
Local content in a Europeana cloud

D2.2: Modified MINT prototype
Authors:
Natasa Sofou (NTUA)
Nassos Drosopoulos (NTUA)
Vassilis Tzouvaras (NTUA)
Arne Stabenau (NTUA)

LoCloud is funded by the European Commission’s
ICT Policy Support Programme

Version: Final

Revision History

Revision Date Author Organisation Description

1.0 01/02/2014 Natasa Sofou NTUA Initial draft

1.1 15/02/2014 Vassilis Tzouvaras NTUA Updates and corrections

 1.2 25/02/2014 Natasa Sofou ,
Nasos
Drosopoulos

NTUA More details

1.3 28/02/2014 Natasa Sofou,
Arne Stabenau,
Nasos
Drosopoulos

 Update

Statement of originality:

This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others
has been made through appropriate citation, quotation or both.

 1

Contents

Contents ... 1

1 Executive summary ... 2

2 Introduction ... 4
2.1 Background ... 5

3 MINT Ingestion Workflow ... 6

4 Mapping editor .. 6

5 MINT Modifications for LoCloud ... 8
5.1 User Interface ... 8

5.1.1 Aggregation workflow guided interface ... 8
5.1.2 Improved Schema browsing .. 10
5.1.3 Improved item preview interface .. 11

5.2 Mapping functionality .. 13
5.2.1 Negative closure for functional mappings .. 13
5.2.2 If else mapping ... 13
5.2.3 Structural on any element ... 14
5.2.4 SKOS Vocabularies Support .. 14

5.3 MINT OAI-PMH server .. 14
5.4 Metadata progress reports ... 18

6 MINT support .. 19

7 Technical Specifications ... 20
7.1 Platform .. 20
7.2 Ingestion ... 20
7.3 Processing .. 20
7.4 Normalization & Vocabularies .. 20

8 MINT Integration in LoCloud core infrastructure ... 21

9 Conclusion ... 21
9.1 Results ... 21

 2

1 Executive summary

This main objective of this deliverable is to describe the MINT ingestion platform presenting its
architecture and the technologies used for its implementations. Additionally, the MINT workflow is
explained along with the main modifications of MINT platform presented in new release. The role
of MINT in LoCloud project is to assist content providers in the transformation of their in house
metadata to Europeana Data Model and their publication to Europeana. MINT addresses the
ingestion of metadata from multiple sources, the mapping of the imported records to the
intermediate metadata schema and the transformation and storage of the metadata in a
repository.

The main role of the MINT ingestion platform in the LoCloud project is to enable users to

 Provide metadata records in a range of “source” formats

 Convert metadata to LIDO, Carare2.0, and latest version of EDM (that is used as an
intermediate standard)

 Monitor the progresses of content provision

while its key functionalities include:

 Organization and user level access rights and role assignment.

 Collection and record management (XML serialisation).

 Direct import and validation according to registered schemas (XSD).

 OAI-PMH based harvesting and publishing.

 Visual mapping editor for the XSLT language.

 Transformation and previewing (XML and HTML).

 Repository deployment and remediation interfaces.

MINT allows providers to perform mappings of their metadata through a very user-friendly
interface (see figure below).

Figure 1-1 MINT mapping editor

 3

The structure that corresponds to a user's specific import is visualized in the mapping interface as
an interactive tree that appears on the left hand side of the editor. This tree is extracted from the
user’s import and represents the snapshot of the XML schema that is used as input for the mapping
process. The user is able to navigate and access element statistics and also to search the tree by
using the text field on the top.

On the right hand side, buttons correspond to high-level elements of the target schema and are
used as links for accessing their corresponding sub-elements. These are visualized on the middle
part of the screen as a tree structure of embedded boxes, representing the internal structure of the
complex element. The user is able to interact with this structure by clicking to collapse and expand
every embedded box that represents an element, along with all relevant information (attributes,
annotations) defined in the XML schema document. To perform an actual (one to one) mapping
between the input and the target schema, a user has to simply drag a source element from the left
and drop it on the respective target in the middle.

After the creation of a valid mapping, content providers metadata are transformed to the LIDO,
Carare2.0 or EDM (depending on the selected target schema) and then transmitted to NTUA’s OAI-
PMH server.

The MINT ingestion platform has been used in many European projects for delivering metadata to
Europeana, however many specializations have been implemented to meet the special needs of
each project content providers.

In detail, the MINT instance that was set up for the LoCloud project differs from MINT instances
used in other projects in the following

 It has been customized so as to assist the content providers to easily map their metadata to
LIDO, Carare2.0 and EDM with the aid of element’s bookmarks.

 The MINT mapping editor has been totally re-constructed taking into account the
experience gathered from the usage of MINT in other projects and also the feedback from
content providers. The new mapping editor is based on a new JSON library (JsonSmart) that
is much faster and responsive than one used in previous versions. It also permits the
creation of more complex mappings by the use of structural mappings on any element, and
if-else conditional mappings making in that way the implementation of crosswalks from any
provider’s input schema to selected target schema.

 It fully supports the Europeana Data.

 The repository exposes the records in RDF and OAI-DC fully supporting in that way the
harvesting in RDF and the OAI-PMH interface.

 Progress reports through MINT per content provider for monitoring of the metadata
production and publication to our (OAI-PMH) repository.

 4

2 Introduction

MINT services compose a web based platform that was designed and developed to facilitate
aggregation initiatives for cultural heritage content and metadata in Europe. It is employed from
the first steps of such workflows, corresponding to the ingestion, mapping and aggregation of
metadata records, and proceeds to implement a variety of remediation approaches for the
resulting repository. The platform offers a user and organization management system that allows
the deployment and operation of different aggregation schemes (thematic or cross-domain,
international, national or regional) and corresponding access rights. Registered organizations can
upload (http, ftp, oai-pmh) their metadata records in xml or csv serialization in order to manage,
aggregate and publish their collections.

A reference metadata model serves as the aggregation schema to which the ingested (standard or
proprietary) schemata are aligned to. Users can define their metadata crosswalks with the help of a
visual mappings editor for the XSL language. Mapping is performed with simple drag-and-drop or
input operations which are then translated to the corresponding code. The mappings editor
visualizes both the input and target XSD, in an intuitive interface that provides access and
navigation of the structure and data of the input schema, and the structure, documentation and
restrictions of the target one. It supports string manipulation functions for input elements in order
to perform 1-n and m-1 (with the option between concatenation and element repetition) mappings
between the two models. Additionally, structural element mappings are allowed, as well as
constant or controlled value (target schema enumerations) assignment, conditional mappings (with
a complex condition editor) and value mappings between input and target value lists. Mappings can
be applied to ingested records, edited, downloaded and shared as templates between users of the
platform.

Preview interfaces present to users the steps of the aggregation including the current input xml
record, the XSLT of their mappings, the transformed record in the target schema, subsequent
transformations from the target schema to other models of interest (e.g. Europeana's metadata
schema), and available html renderings of each xml record. Users can transform their selected
collections using complete and validated mappings in order to publish them in available target
schemas for the required aggregation and remediation steps.

The platform has been deployed for a variety of aggregation workflows corresponding to the whole
or parts of the backend services. Specifically, it has served the aggregator of museum content for
Europeana (and one of the largest in volume and significance), the ATHENA project, that has
ingested and aligned to the LIDO format over 4 million items from 135 organizations. The resulting
repository offers an OAI-PMH interface exposing the records in the Europeana Semantic Elements
schema. The use of a reference model allowed the rapid support of updated ESE versions that were
introduced in the duration of the project (2008-2011), with minimal input from providers. Users
effort to align their data to an adopted domain model also motivated them to update their
collection management systems and improve the quality of their annotations in order to take
advantage of a well defined, machine understandable model and, subsequently, control and enrich
their organization's contribution and visibility through the aggregator and Europeana.

This deliverable describes the MINT ingestion platform that is used in the LoCloud project for the
large-scale ingestion of metadata with final aim the delivery to Europeana. As explained earlier in

 5

this section, the development of MINT started in the ATHENA1 project when the NTUA team
integrated all the necessary components for ingesting, mapping and publishing metadata to
Europeana into a common technology platform, while it evolved through its use in other
Europeana-feeder projects like Linked Heritage2, EuScreen3, ECLAP4, Carare5 Fashion6,
EuropeanaPhotography7 and others. The MINT platform provides content holders with the ability to
perform the required mapping of their own metadata schemas intto LIDO, Carare2.0 and EDM. It
addresses the ingestion of metadata from multiple sources, the mapping of the imported records to
a target metadata schema and the transformation and storage of the metadata in a repository.
Although its deployment is also guided by expediency, the system has been developed using
established tools and standards, embodying best practices in order to animate familiar content
provider procedures in an intuitive and transparent way also for newcomers.

2.1 Background

Metadata records are critical to the documentation and maintenance of interrelationships between
information resources and are being used to find, gather, and maintain resources over long periods
of time. The consistent application of a descriptive metadata standard improves the user's search
experience and makes information retrieval within a single collection or across multiple datasets
more reliable. Descriptive, administrative, technical, and preservation metadata contribute to the
management of information resources and help to ensure their intellectual integrity both now and
in the future. In parallel with other domains, many researchers in the digital cultural heritage
community recognized the need to lower the barriers for the management and aggregation of
digital resources, by implementing some measure of interoperability among metadata standards
and then with proprietary data structures. There is a wide range of proposed solutions, including
crosswalks, translation algorithms, metadata registries, and specialized data dictionaries.

A crosswalk provides a mapping of metadata elements from one metadata schema to another. The
prerequisite to a meaningful mapping requires a clear and precise definition of the elements in
each schema. The primary difficulty is to identify the common elements in different metadata
schemas and put this information to use in systems that resolve differences between incompatible
records. Crosswalks are typically presented as tables of equivalent elements in two schemas and,
even though the equivalences may be inexact, they represent an expert's judgment that the
conceptual differences are immaterial to the successful operation of a software process that
involves records encoded in the two models. A crosswalk supports the ability of a retrieval
mechanism to query fields with the same or similar content in different data sources; in other
words, it supports semantic interoperability.

Crosswalks are not only important for supporting the demand for single point of access or cross-
domain searching; they are also instrumental for converting data from one format to another.
However, aggregating metadata records from different repositories may create confusing display
results, especially if some of the metadata was automatically generated or created by institutions
or individuals that did not follow best practices or standard thesauri and controlled vocabularies.

1
 http://www.athenaeurope.org/

2
 http://www.linkedheritage.eu/

3
 http://euscreen.eu/

4
 http://www.eclap.eu/drupal/?q=en-US

5
 http://www.carare.eu

6
 http://www.europeanafashion.eu/

7
 http://www.europeana-photography.eu/

http://www.athenaeurope.org/
http://www.linkedheritage.eu/
http://euscreen.eu/
http://www.eclap.eu/drupal/?q=en-US
http://www.carare.eu/
http://www.europeanafashion.eu/
http://www.europeana-photography.eu/

 6

Mapping metadata elements from different schemas is only one level of cross walking. Another
level of semantic interoperability addresses datatype registration and formatting of the values that
populate the metadata elements, e.g. rules for recording personal names or encoding standards for
dates, and the alignment between local authority files and adopted terminologies.

The MINT ingestion platform implements an aggregation infrastructure offering a crosswalk
mechanism to support subsequent critical activities:

 harvesting and aggregating metadata records that were created using shared community
standards or proprietary metadata schemas ;

 migrating from providers’ models (whether standard or local) to a reference model

3 MINT Ingestion Workflow

The developed system facilitates the ingestion of semi-structured data and offers the ability to
establish crosswalks to the reference schemas (LIDO, Carare2.0, EDM) in order to take advantage of
a well-defined, machine understandable model. The underlying data serialization is in XML, while
the user's mapping actions are registered as XSL transformations.

The main role of the MINT ingestion platform in the LoCloud project is to enable users to

 Provide metadata records in a range of “source” formats

 Convert metadata to selected target schema (LIDO, Carare2.0, EDM - used as an
intermediate standard before publishing to Europeana)

 Monitor the progresses of content provision

Figure 3-1 Ingestion workflow

The metadata ingestion workflow, as illustrated in Figure 3-1 Ingestion workflow, consists of three
main steps. First is the Import of provider’s metadata using common data delivery protocols, such
as OAI-PMH, HTTP and FTP. Following is the Schema Mapping procedure, during which the
imported metadata are mapped to one of the intermediate schemas used in LoCloud: LIDO,
Carare2.0 or EDM. A graphical user interface assists content providers in mapping their metadata
the preferred intermediate schema, using an underlying machine-understandable mapping
language. Furthermore, it provides useful statistics about the provider’s metadata also supporting
the share and reuse of metadata crosswalks and the establishment of template transformations.
The third step is the Transformation procedure, during which provider’s metadata is transformed to
the selected schema (LIDO, Carare2.0, and EDM) by using the mapping they made in the previous
step.

4 Mapping editor

Metadata mapping is the crucial step of the ingestion procedure. It formalizes the notion of a
metadata crosswalk, hiding the technical details and permitting semantic equivalences to emerge

 7

as the centrepiece. It involves a user-friendly graphical environment, as shown in Figure 4-1
(example of mapping opened in the editor), where interoperability is achieved by guiding users in
the creation of mappings between input and target elements. User imports are not required to
include the respective schema declaration, while the records can be uploaded as XML or CSV files.
User's mapping actions are expressed through XSLT style sheets, i.e. a well-formed XML document
conforming to the namespaces in XML recommendation. XSLT style sheets are stored and can be
applied to any user data, exported and published as a well-defined, machine understandable
crosswalk and, shared with other users to act as template for their mapping needs.

Figure 4-1 Screenshot of the mapping editor

The structure that corresponds to a user's specific import is visualized in the mapping interface as
an interactive tree that appears on the left hand side of the editor. The tree represents the
snapshot of the XML schema that is used as input for the mapping process. The user is able to
navigate and access element statistics for the specific import while the set of elements that have to
be mapped can be limited to those that are actually populated. The aim is to accelerate the actual
work, especially for the non-expert user, and to help overcome expected inconsistencies between
schema declaration and actual usage.

On the right hand side, buttons correspond to high-level elements of the target schema and are
used to access their corresponding sub-elements. These are visualized on the middle part of the
screen as a tree structure of embedded boxes, representing the internal structure of the complex
element. The user is able to interact with this structure by clicking to collapse and expand every
embedded box that represents an element, along with all relevant information (attributes,
annotations) defined in the XML schema document. To perform an actual (one to one) mapping
between the input and the target schema, a user has to simply drag a source element from the left
and drop it on the respective target in the middle.

The user interface of the mapping editor is schema aware regarding the target data model and
enables or restricts certain operations accordingly, based on constraints for elements in the target
XSD. For example, when an element can be repeated then an appropriate button appears to
indicate and implement its duplication. Several advanced mapping features of the language are
accessible to the user through actions on the interface, including:

 8

 String manipulation functions for input elements;

 m-1 mappings with the option between concatenation and element repetition;

 Structural element mappings;

 Constant or controlled value assignment;

 Conditional mappings (with a complex condition editor);

 Value mappings editor (for input and target element value lists).

Mappings can be applied to ingested records, edited, downloaded and shared as templates. Users
can transform their selected collections using complete and validated mappings in order to publish
them in available target schemas for the required aggregation and remediation steps.

5 MINT Modifications for LoCloud

The previous sections presented the overall workflow as well as the main functionality of the MINT
mapping tool. Although similar description of functionality and usage of MINT ingestion platform is
also available in other deliverables authored by the NTUA team for other European aggregation
projects like LoCloud, it still remains vital for the content providers of this project. Other
deliverables where MINT workflow and functionality is described include:

 Athena D7.1 “First version of the semantic interoperability plug-ins”,

 ECLAP D4.1 “Metadata descriptors Identification and Definition”,

 Linked Heritage D5.1 “Linked Heritage Technology Platform”,

 EuropeanaPhotography D5.2 “The MINT Mapping tool”,

 AthenaPlus D3.1 “MINT ingestion Platform” .

However even if the main functionality of the MINT mapping tool – that is the transformation of
the metadata extracted from the provider’s metadata management systems in various standards to
a common metadata standard for the project – remains the same, many specializations are
implemented to meet the special needs of the content providers of each project. In this section we
present the specializations that were implemented for the LoCLoud project.

5.1 User Interface

A major development in the MINT release used for the LoCloud version is its new user interface.
The main objective was to redesign the MINT’s mapping tool user interface in a way that would
permit to the various content providers to easily use it and better understand the overall workflow
towards transformation, with final aim the delivery to Europeana. The following subsections
present in more detail the updated user interface.

5.1.1 Aggregation workflow guided interface

The user interface of the MINT release used in previous Europeana-feeder projects like Athena,
Linked Heritage, ECLAP, EuScreen and others was implemented using the Javascript library YUI8.
The interface approach followed there was tab-oriented as shown below:

8
 http://yuilibrary.com/

http://yuilibrary.com/

 9

Figure 5-1 Previous release MINT interface

The content provider could navigate to MINT’s functionalities through the different tabs that
appeared on the top of the working window. The main problem with that approach however was
that individual actions were not related and the users did not have any guidance thought the
aggregation process. Therefore the fact that a provider first had to import his metadata by using
the import preview, then to click on the Overview preview to locate its import and after that to
perform mappings and transformations was not clear, and even after training sessions many of the
providers had problems in following the right steps. In the new release of MINT platform, for the
improved user interface of the mapping tool, a different approach has been followed where the
jQuery library Kaiten9 have been used. The main difference in the new approach is that interactions
between the user and the application are a stack of contiguous screens where each screen is
presented in columns as illustrated in Figure 5-2.

This way the content provider can only perform specific actions depending on his starting point. For
example when clicking on the workspace button from MINT’s start page he can either make an
import (that is highlighted) or select one of the existing ones. In a similar manner after selecting an
import the following screen appears illustrating to the provider his possible options.

9
 http://www.officity.com/kaiten/

http://www.officity.com/kaiten/

 10

Figure 5-2 MINT new user interface

5.1.2 Improved Schema browsing

One of the major difficulties that content providers experienced when producing mappings using
the previous version of MINT was when browsing the input and target schema.

Figure 5-3 MINT's old mapping editor

The MINT release used in previous projects had limited functionality for browsing schemas as
shown in Figure 5-3, only permitting providers to:

 explore the input schema by using its hierarchy

 browse the target schema by clicking on some predefined buttons that categorized
elements

 11

In order to make the discovery of schema’s elements easier and facilitate the mapping process the
new MINT interface allows providers to search elements in both input and target schema. In
addition for further assisting providers to meet the project requirements and to get familiarized
with the target schema bookmarks can been set up for the LoCloud recommended elements.

Figure 5-4: MINT's new mapping editor

5.1.3 Improved item preview interface

Another update of the MINT release used for LoCLoud is the new item preview interface. In the
previous version of the tool the user could only see the preview of one item while working on a
mapping, as in Figure 5-5. This was not always very convenient, since different items of an import
may vary on the information (elements of input metadata) they had. For example the first item of
an import could have element ‘Author’ while the rest of the imports may have missed that. Cases
like were resulting in transformations with many errors simply because the user did only have
feedback of his mapping for the first record.

The new Item Preview interface as illustrated in Figure 5-6 does not suffer from these limitations. In
detail, the new preview interface enables the user to:

 preview all his items while working on a mapping;

 select the previews he prefers to see in the two preview panes;

 get inline validation for each preview according to its’ related XML schema;

 instantly select a different mapping and preview its result for the same item;

 search the items he wishes to preview (this feature is still under development).

 12

Figure 5-5 MINT’s old item preview interface

Figure 5-6 MINT's new item preview interface

 13

5.2 Mapping functionality

MINT’s main functionality in LoCloud is mapping and transformation of the providers’ in-house
metadata to the LoCloud reference schema in order to facilitate its publication to Europeana.
Content providers perform this process using MINT’s mapping editor, which offers a wide range of
mapping functionalities. Therefore, the development of new mapping functionalities always
comprises part of NTUA’s on-going work. More specifically the mapping editor has been totally
reconstructed using a new JSON library (JsonSmart) that is much faster than the one used in
previous versions. In some tests performed comparing the two libraries, it turned out that
JsonSmart only required a couple of seconds for the parsing of a mapping while for the same
mapping the previous library may have required a minute of parsing. The following sections
describe in detail the latest mapping functionalities.

5.2.1 Negative closure for functional mappings

An important mapping functionality that has been implemented in the latest MINT release is the
negation for all the conditions used in conditional mappings. By using this functionality a content
provider can perform mappings in which his dataset is separated into two sets according to its
values (e.g. those that start with, and those that don't start with) and each one of them is treated in
a different way.

5.2.2 If else mapping

In addition to the negative closure for all the MINT functions a user can also make mappings using if
else statements. This functionality can be better understood by the example shown below.

The table on the right displays all the values of element ‘tns:title’. This XPath is first mapped to
element ‘dcterms:title’. After that a conditional mapping is made by clicking on the ‘if’-button. Then
by clicking on the ‘+’-button located below the ‘if’-button additional conditions can be set. The last
condition set is the closure of all the previous. In simple words the condition set in the example
below is the following.

 if the value of element ‘tns:Title’ contains "East" then map the value of the element
‘tns:Title’ to ‘dcterms:Title’

 else if the value of element ‘tns:Title’ contains "South" then map the value of the element
‘tns:Title’ to ‘dcterms:Title’

 else map the value "Unknown" to ‘dcterms:Title’

So for the items having ‘tns:Title’ values 'Caryatids', 'Parthenon' and 'The Parthenon' the value
'Unknown' will be mapped10.

10

 The use of the "and" button in Figure 13 can be a bit confusing. The “AND” button refers to the condition set on the
conditional mapping. The reader is reffered to section 10.3.5.6 for a better understanding of conditional mappings.

 14

Figure 5-7: If else mapping

5.2.3 Structural on any element

Another very important mapping functionality available in the new MINT release is the “structural
on any element”. The need for that functionality occurred from the complexity of some metadata
standards. Some of the providers have metadata exports in schemas that had very extensive
hierarchical structure. When attempting to map the very well defined information to a schema that
was less expressive they could not exploit their in house structure in their mapping.

The “structural on any element” mapping functionality solves that problem by allowing content
providers to threat each target schema’s simple element (i.e. ‘lido:term’) as a complex type, thus
taking advantage of their in house metadata hierarchy and of the mappings that can be set to a
structural element through MINT. The structural mapping area appears by clicking on the elements’
name.

Figure 5-8: Structural on any element

5.2.4 SKOS Vocabularies Support

MINT’s functionality extended to support SKOS vocabularies by the development of an additional
module. More specifically a semantic repository has been set up to which the SKOS vocabularies are
stored. The communication of the MINT mapping tool with it is established by using SPAQRL 1.1 to
retrieve the vocabularies’ terms based on the SKOS specification. Additional semantic properties
can be added – if necessary – to the vocabularies for controlling selectable and non-selectable
terms through the mapping tool (skos:member, skos:Collection) and also for selecting to display
only subcategories of them (skos:inScheme, skos:ConceptScheme).

5.3 MINT OAI-PMH server

A core characteristic of the MINT ingestion platform is that of being agnostic with respect to the
schema of an imported dataset, a characteristic that is also inherited by the OAI-PMH service. For
this to be achieved the data layer of the platform has to be able to handle heterogeneous metadata
schemata. Based on this assumption, the metadata layer is implemented using a NoSQL solution
that does not enforce any particular schema, thus being able to adapt to varying metadata models.

 15

The NoSQL solution that is used for the MINT OAI-PMH Platform is the MongoDB11 document
database. MongoDB is designed around the concept of documents that are internally implemented
as JSON document and internally stored using the BSON format, which stands for a binary
serialization of the JSON model. It allows the existence of JSON documents in the same database or
even collection having different fields and thus it does not enforce any specific data model schema.
Finally it provides a rich set of native implementations of drivers for communicating with the
database while the JSON format provides added value in the development of web application
because the stored data do not have to be transformed to a different format in order to be
consumed by the applications.

The MINT’s OAI-PMH repository is designed around three distinct collections that exist inside a
MongoDB database. Collections can be perceived as tables of typical SQL databases, although it is
not required that each document conforms to a specific data model and set of fields. These
collections are the following:

 Registry: in this collection the actual metadata records are stored and accessed by the
implemented OAI-PMH verbs.

 Conflicts: every time a new dataset is imported in the OAI-PMH repository, it is checked for
the existence of duplicate records, and if any exist, they are reported and stored in a
different collection while they are also associated with a specific Report document.

 Reports: every time an operation occurs on the OAI-PMH Repository, a report is created
which includes any useful information regarding the operation. For example, if any conflict is
identified between the items it is logged and reported for further reference.

The Registry collection constitutes the core collection of documents for the OAI-PMH repository. It
contains all the records the user wishes to be exposed via the OAI-PMH repositories. Each record is
stored inside a JSON document, which also contains other information that might be useful to the
platform. More specifically, the record document contains information regarding the organization
to which the item belongs to, a unique hash key that is generated by calculating the SHA1 hash of
the string representation of the item, a date stamp which represents the date and time the record
was inserted, and finally a namespace “prefix” value which is required by the OAI-PMH
specification. An example of a Registry Document instance is depicted in Figure 5-9.

Figure 5-9: Structure of the registry document

As it was mentioned earlier, another important collection of documents that is stored as part of the
OAI-PMH repository is the Reports collection. The documents that are stored in this collection
represent a set of valuable information that corresponds to specific actions of the repository

11http://www.mongodb.org/

http://www.mongodb.org/

 16

platform. These actions are stored as values in the type attribute of the document and take one of
the following values:

 Add: this type represents an action in which records are added in the registry.

 Update: this type represents an update action in which a set for a specific import already
exists and it is updated by adding new metadata records.

 Delete: deletion of records from a specific import that already exists in the registry.

Apart from the action type, a number of other values are also stored as part of the Report
Document. More specifically, a set of valuable statistics are stored; the number of conflicted items
that were identified, the total number of the inserted records and the total number of items which
corresponds to sum of the inserted records plus the conflicts. Two date stamps are also stored as
part of the Report document, one corresponding to the time of creation of the document and the
other to the time of closing of the document, thus enabling the calculation of the time it took to
import a whole data set into the database. Finally, the date the import was published in the
ingestion platform is stored together with the name of the organization it belongs to. A visual
representation of the Report document structure is depicted in Figure 5-10.

Figure 5-10: Structure of the report document

The last collection of the OAI-PMH repository database contains conflict logs. The documents
stored contain any metadata records that at the time of publishing of a dataset from the ingestion
platform to the OAI-PMH repository were found to be conflicted. These documents are quite simple
in their structure. They contain an SHA1 hash of the conflicted item that was found together with
the record and a reference to the Report document that it belongs to. In this way it is possible for
someone to browse the actions that were made on the repository (e.g. additions, deletions and
updates) and directly view the items that were found as conflicted for the cases of additions and
updates. An example of a conflict document is depicted inFigure 5-11. It should be noted that the
whole procedure of creating unique hash codes and identifying conflicted items is an important
functionality of the OAI-PMH repository platform since it provides a mechanism for creating unique
ids for the metadata records and also a mechanism for identifying duplicates.

Figure 5-11: Structure of the conflict document

 17

On top of the data layer described so far, a set of functionalities is built. More specifically there is
an RSS Feed based on Atom and of course the implementation of the actual OAI-PMH verbs. The
implementation of the verbs is based on the customization of the OAICat12 web application, which
provides an abstract implementation of the OAI-PMH v2.0 specified verbs that can be customized in
order to operate on top of different data layer technologies (e.g. flat XML files, relational databases
etc.). The verbs that were implemented in order to work with the current OAI-PMH Repository
implementation are the following:

 Identify: this verb provides basic information regarding the running instance of the OAI-
PMH v2.0 data repository such as, contact details of the admin of the repository, the
base url that can be used by a harvester and, a sample of an identifier among others. For
a complete list of the information provided by the Identify verb someone can refer to
the OAI-PMH specification. The information served by this verb does not have to be
stored in the underlying data layer but is part of the configuration files of the verbs
implementation.

 GetRecord: given the identifier of a record and the desired namespace prefix, this verb
fetches from the MongoDB database the corresponding metadata record and delivers it
as a response to the harvesting client. In the current implementation a query is executed
based on the prefix, which is part of the Registry Document and the unique ID that is
generated by the SHA1 hashing of the initial Metadata Record, this query corresponds to
an exact match on the database.

 ListIdentifiers: given a set name and a namespace prefix, this verb responds with a list of
identifiers of items that correspond to these criteria. The set name is identical to the
name of the organization. In this way it is possible to organize the records of the
repository around organizations/providers. Again, the namespace prefix is matched with
the prefix field of the Registry Document.

 ListRecords: this verb operates in a similar way to the ListIdentifiers with the main
difference being that instead of returning only the identifiers, the complete Metadata
Record is served.

 ListMetadataFormats: this verb is implemented by aggregating all the unique prefix
values that are stored in the data layer by executing an aggregation for uniqueness
query on the Registry collection. The resulting response that is served by this verb
contains all the unique namespace prefixes that exist in the OAI-PMH repository and can
be used for accessing the Metadata Records.

 ListSets: this verb returns a list of all the sets that exist in the OAI-PMH repository. Sets
are named after the organizations that provide metadata records to the OAI-PMH
repository, in this way it is possible for someone to retrieve only the records that are
associated with a specific organization. The way the values are extracted is similar to the
ListMetadataFormats verb.

In every case that is needed, the verbs are implemented in such a way that they support paging
through the mechanism of resumption tokens as it is defined by the OAI-PMH specification. The
number of the returned items is specified through the configuration files of the OAICat running

12 www.oclc.org/research/activities/oaicat/default.htm

 18

instance. Finally, by being a servlet implementation, the OAICat specific instance can be served
through any of the available servlet contains that exist, e.g. Tomcat, JBoss, Jetty etc. Currently it is
served via a running Apache Tomcat instance.

An RSS feed is implemented following the “Atom Syndication Format” which is an XML language
used for web feeds, while the “Atom Publishing Protocol” (APP) is a simple HTTP based protocol for
creating and updating web resources. The purpose of this RSS feed in the current OAI-PMH
repository implementation is to provide a mechanism for notifying metadata consumers for the
occurrence of specific actions, for example when new items are added or updated to the repository
in an automatic way. This is achieved by creating the RSS Feed on top of the Reports collections
that was described earlier, in this way every time a new report is generated the feed is
automatically updated and the subscribers are informed for the associated action. The
implementation of the RSS Feed service is based on the Apache Abdera13 project, a functionally
complete, high performance implementation of the IETF Atom Syndication Format (RFC 4287) and
Atom Publishing Protocol (RFC 5023) specifications. The current implementation of the RSS Feed
communicates directly with the MongoDB based data layer of the OAI-PMH repository, every time
a new Report document is inserted; it is also transformed into the Atom protocol XML
representation and published on the Atom Feed that is maintained through the API of Apache
Abdera. The RSS Feed can be served via any of the available servlet containers, for performance
reasons it was decided to use a Jetty servlet container in the current implementation.

5.4 Metadata progress reports

In order to improve the monitoring of the metadata production and facilitate thepublication to
Europeana a new module has been implemented for the LoCloud MINT instance that allows
content providers to download reports with their overall progress.

The Transformations table shows the imports that have been transformed and the resulting valid
Items according to LIDO.

Figure 5-12: MINT progress report (Transformations)

The publications table presents the datasets that have been made available through MINT.

13 http://abdera.apache.org/

http://abdera.apache.org/

 19

Figure 5-13: MINT progress report (Publications)

The OAI current status table shows that number of unique records that are on NTUA's OAI-PMH
server and are ready to be harvested by Europeana (in this case the same records have been
published three times resulting to 5 unique records in OAI-PMH)

Figure 5-14: MINT progress report (OAI-PMH)

Finally, the progress status table shows the total number of transformed valid items, published
(made available for LoCloud repository) valid items, OAI published items and also the current and
the overall target assigned to content providers.

Figure 5-15: MINT progress report (Progress status)

6 MINT support

The transformation and the publication of providers’ metadata to the selected target schema (LIDO,
Carare2.0, EDM) is a process during which providers may encounter difficulties, even if they are
well aware of the MINT’s functionality. This is because the majority of the providers do not have a
strong technical background and it may be hard for them to follow the ingestion workflow
combining MINT’s functionalities to reach the desired result. For that reason a help desk support
system will be set up that in order to assist the content providers during all the phases of ingestion
in the LoCloud project. More specifically the content providers will be able to get instructions on
how to map their in-house metadata to the selected target schema for exploiting its full

 20

expressiveness, as well as technical information about MINT functionalities that will allow them to
fit their metadata perfectly according to the LoCloud requirements. In addition, a set of explanatory
documents concerning the various aspects of importing metadata to MINT and mapping to the
target schema (LIDO, Carare2.0, and EDM) will be available online.

 Online documentation and instruction of step-by-step usage of MINT can be found at:
http://mint.image.ece.ntua.gr/mint2/documentation/.

7 Technical Specifications

7.1 Platform

The platform is developed using JAVA, JSP, HTML and Javascript. It uses PostgreSQL as an object-
relational database with Hibernate as the data persistence framework, and mongoDB as a
document-oriented database. MINT is also reusing other open source development frameworks
and libraries according to specific deployments and customizations. MINT source code versions are
released under a free software license (GNU Affero GPL).

The MINT platform offers the user an organisation management system that allows the deployment
and operation of different aggregation schemes with corresponding user roles and access rights. A
Restful web service is available for user management and authentication.

7.2 Ingestion

Registered users can upload their metadata records in XML or CSV serialization, using the HTTP, FTP
and OAI-PMH protocols. Users can also directly upload and validate records in a range of supported
metadata standards (XSD). XML records are stored and indexed for statistics, previews, access from
the ingestion platform and subsequent services. Current developments aim to support relational
database schemata and OWL/RDFS ontologies as input.

7.3 Processing

Handling of metadata records includes indexing, retrieval, update and transformation of XML files
and records. XML processors (Apache Xerces, SAXON, Nux) are used for validation and
transformation tasks as well as for the visualization of XML and XSLT. For issues of scalability with
respect to the amount of data and concurrent heavy processing tasks, parts of the services are
multi-threaded or use specific queue processing mechanisms.

7.4 Normalization & Vocabularies

Various additional resources such as terminologies, vocabularies, authority files and dictionaries are
used to reinforce an aggregation's homogeneity and interoperability with external data sources. A
typical usage scenario is the connection of a local (server) or online resource with a metadata
element in order to be used during mapping/normalization. The vocabularies have to be
represented in SKOS.

http://mint.image.ece.ntua.gr/mint2/documentation/

 21

8 MINT Integration in LoCloud core infrastructure

MINT integration into LoCloud infrastructure aims at:

 Exposing MINT data and services via appropriate API

 Interaction with core infrastructure API (D2.1)

 Publication to Europeana through MORE (D2.3)

Data providers and Organizations that need to convert their data into the Carare 2.0, LIDO or EDM
format can use the new MINT release to easily create the necessary mapping. Once the data
transformed into the target schema and validated, MINT offers to transfer the data to the MORE
system.

For this to work, MINT and MORE cooperate via a web service like API. MINT announces to MORE
the finished dataset and provides a download token, which authorizes the MORE service to
download the prepared dataset. This happens via a URL request to a specified MORE service.
MORE then uses this token to download a tar-gzip archive of the published data. It contains a
package.xml file to describe the whole publication, along with subdirectories for each published
item. Each item is supplied with source and transformed xml, the generated and utilized XSL file
and some general information contained in an info.xml file.

This integration has been set up and tested in previous projects (Carare, 3d-Icons) and is based on a
standardized and extendable approach based on HTTP APIs. For the final deployment and
integration in the project’s cloud enabled infrastructure the aforementioned approach can be
updated and/or extended according to new requirements that may arise during the core
infrastructure implementation.

9 Conclusion

The present document constitutes the report of deliverable D 2.2 “Modified MINT prototype” that
is made available online for validation and for the large-scale contribution of content to Europeana
and for dissemination & training. The MINT ingestion platform uses once-only mappings and simple
re-use of local “source” metadata and in that way takes full advantage of the funded project to
make a very low-cost continuation possible. NTUA hosts the tool and the provision of these services
has minimal additional cost.

The platform implements an aggregation infrastructure offering a crosswalk mechanism to support
subsequent critical activities:

 harvesting and aggregating metadata records that were created using shared community
standards or proprietary metadata schemas ;

 migrating from providers’ models (whether standard or local) to a reference model ;

9.1 Results

The objective of the deliverable is the deployment of the MINT ingestion platform (Task 2.2.1), that
is available online to the project partners at http://mint-projects.image.ntua.gr/locloud

 22

