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ABSTRACT 

 
Control robustness is study for uncertain nonlinear systems transformed in semi strict feedback systems. An 

adaptive backstepping sliding mode control and an adaptive backstepping control robustness is considered. 

Robustness is studied when the unknown parameter are constants and varied. The simulation results prove 

that the sliding mode control is more robust than the backstepping control to tracking trajectory and to 

estimate the unknown parameter in two cases.. 

 

KEYWORDS 

 
adaptive backstepping control, adaptive backstepping sliding mode control, uncertain nonlinear system 

  

1. INTRODUCTION 

 

The systems are made more complicated due to the technology development. Due to modeling 

nonlinear systems, an uncertainty term appears. Many conditions caused the uncertainty like the 

parameter variation, neglected term………………  

 

To solve the tracking trajectory problem, many controllers are designed to uncertain nonlinear 

systems like sliding mode controller, backstepping controller, PID controller………..  

The sliding mode technique is mostly applied to build a controller. The sliding mode controller is 

known as one of robust controller to reject perturbation and uncertainty. The sliding mode control 

problem is the chattering. Many solutions are proposed to eliminate its. 

 

In Literature ([1], [2], [3]), it was shown that the chattering phenomenon disappears with 

the higher order sliding mode control algorithms. 

The construction of the lyapunov function is complicated. The backstepping is a recursive method 

to build a lyapunov function.   

The backstepping technique is recently applied to construct an adaptive controller for some 

systems form like uncertain nonlinear systems, electrical machine. 

The backstepping control solves both the problem of stabilization and tracking trajectory of 

nonlinear systems [4]  
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In [5], the author proves that the backstepping control does not guarantee the tracking trajectory 

asymptotic convergence in the presence of measurement noise on the 

state and the output and input constraints. 

In ([6], [7], [8]) the authors studied the backstepping technique for uncertain systems which is 

proved that the backstepping is a simple method to construct the control law and the simulation 

results show a good performance to stabilize and ensure the output tracking trajectory for class of 

systems. 

The combined backstepping and sliding mode technique is one of proposed solution which the 

chattering is eliminated and the control law still robust to reject perturbation and uncertainty. 

Besides the backstepping sliding mode ensure simplicity to construct the lyapunov function.  

In [9], a comparison between backstepping sliding mode control and PID control is made 

which the author shown that the backstepping sliding mode control applied to an electrical 

machine improve the tracking trajectory error of 50% than that obtained by the PID control. 

In ([10], [11], [12]), the authors compared two technique, the  backstepping and the sliding mode 

which prove that the backstepping is robust to eliminate the chattering and ensure the tracking 

trajectory. 

The theoretical backstepping sliding mode control studies are limited for uncertain nonlinear 

systems transformed in a semi strict feedback system. This control was extended to an adaptive 

form which is showed that the backstepping sliding mode control is robust to tracking trajectory 

([6], [7], [9], [13]). 

In this work, a comparative study between an adaptive backstepping control and an adaptive 

backstepping sliding mode control for an uncertain nonlinear system are presented. A parameter 

variation case is considered to test the robustness of the two control technique .A simulation 

results are presented.  

 

2. SYSTEM CLASS  

 

The backstepping controller is designed practically for an uncertain nonlinear system 

Considering the uncertain nonlinear system: 

( ) ( ) ( ) ( )twXDuXQXGXFX ,,+++= θ&
                                                                             

With 
nRX ∈ is the state vector and u  is a scalar control law. The functions 

( ) ( ) ( ) nnxpn
RXQandRXGRXF ∈∈∈ , are known, ( ) n

RtwXD ∈,,   is an unknown 

functions, w  is the uncertain parameter vector and time variation and  θ  the constant and known 

parameter vector. 

If the diffeomorphisme 
( )Xxx =

  and an input output linearization conditions are satisfied then 

the systems is transformed in a semi strict feedback form  
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With 
nRx ∈  a state vector, 

p
Ry ∈  the system output, 

( ) ( ) Rxgxf nn ∈,
and      

( ) niRxxx
p

ni KK 1,,, 21 =∈ρ
 the known nonlinear function, which are smooth and Lipchitz, 

u the scalar control 

( ) nitwxi K1,,, =η
 is a known scalar nonlinear incorporate all perturbation. It is bounded by a 

positive known function  
( ) Rxxh ni ∈K1   

( ) ( ) nixxhtwx nii KK 1,,, 1 =≤η
                                                                                        

The output reference is bounded and  n  order derivative 

 

3. ADAPTIVE BACKSTEPPING CONTROL 

 

The backstepping aims is to use the state as a virtual drive. However the system is then divided 

into a set of subsystems united descending order. The control law appears at the last step of 

the backstepping algorithm. At intermediate stages, the instability of the nonlinear system is 

processed and the order of the system increased from stage to another. Global stability is 

guaranteed, it ensures the continuation and regulation of nonlinear system. The backstepping 

algorithm is organized as follow: 

 

The adaptive backstepping algorithm consists by the following steps: 

Step 1:  Let the variable error ryxz −= 11  

Or ( ) ( ) r

T
ytwxxxxz &&& −++== ,,111211 ηθρ                                                                            (1)                                                               

θθθ ˆ~
−=  is the parameter error with θ̂  is the estimate of θ  

We have:  
( ) ( ) ( ) r

TT
yxtwxxxxz &&& −+++== θρηθρ

~
,,ˆ

11111211  

Considering the subsystems (1) is stable and the lyapunov function 

( ) 2

111
2

1ˆ, zzV =θ
  

The lyapunov function 1V
  derivative is: 

( ) θρθ
~ˆ, 1121

2

111

T
zzzczzV ++−≤&
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With 1c  is a positive constant 

122 α−−= ryxz &
 

θρα ˆ)( 111111 xhzc
T−−−=  

the  2z  derivative is: 
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( ) ( ) 2

21122
2

1ˆ,ˆ, zzVzV += θθ
 

The 2V derivative is: 

( ) ( ) 221122
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Step i ( 11 −≤< ni ): Define 
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Where 
0>ic

 and the iz
derivative is: 
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Step n:  
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Define  
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Where 1−nα
is the virtual control, it is obtained by the equation   (2) in the case in =  . 
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Considering the lyapunov function 

θθ
~~

2

1

2

1 2

1 Γ++= −
T

nnn zVV
                                                                                                     

The  nV
 derivative is : 

))(ˆ
ˆ

ˆ),,()(ˆ),,(

)((ˆ~
))((

~

1)(
1

1
)1(

1

1

1

1

1
1

1

1

1)(

1

1

1 1

1

1

2

xfy
y

xx
x

hx
x

yzchxx

uxgzz
x

zzcV

n

ni

r

n

i
i

r

n

i

T

i

n

i i

n
n

i

ii

i

nn

rnnnn

T

n

nnn

T
n

i

i

j

j

j

j

ii

T
n

i

iin

+
∂

∂
−

∂

∂

−
∂

∂
−+

∂

∂
−−++

+++Γ−
∂

∂
−+−≤

−
−

=
−

−

−

=

−
−

=
+

−

−
= =

−

=

∑

∑∑

∑ ∑∑

θ
θ

αα

θρ
αα

θρ

θθρ
α

ρθ

&

KK

&&

               

                                                                                                                                                                                                                                       

The adaptive backstepping control is stable and robust if : 
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• The backstepping control is: 
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4.    ADAPTIVE BACKSTEPPING SLIDING MODE CONTROLLER 
 

The construction of the backstepping control law didn’t affected by the nonlinearity. For that 

it is widely studied and used as a synthesis tools to build several control laws like the sliding 

mode control. Combining backstepping and sliding mode technique eliminates 

the chattering and ensures robustness to uncertainties and disturbances. This command is 

extended to the adaptive form and showed robustness in regulation and tracking trajectory. 

The backstepping sliding mode control is expressed by: 

discbsm uuu +=
  

The backstepping sliding mode control has the same form as a sliding mode control. Which the 

backstepping algorithm is used to determine the control u as an equivalent control 

And the control discu
 is chosen such that the trajectories of the states reach the sliding surface and 

stay there. 

In this study, on choice the discontinuous control   discu
 as follow: 

))(( 11 µ+= kzzsignudisc  

Which: 

1z
 : The backstepping variable error 

µandk  : Are positive constant 

5. ROBUSTNESS STUDY 

 

Consider the uncertain nonlinear system is transformed to a semi strict parameter: 
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Adaptation law : 
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Backstepping control : 
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Where   et  are an algorithm backstepping intermediate variables such as: 
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The simulation parameters are:  

• Backstepping  control : 

20,1,1,1;0)0(,1)0(,1.0)0(ˆ 2121 =Γ====== ccxx θθ  

• Backstepping  sliding mode control: 

20,80,01.0;1,5,1;0)0(,1)0(,1.0)0(ˆ 2121 =Γ−======== µθθ kccxx  

Simulation results show that the output converges to the reference yr in 4s adaptive backstepping 

sliding mode control (Figure.1.a, Figure.2.a). To estimate the unknown parameter, the adaptive 

backstepping control takes 12s to reach the desired value whereas the adaptive 

control backstepping sliding mode make 5s to converges (Figure.1.b, Figure.2.b).  

From these results, we conclude that the backstepping adaptive control made more time to 

converge, tracking trajectory and estimate unknown parameter, than the adaptive sliding mode 

control. 
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Fig.1.a. Tracking trajectory                                      Fig. 1.b parameter estimation  

Fig.1. Trajectory tracking, parameter estimation by backstepping sliding mode control with constant 

parameter 
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Fig. 2.a. Tracking trajectory                                          Fig. 2.b parameter estimation  

Fig.2. Trajectory tracking and parameter estimation by backstepping control with constant 

parameter 

 

Varying the unknown parameters such as: 
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We show that the adaptive backstepping sliding mode control is more robust to tracking trajectory 

and estimate the unknown parameters (Fig.3.a, Fig.3.b, Fig.4.a, and Fig.4.b).  At parameters 

variation instants, the adaptive backstepping sliding mode control guarantees the 

convergence of the output to the reference in a time less than the adaptive backstepping 

control (Fig.3.a) 
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Fig. 3.a. Tracking trajectory                                           Fig. 3.b parameter estimation  

Fig.3. Trajectory tracking, parameter estimation by backstepping sliding mode control with parameter 

variation 
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Fig. 4.a. Tracking trajectory                                           Fig. 4.b parameter estimation  

Fig.4. Trajectory tracking, parameter estimation by backstepping control with parameter variation 

Simulation results show that the adaptive backstepping sliding mode control is more robust to 

tracking trajectory and to estimate the unknown parameters and to ensure stability of the system 

which the unknown parameters are constant or variants. 

 

6. CONCLUSION 

 

In this paper, a comparative study is made between a backstepping sliding mode control and a 

backstepping control. The studied system is an uncertain semi strict feedback systems which is 

most applied to a backstepping sliding mode control. The robustness study show that the adaptive 

backstepping sliding mode control ensures the asymptotic convergence and eliminate the 

chattering. To conclude the backstepping sliding mode control is robust than the adaptive 

backstepping control to tracking trajectory and to estimate the unknown parameter when the 

parameter are constant or varied.  
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