
Peridigm

Peridigm Development Guide

For Peridigm versions ≥ 1.4.1

Martin Rädel and Christian Willberg

DLR für Luft- und Raumfahrt
Deutsches Zentrum

German Aerospace Center

Document Identification ii

DLR German Aerospace Center
Composite Structures and Adaptive Systems
Structural Mechanics
Dr. Tobias Wille

38108 Braunschweig
Germany

Tel: +49 (0)531 295-3701
Fax: +49 (0)531 295-3702
Web: http://www.dlr.de/fa/en

0
Tel: +49 (0)531 295-2048
Fax: +49 (0)531 295-2232
Mail: martin.raedel@dlr.de

Repository
This document is part of the PeriDoX repository.
The complete repository can be found at:
https://github.com/PeriDoX/PeriDoX

Citing
When citing this document, please reference the following:
Martin Rädel, Christian Willberg, Peridigm Users Guide, DLR-IB-FA-BS-2018-23, DLR
Report, 2018

Disclaimer
The contents of this document are provided “AS IS”. This information could contain tech-
nical inaccuracies, typographical errors and out-of-date information. This document may
be updated or changed without notice at any time. Use of the information is therefore
at your own risk. In no event shall the DLR be liable for special, indirect, incidental or
consequential damages resulting from or related to the use of this document.

DLR
– Peridigm Development Guide

http://www.dlr.de/fa/en
http://www.dlr.de/fa/en
https://github.com/PeriDoX/PeriDoX
https://github.com/PeriDoX/PeriDoX

Copyright © 2018 German Aerospace Center (DLR)

Permission is granted to copy, distribute and/or modify this document under the terms
of the BSD Documentation License. A copy of the license is included in the section
entitled “BSD Documentation License”.

Dieses Dokument darf unter den Bedingungen der BSD Documentation License vervielfältigt,
distribuiert und/oder modifiziert werden. Eine Kopie der Lizenz ist im Kapitel “BSD
Documentation License” enthalten.

Contents

List of Figures v

List of Tables vi

List of Symbols vii

1. About 1
1.1. Scope . 1

2. Peridigm - Development Guide 2
2.1. Program structure . 2

2.1.1. Remark on data structure . 2
2.1.2. Numbering . 2
2.1.3. Model evaluator . 2
2.1.4. Paralellization . 4
2.1.5. Solver . 4
2.1.6. Limitations and Lessons learned 4

2.2. Additional features . 12
2.2.1. How to read the Exodus files with Python 12
2.2.2. How to include Peridigm and the Trilinos environment in Eclipse . 15
2.2.3. Doxygen support for Peridigm . 16

3. Peridigm - Documentation of Implementations 19
3.1. How to document . 19
3.2. Implemented damage models . 20

3.2.1. Energy based damage model . 20
3.3. Implemented time integration methods . 25

3.3.1. Numerical damping added to Velocity-Verlet 25

Appendix A. This document 29
A.1. Repository . 29
A.2. Typesetting . 29

BSD Documentation License 30

DLR
– Peridigm Development Guide iv

List of Figures

2.1. Illustration of core data. 4

DLR
– Peridigm Development Guide v

List of Tables

2.1. Data types . 6
2.2. Size of data types . 7

DLR
– Peridigm Development Guide vi

List of Symbols

DLR
– Peridigm Development Guide vii

1. About

1.1. Scope

This document is supposed to be a documentation how to develop in Peridigm.

DLR
– Peridigm Development Guide 1

2. Peridigm - Development Guide

2.1. Program structure

The whole analysis is organized in

./src/core/Peridigm.cpp

Here, the gobal data structure, the different solvers and the model evaluation calls can
be found.

2.1.1. Remark on data structure

In Peridigm bonds exists only as neighbor. As a consquence the information of an bond
P1P2 is not necessarily equal to P2P1, cf. Figure 2.1. Let assume P1 has a damage model
and P2 not. As result in Peridigm the bond P1P2 can be deleted, but not the bond
P2P1.

2.1.2. Numbering

There is no unique numbering within Peridigm. The nodenumber is the offset value to
a pointer address. Therefore, a cross reference to another node is hard to create. The
general structure is the following

It must be noted that this structure exists also if multiple cores are used. However, only
parts of the loop are used in that case. The bond numbering is counted continuously
within the inner loop j. Based on this structure, it is clear that the bond ij is not equal
to ji.

2.1.3. Model evaluator

The evaluation of algorithm 1 is done in Peridigm.cpp

modelEvaluator->evalModel(workset);

DLR
– Peridigm Development Guide 2

2. Peridigm - Development Guide 3

initialization;
updateDisplacementsToBlocksAndCores;
for blockID ← 1 to nblocks do

for i← 1 to nnodes do
for j ← 1 to nneighbors do

calculateDamages;
bondNumber++;

end
end
bondNumber = 0; for i← 1 to nnodes do

for j ← 1 to nneighbors do
calculateBondForces;
bondNumber++;

end
end
if (contact) calculateContact;

end
synchronizeForcesInGlobalVector;
timeIntegrationInGlobalVector;

Algorithm 1: Perdigm data structure

This calls evaluation routines. If extra high level routines for evaluation are needed they
should be added in

./src/core/Peridigm_ModelEvaluator.cpp

./src/core/Peridigm_ModelEvaluator.hpp

The main model evaluator routine is split in three main parts. The first part calls the
damage model routine. There is a check if a block has damage model or not.

damageModel->computeDamage(dt,
numOwnedPoints,
ownedIDs,
neighborhoodList,
*dataManager);

The second part calls the material.

materialModel->computeForce(dt,
numOwnedPoints,
ownedIDs,
neighborhoodList,
*dataManager);

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 4

The third part calls the contact manager. There is a check if contact is available or
not.

workset->contactManager->evaluateContactForce(dt);

2.1.4. Paralellization

Figure 2.1 shows a simple example how the paralallization works. It has a huge impact
to the data exchange and communication between points. The lines between the three
points are bonds. It means that P1 has two neigbors and P2 or P3 only one.

P1

P2

P3

Figure 2.1.: Illustration of core data.

If this problem is parallelized in Peridigm the maximum core number is three. As result
each core gets one point as information and the neighbor information as ghost. Ghost
means that partially data is synchronized and therefore available for all cores. In case of
Peridigm the forces, deformation states and temperatures are synchronized.

Damages are not synchronized. This is important. It means that a damage have to be
calculated based on the information at one point using his neighborhood.

As shown in algorithm 1 the synchronization is done outside the model evaluator. There-
fore, if a data exchange between the damage and material routines are needed, an
additional synchronization has to be added. For further information see subsubsec-
tion 2.1.6.1.

2.1.5. Solver

not all solvers support everything

2.1.6. Limitations and Lessons learned

data between different blocks are only partially available and hard to transfer; e.g.
the bond energy is calculated from both sites of the bond. To transfer the energy

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 5

the datamanger is used. If multiple blocks exists no consistent datamanager exists
and the transfer method does not work.

working with MPI paralellization have to take into account, that not all data is
available. Each node is stored and his neighbors are ghosts. Ghost means that the
node information is exchangeable.

Peridigmis compiled multiple times, make sure that all files are compiled. If new
files are included, time stamp differences could make a problem

field ownedID has no meaning; Its been used, but not everywhere

not all solvers support everything

work with minimum of 2 cores to avoid synchronization errors

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 6

2.1.6.1. Peridigm data structure

Peridigm is structured as shown in algorithm 1. All data is read and stored in blocks. In
blocks the material and damage model as well as the horizon is defined. Peridigm reads
the data blockwise and store it in the so called data manager.

2.1.6.2. Datamanager

Description

The datamanager allows different types of variables and where to find it. Table 2.1
shows the possible options for the definition. All values are of type double. The NODE
and ELEMENT are point data. In ParaViewthe data is handled differently. NODE is
exported as POINT data and ELEMENT data is exported as cell data.

The data is stored via MPI at each core. There is so called "ghost" data which is
the connection between two computer cores and is the only data which exists at both
computer cores.

Table 2.1.: Data types

Types Time Length Description

ELEMENT CONSTANT,
TWO_STEP

SCALAR, VECTOR, TENSOR data stored as cell data
for ParaView

BOND CONSTANT,
TWO_STEP

SCALAR connection between two
points (12 and 21 are
separate entries)

NODE CONSTANT,
TWO_STEP

SCALAR,VECTOR, TENSOR points

To create a datamanager field the following commands have to be defined.

m_damageFieldId = fieldManager.getFieldId(PeridigmNS::PeridigmField::
ELEMENT, PeridigmNS::PeridigmField::SCALAR, PeridigmNS::PeridigmField
::TWO_STEP, "Damage");

m_fieldIds.push_back(m_damageFieldId);

The different time values are

PeridigmField::STEP_NP1, PeridigmField::STEP_N, PeridigmField::STEP_NONE

Peridigm checks if the datafield exists and if not creates it with the defined id. To get
the data you have to call

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 7

double *bondDamage;
dataManager.getData(m_bondDamageFieldId, PeridigmField::STEP_NP1)->

ExtractView(&bondDamage);

The value you will get are a pointer with different lengths. The lengths are given on
Table 2.1 and given in Table 2.2.

Table 2.2.: Size of data types

Types Length Factor Description

ELEMENT number of points
npoints

- data stored as cell data
for ParaView

BOND number of points
npoints

-

NODE number of bonds
nbonds

-

SCALAR 1
VECTOR 2
TENSOR 9
CONSTANT - 1
TWO_STEP 2

Example

The size of the damage field is

size = ELEMENT · SCALAR · TWO_STEP = npoints · 1 · 2 (2.1)

Data synchronization

The data synchronization can be done in

./src/core/Peridigm.cpp

./src/core/Peridigm.hpp

Examplery, this will be shown for the damageModelField. This field is used to synchronize
data for the energy criterion. To do a synchronization the following steps has to be done.
In Peridigm.hpp you have to define a field id for your datamanager field

// field ids for all relevant data
int damageModelFieldId;

and you have to define a global vector

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 8

//! Global vector for damage model data
Teuchos::RCP<Epetra_Vector> damageModelVal;

In a second step you create a datamanager field in Peridigm.cpp as

damageModelFieldId = fieldManager.getFieldId(PeridigmField::NODE,
PeridigmField::VECTOR, PeridigmField::TWO_STEP, "Damage_Model_Data");

auxiliaryFieldIds.push_back(damageModelFieldId);

Due to the low number of comments the search tag to find the position is

// Create field ids that may be required for output

The datamanager field is the interface to the core data. In the next step the synchro-
nization vector has to be defined. The search tag is

// Create mothership vectors

Mothership in this context mean global data off all cores. This data includes for example
the forces or displacements. Dependent on the synchronization data the user could
choose between oneDimensionalMap, threeDimensionalMap and nDimensionalMap. Two
modifications have to be done. First the number of fields has to be adapted. In the
example from ten

threeDimensionalMothership = Teuchos::rcp(new Epetra_MultiVector(*
threeDimensionalMap, 10));

to eleven

threeDimensionalMothership = Teuchos::rcp(new Epetra_MultiVector(*
threeDimensionalMap, 11));

Next the field itself has to be defined.

damageModelVal = Teuchos::rcp((*threeDimensionalMothership)(9), false);
// Damage Model data which has to be synchronized

The name of the vector must be the same as the defined one in the Peridigm.hpp. Only
then the vector can be used anywhere in Peridigm.cpp.

To synchronize the data the following two loops have to be used at the correct positions.
The first loop is for the core data collection.

for(blockIt = blocks->begin() ; blockIt != blocks->end() ; blockIt++){
scratch->PutScalar(0.0);
blockIt->exportData(*scratch, damageModelFieldId, PeridigmField::

STEP_NP1, Add);
damageModelVal->Update(1.0, *scratch, 1.0);

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 9

}

The data is stored within the scratch field and then added to the mothership vector. The
mothership vector data is updated as

mothership =

ncores∑
i

vscratchi (2.2)

Taking the simple three point problem of Figure 2.1 should illustrate the synchronization
of the force vector

f1
f2
f3
f4
f5
f6

 =



f core11

f core12

f core13

f core14

f core15

f core16

 +



f core21

f core22

f core23

f core24

0
0

 +



f core31

f core32

0
0

f core35

f core36

 (2.3)

As one can see, the summation leads to the transfer of information from the neighbor
to the point. If this is not necessary the neighbor data must be zero to avoid
unreasonable results.

To map the values back to the cores the following loop have to be used.

for(blockIt = blocks->begin() ; blockIt != blocks->end() ; blockIt++)
{

blockIt->importData(*damageModelVal, damageModelFieldId,
PeridigmField::STEP_NP1, Insert);
}

Remark - Data synchronization

It is not possible to synchronize CONSTANT datatypes.

Data export

The data is exported in a ParaViewreadable result. Not all fields of the data man-
ager could be exported. From my understanding only data which is defined in the
Peridigm.cpp data manager and synchronized with the cores could be exported. This
can be done in

./src/io/mesh_output/Field.h

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 10

If an user export should be added the name of the value, defined in the datamanager has
to be added in the following list. For example the field DAMAGE could be found in the
list.

enum Type {
VOLUME=0,
DENSITY,
GID,
BLOCK_ID,
PROC_NUM,
WEIGHTED_VOLUME,
RADIUS,
NEIGHBORHOOD_VOLUME,
NUMBER_OF_NEIGHBORS,
CRITICAL_TIME_STEP,
DILATATION,
DAMAGE,
CRITICAL_STRETCH,
E_DP,
E_DB,
PLASTIC_CONSISTENCY,
NORM_DEVIATORIC_FORCE_STATE,
NUM_NEIGHBORS,
FLUID_PRESSURE_Y,
FLUID_PRESSURE_U,
FLUID_PRESSURE_V,
FLUX,
FLUX_DENSITY,
COORDINATES,
TANGENT_REFERENCE_COORDINATES,
DISPLACEMENT,
CURRENT_COORDINATES,
VELOCITY,
ACCELERATION,
BC_MASK,
FORCE,
FORCE_DENSITY,
CONTACT_FORCE,
CONTACT_FORCE_DENSITY,
RESIDUAL,
BOND_DAMAGE,
PARTIAL_VOLUME,
TYPE_UNDEFINED,
ANGULAR_MOMENTUM,

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 11

LINEAR_MOMENTUM,
KINETIC_ENERGY,
STRAIN_ENERGY,
STRAIN_ENERGY_DENSITY,
INTERFACE_PROXIMITY,
HORIZON

};

As reminder not all information is available in all analysis, e.g. the DILATATION exists
only Peridynamic solid, the damage index exists only if a damage model is active.

Remark - Export data routines

In

./src/compute

are several routines which provide the export manager with extra data. For example the
deformation gradient of the correspondence formulation is calculated and provided. It is
also exported in Field.h. How it works is an open point.

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 12

2.2. Additional features

2.2.1. How to read Exodus files with Python

In order to read the output files and evaluate the results indiviually Python has to be
installed. Furthermore, the netCDF module for Python is required. The module mat-
plotlib should be installed as well, since Python is able to plot data.
Normally, it makes sense to write an additional output file with Peridigm and store
the variables of interest there. The additional output file is defined in the input file
as Output2 in the following. We take the input from ViscoplasticNeedlemanFullyPre-
scribedTension_NoFlaw.xml as an example.

<ParameterList name="Compute Class Parameters">
<ParameterList name="Max Von Mises Stress">

<Parameter name="Compute Class" type="string" value="Block_Data"/>
<Parameter name="Calculation Type" type="string" value="Maximum"/>
<Parameter name="Block" type="string" value="block_1"/>
<Parameter name="Variable" type="string"
value="Von_Mises_Stress"/>
<Parameter name="Output Label" type="string"
value="Max_Von_Mises_Stress"/>

</ParameterList>
<ParameterList name="Min Von Mises Stress">

<Parameter name="Compute Class" type="string" value="Block_Data"/>
<Parameter name="Calculation Type" type="string" value="Minimum"/>
<Parameter name="Block" type="string" value="block_1"/>
<Parameter name="Variable" type="string"
value="Von_Mises_Stress"/>
<Parameter name="Output Label" type="string"
value="Min_Von_Mises_Stress"/>

</ParameterList>
</ParameterList>

<ParameterList name="Output1">
<Parameter name="Output File Type" type="string"
value="ExodusII"/>
<Parameter name="Output Filename" type="string"
value="ViscoplasticNeedlemanFullyPrescribedTension_NoFlaw"/>
<Parameter name="Output Frequency" type="int" value="50"/>
<ParameterList name="Output Variables">

<Parameter name="Volume" type="bool" value="true"/>
<Parameter name="Displacement" type="bool" value="true"/>
<Parameter name="Velocity" type="bool" value="true"/>
<Parameter name="Force" type="bool" value="true"/>

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 13

<Parameter name="Number_Of_Neighbors" type="bool"
value="true"/>
<Parameter name="Hourglass_Force_Density" type="bool"
value="true"/>
<Parameter name="Deformation_Gradient" type="bool"
value="true"/>
<Parameter name="Left_Stretch_Tensor" type="bool"
value="true"/>
<Parameter name="Rotation_Tensor" type="bool" value="true"/>
<Parameter name="Shape_Tensor_Inverse" type="bool"
value="true"/>
<Parameter name="Unrotated_Rate_Of_Deformation" type="bool"
value="true"/>
<Parameter name="Cauchy_Stress" type="bool" value="true"/>
<Parameter name="Unrotated_Cauchy_Stress" type="bool"
value="true"/>
<Parameter name="Equivalent_Plastic_Strain" type="bool"
value="true"/>
<Parameter name="Von_Mises_Stress" type="bool" value="true"/>

</ParameterList>
</ParameterList>
<ParameterList name="Output2">

<Parameter name="Output File Type" type="string"
value="ExodusII"/>
<Parameter name="Output Filename" type="string"
value="ViscoplasticNeedlemanFullyPrescribedTension_NoFlaw"/>
<Parameter name="Output Frequency" type="int" value="1"/>
<ParameterList name="Output Variables">

<Parameter name="Max_Von_Mises_Stress" type="bool"
value="true"/>
<Parameter name="Min_Von_Mises_Stress" type="bool"
value="true"/>
<Parameter name="Global_Kinetic_Energy" type="bool"
value="true"/>

</ParameterList>
</ParameterList>

The file ViscoplasticNeedlemanFullyPrescribedTension_NoFlaw.e contains all quanti-
ties with respect to Output1 and stores those for at the global coordinates. The file
ViscoplasticNeedlemanFullyPrescribedTension_NoFlaw.h contains global quantities and
computed quantities defined by the user with respect to Output2. When the user starts
the interactive Python interface, the following steps should be done at first.

import netCDF4

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 14

import numpy as np
import matplotlib.pyplot as plt
nc = netCDF4.Dataset(
'ViscoplasticNeedlemanFullyPrescribedTension_NoFlaw.h')

First, load the necessary modules and then the exodus file (here, the output of a Peridigm
test is chosen). The data is loaded then to the field nc. This field shows all subfields
containing different variables by using

nc.variables

It gives an overview about all information stored in the output file and the size of the
fields. Now, the information of the fields can be stored in python variables. In this
example, we want to plot the stresses over the strains. In the input file the maximum
and minimum von Mises stresses have been defined to be written to the output. The
maximum stresses are at the first and the minimum stresses at the second position. This
position is the same in the output field vals_glo_var. This field can be accessed as

var = nc.variables['vals_glo_var']

Now all maximum stresses are in [:,0] and all minimum stresses are in [:,1]. These can
be written to distinct fields.

vm_max = var[:,0]
vm_min = var[:,1]

Last, we need the time steps. The way of getting the values is the same.

time_steps = nc.variables['time_whole']
dt = time_steps[:]

Since the example has a constant strain rate it can be calculated easily by

eng_strain_Y = dt * 0.001 /1.0e-8

Then the plot can be shown with the following commands

plt.plot(eng_strain_Y, vm_max, eng_strain_Y, vm_min)
plt.ylabel("Max/Min von Mises Stress")
plt.show()

For further plot options look at
https://matplotlib.org/users/pyplot_tutorial.html and a detailed explanation is
given at
http://johntfoster.github.io/posts/
extracting-exodus-information-with-netcdf-python.html.

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 15

2.2.2. How to include Peridigm and the Trilinos environment in Eclipse

Eclipse is a powerful editor for C++ or Java projects. Peridigm and its libraries can also
be imported into the editor. The steps are listed as follows.

File → Import → C/C++ → Existing Code as Makefile Project

Existing Code Location: Browse to ∼/<Path to Peridigm directory>

Languages: C++

Choose ’Linux GCC’ as toolchain

Highlight the Peridigm project in the project manager window pane and right-click
on ’properties’

– C/C++ Build: untick Generate Makefiles automatically

– C/C++ Build → Environment: Add the environmental variables

∗ Name: BOOST_DIR and Value: ∼/<Path to Boost directory>

∗ Name: HDF5_DIR and Value: ∼/<Path to HDF5 directory>

∗ Name: NETCDF_DIR and Value: ∼/<Path to NETCDF directory>

∗ Name: TRILINOS_DIR and Value: ∼/<Path to Trilinos directory>

Leave PWD and CWD as default

– C/C++ General → Paths and Symbols: Add the include and libary paths of
all external libraries. Choose the following include paths:

∗ ∼/<Path to Boost directory>/include/boost

∗ ∼/<Path to HDF5 directory>/include

∗ ∼/<Path to NETCDF directory>/include

∗ ∼/<Path to Trilinos directory>/include

∗ ∼/<Path to OpenMPI directory>/include

And choose the following library paths:

∗ ∼/<Path to Boost directory>/lib

∗ ∼/<Path to HDF5 directory>/lib64

∗ ∼/<Path to NETCDF directory>/lib64

∗ ∼/<Path to Trilinos directory>/lib

∗ ∼/<Path to OpenMPI directory>/lib64

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 16

Peridigm can be build in Eclipse and all changes are incorporated when the respec-
tive file is saved before building the project.

2.2.3. Doxygen support for Peridigm

The doxygen support shows the structure and descriptions of the code. Doxygen can be
downloaded as a source file or can be installed directly from the GIT repository, if GIT
is installed. The following lines show how to install doxygen with GIT support.

git clone https://github.com/doxygen/doxygen.git
cd doxygen
mkdir build
cd build
cmake -G \dq Unix Makefiles\dq ..
make
make install

Then the doxygen executable is linked and available as a name via the shell. The doxygen
usage is very simple. The actual Peridigm code is located in the src directory. Enter
the source directory and execute Doxygen.

doxygen -g <Doxygen configuration file name>

The option -g implies to generate a configuration file and its file name can be set arbi-
trarily. If the name isn’t set by the user, Doxygen will create it automatically. Now, the
configuration file can be adapted to fit the desired output. Here, the following options
are recommended to change.

PROJECT_NAME = \dq Peridigm\dq
OUTPUT_DIRECTORY = <Path to output directory>
CREATE_SUBDIRS = YES
ALWAYS_DETAILED_SEC = YES
INLINE_INHERITED_MEMB = YES
FULL_PATH_NAMES = YES
EXTRACT_ALL = YES
SOURCE_BROWSER = YES
INLINE_SOURCES = YES
RECURSIVE = YES

All options are explained more detailed in the Doxygen manual and also in the configu-
ration file. Then, the configuration file is executed by

doxygen <Doxygen configuration file name>

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 17

A HTML and Latex folder are created under the output directory path. The latex script
refman.pdf can be created by executing the make file in the folder by make. Otherwise,
a DVI, PS or PDF can be created by a Latex editor. The HTML folder contains all
information about the header and classes. The files can be viewed in a common browser,
which is able to display HTML.

DLR
– Peridigm Development Guide

2. Peridigm - Development Guide 18

Own damage models

Peridigm is programmed in C++. All the essential vectors and matrices are stored as
pointer. It must be noted that no Voigt notation is used. Therefore, the stress and strain
matrices are stored in a vector of length 9. The file Peridigm_DamageFactory allows the
definition of the material. Here, the name in the .xml datasheet and the corresponding
C++ file are defined.

DLR
– Peridigm Development Guide

3. Peridigm - Documentation of
Implementations

3.1. How to document

list all edited files

list all edited regions within the files

explain changes

DLR
– Peridigm Development Guide 19

3. Peridigm - Documentation of Implementations 20

3.2. Implemented damage models

3.2.1. Energy based damage model

3.2.1.1. Changed files

./src/core/Peridigm.cpp

./src/core/Peridigm.hpp

./src/core/Peridigm_ModelEvaluator.cpp

./src/core/Peridigm_ModelEvaluator.hpp

./src/damage/Peridigm_DamageModelFactory.hpp

./src/damage/Peridigm_EnergyReleaseDamageModel.cpp

./src/damage/Peridigm_EnergyReleaseDamageModel.hpp

./src/materials/Peridigm_ElasticMaterial.cpp

./src/materials/Peridigm_Material.cpp

./src/materials/Peridigm_Material.hpp

3.2.1.2. Documentation of changes

Peridigm.cpp

The following changes had been made.

damageModelFieldId = fieldManager.getFieldId(PeridigmField::NODE,
PeridigmField::VECTOR, PeridigmField::TWO_STEP, "Damage_Model_Data");

auxiliaryFieldIds.push_back(damageModelFieldId);

The damage model field is defined. It stores the dilation of all nodes. If defined in
Peridigm.cpp it can be used to synchronize the data between cores.

threeDimensionalMothership =
Teuchos::rcp(new Epetra_MultiVector(*threeDimensionalMap, 11));
damageModelVal = Teuchos::rcp((*threeDimensionalMothership)(9), false);
// Damage Model data which has to be synchronized

The “damageModelVal” vector is a so called mothership vector. It is used to synchronize
the data. It is of length node time three. It includes the dilation, the bulk modulus
divided by the weighted volume and the shear modulus divided by the weighted volume.

for(blockIt = blocks->begin() ; blockIt != blocks->end() ; blockIt++){
if (blockIt->getMaterialModel()->Name() == "Elastic"){

damageModelVal->PutScalar(0.0);
blockIt->

importData(*damageModelVal, damageModelFieldId,

DLR
– Peridigm Development Guide

3. Peridigm - Documentation of Implementations 21

PeridigmField::STEP_NP1, Insert);
}

}

The “damageModelFieldId” data is set to zero for all cores.

modelEvaluator->updateDilatation(workset);

The model evaluator is started. Here, the Peridigm_ModelEvaluator.cpp is called and
the dilatation is updated.

for(blockIt = blocks->begin() ; blockIt != blocks->end() ; blockIt++){
if (blockIt->getMaterialModel()->Name() == "Elastic"){

blockIt->importData(*damageModelVal, damageModelFieldId,
PeridigmField::STEP_NP1, Insert);

}
}

The dilation is exported to the global synchronization vector.

for(blockIt = blocks->begin() ; blockIt != blocks->end() ; blockIt++){
if (blockIt->getMaterialModel()->Name() == "Elastic"){

blockIt->importData(*damageModelVal, damageModelFieldId,
PeridigmField::STEP_NP1, Insert);

}
}

The dilation is copied back to the cores. At each core the dilation for each node and its
neighbors exists.

Peridigm.hpp

The following changes had been made.

//! Global vector for damage model data
Teuchos::RCP<Epetra_Vector> damageModelVal;

The code defines a global synchronization vector. This vector is needed to synchronize
the dilation between the cores.

int damageModelFieldId;

The field Id is defined to be usable anywhere in Peridigm.cpp.

DLR
– Peridigm Development Guide

3. Peridigm - Documentation of Implementations 22

Peridigm_ModelEvaluator.cpp

The following changes has been made.

void
PeridigmNS::ModelEvaluator::updateDilatation

(Teuchos::RCP<Workset> workset) const

An extra routine has been defined. The updateDilatation routine works only if Elastic
material is used. The reason is, that only the linear Peridynamic solid models calculate
the dilation. Therefore, the data structure only exists if such material is used. It can be
extended to other isotropic ordinary Peridynamic material if needed.

Peridigm_ModelEvaluator.hpp

The following changes had been made.

void updateDilatation(Teuchos::RCP<Workset> workset) const;

The updateDilatation routine is defined.

Peridigm_DamageModelFactory.cpp

The following changes had been made.

#include "Peridigm_EnergyReleaseDamageModel.hpp"

Include the damage model data files.

else if(damageModelName == "Critical Energy")
damageModel =

Teuchos::rcp(new EnergyReleaseDamageModel(damageModelParams));

Include the damage model if the option is set in the input deck.

invalidDamageModel += ", must be \"Critical Stretch\",
\"Time Dependent Critical Stretch\", \"Interface Aware\"
or \"Critical Energy\".\n";

Extended error log to print the damage model options for the user.

DLR
– Peridigm Development Guide

3. Peridigm - Documentation of Implementations 23

Peridigm_EnergyReleaseDamageModel.cpp

It is a new routine. It includes the routine “initialize” and “computeDamage”. Based on
the dilation at each node (ownId and neighborId) calculated in Peridigm_Material.cpp
the energy of each bond is calculated. If it exceeds a defined limit the bond fails and
the bondDamage value is set to 1. Due to the synchronization the bond damage in both
bond directions can be calculated identically.

Peridigm_EnergyReleaseDamageModel.hpp

It is a new routine. It defines all global values as data manager Ids or the influence
function as well as the callable sub routines.

Peridigm_ElasticMaterial.cpp

The following changes had been made.

int m_horizonFieldId = fieldManager.getFieldId(PeridigmField::ELEMENT,
PeridigmField::SCALAR, PeridigmField::CONSTANT, "Horizon");

m_fieldIds.push_back(m_horizonFieldId);

This is done to get a valid field ID for the horizon field at the specific core. If this is not
done, the included “Peridigm_ModelEvaluator.cpp” routine will throw an error.

Peridigm_Material.cpp

The following changes had been made.

void
PeridigmNS::Material::computeDilatation

The routine has been added. It is basically the compute_dilation routine from the
material_utilities.cxx. The difference is that the horizon is not constant. In the end for
each node the following values are stored.

damageModel[3*p] = *theta;
damageModel[3*p+1] = BM / (*m);
damageModel[3*p+2] = SM / (*m) ;

The dilatation *theta, the bulk modulus BM divided by the weighed volume *m and the
shear modulus SM divided by the weighed volume *m.

All this data is needed to determine the energy of the bond in both directions identi-
cally.

DLR
– Peridigm Development Guide

3. Peridigm - Documentation of Implementations 24

Peridigm_Material.hpp

The following changes had been made.

virtual void
computeDilatation(

const int numOwnedPoints,
const int* ownedIDs,
const int* neighborhoodList,
const double BM,
const double SM,
PeridigmNS::DataManager& dataManager) const;

An additional routine has been added to calculate the dilation in the Model_Evalua-
tor.cpp.

DLR
– Peridigm Development Guide

3. Peridigm - Documentation of Implementations 25

3.3. Implemented time integration methods

3.3.1. Numerical damping added to Velocity-Verlet

3.3.1.1. Theory

The theory for the Velocity-Verlet solver with damping is derived in the following. The
equations to compute position and velocity at the next time step without damping are
given by

xn+1 = xn + ∆t vn +
1

2
∆t2 an

vn+1 = vn +
1

2
∆t (an+1 + an) .

(3.1)

x denotes the position, ∆t the time increment, v the velocity, a the acceleration and
subscript n the time step number. The Velocity-Verlet algorithm with damping intro-
duces an additional parameter γ connected to the damping term and the velocity can be
described by

vn =
xn+1 − xn−1

2 ∆t
. (3.2)

Starting now with the Taylor expansion series

xn+1 = xn + ∆t vn +
1

2
∆t2 an +

1

6
∆t3ȧn +O(∆t4)

xn−1 = xn −∆t vn +
1

2
∆t2 an −

1

6
∆t3ȧn +O(∆t4)

(3.3)

and adding both equations gives the Verlet algorithm

xn+1 = 2xn − xn−1 + ∆t2an +O(∆t4) . (3.4)

Expressing the accerlation in terms of force F and mass m allows to introduce a damping
force G.

xn+1 = 2xn − xn−1 +
∆t2

m
(Fn − Gn) + O(∆t4) (3.5)

The damping force G is defined by a damping coefficient γ and the velocity

G(vn) = γ vn = γ
xn+1 − xn−1

2 ∆t
. (3.6)

Setting eq. (3.5) back by one time step leads to

xn = 2xn−1 − xn−2 +
∆t2

m
(Fn − γ vn) + O(∆t4) . (3.7)

DLR
– Peridigm Development Guide

3. Peridigm - Documentation of Implementations 26

By adding eq. (3.5) and eq. (3.7) the resulting equation reads

xn+1 + xn = 2xn + xn−1 − xn−2 +
∆t2

m
(Fn − vn + Fn−1 + vn−1) + O(∆t4) . (3.8)

Reformulating the equation, using the velocity interpolation for vn and vn−1, shown in
eq. (3.2) and setting the equation one time step forward leads to the velocity integration
for the Velocity-Verlet algorithm with damping

vn+1 =
1

1 + γ
∆t

2m

[vn (1 − γ
∆t

2m
) +

∆t

2
(an+1 + an)] . (3.9)

The time integration for the position stays the same as for Verlet-Velocity without damp-
ing. The parameter γ is defined in Peridigm in the Verlet solver list
<ParameterList name=“Verlet”>
<Parameter name=“Numerical Damping” type=“double” value=“0.01”/>
The value should be chosen with respect to the material parameters in the input file.

3.3.1.2. Changed files

./src/core/Peridigm.cpp

3.3.1.3. Documentation of changes

Peridigm.cpp

The following changes have been made.

double numericalDamping = 0.0;
if(verletParams->isParameter("Numerical Damping")){

numericalDamping = verletParams->get<double>("Numerical Damping");
}

If the parameter for numerical damping is defined in the input file, it will be read.

if(verletParams->isParameter("Numerical Damping")){
for (int i = 0; i < a->MyLength(); ++i) {

(*a)[i] = (*a)[i] / (1 + numericalDamping * dt2
/ (*density)[i/3]);
(*v)[i] = (*v)[i] * (1 - numericalDamping * dt2
/ (*density)[i/3]) / (1 + numericalDamping * dt2
/ (*density)[i/3]);

}
}

DLR
– Peridigm Development Guide

3. Peridigm - Documentation of Implementations 27

The so-called mothership vectors are updated with the respective coeffcients for the step
vn+ 1

2
.

if(verletParams->isParameter("Numerical Damping")){
for (int i = 0; i < a->MyLength(); ++i) {

(*a)[i] = (*a)[i] / (1 + numericalDamping * dt2
/ (*density)[i/3]);

}
}

The mothership vector is updated with the respective coeffcients for the step vn+1.

DLR
– Peridigm Development Guide

Appendices

DLR
– Peridigm Development Guide 28

A. This document

A.1. Repository

This document is part of the PeriDoX repository. The complete repository can be found
at:

https://github.com/PeriDoX/PeriDoX

A.2. Typesetting

This document was originally typeset using the documentclass dlrreprt from the DLR-
internal RM-LATEX package.

The RM-LATEX package is not publicly available. Therefore, this document is compatible
with a bootstrap-version of the documentclass, called bootstrap_dlrreprt. bootstrap_-
dlrreprt class is part of this repository.

The compilation is performed with pdflatex with the following options:

pdflatex --shell-escape -synctex=1 -interaction=nonstopmode %source --
extra-mem-top=60000000

The bibliography is compiled with biber. The glossary must be compiled with makeindex
or, for Windows, the included batch-script may be used. The keyword index is created
automatically.

The general compilation order is:

pdflatex → biber → makeindex → pdflatex → pdflatex

DLR
– Peridigm Development Guide 29

https://github.com/PeriDoX/PeriDoX

BSD Documentation License

Redistribution and use in source (Docbook format) and 'compiled' forms (
PDF, PostScript, HTML, RTF, etc), with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code (Docbook format) must retain the above
copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in compiled form (transformed to other DTDs, converted
to PDF, PostScript, HTML, RTF, and other formats) must reproduce the

above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the
distribution.

3. The name of the author may not be used to endorse or promote products
derived from this documentation without specific prior written permission
.

THIS DOCUMENTATION IS PROVIDED BY THE AUTHOR ``AS IS AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (
INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

DLR
– Peridigm Development Guide 30

	Contents
	List of Figures
	List of Tables
	List of Symbols
	About
	Scope

	Peridigm - Development Guide
	Program structure
	Remark on data structure
	Numbering
	Model evaluator
	Paralellization
	Solver
	Limitations and Lessons learned

	Additional features
	How to read the Exodus files with Python
	How to include Peridigm and the Trilinos environment in Eclipse
	Doxygen support for Peridigm

	Peridigm - Documentation of Implementations
	How to document
	Implemented damage models
	Energy based damage model

	Implemented time integration methods
	Numerical damping added to Velocity-Verlet

	Appendix This document
	Repository
	Typesetting

	BSD Documentation License

