine
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0761-7
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009935
https://www.nature.com/articles/s41596-018-0103-9
https://www.nature.com/articles/s41596-018-0103-9
https://academic.oup.com/bib/article/22/1/545/5722384?login=false

