arXiv:2309.07973v2 [eess.|V] 1 Feb 2024
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ABSTRACT

The ability to detect manipulated visual content is becom-
ing increasingly important in many application fields, given
the rapid advances in image synthesis methods. Of partic-
ular concern is the possibility of modifying the content of
medical images, altering the resulting diagnoses. Despite its
relevance, this issue has received limited attention from the
research community. One reason is the lack of large and cu-
rated datasets to use for development and benchmarking pur-
poses. Here, we investigate this issue and propose M3Dsynth,
a large dataset of manipulated Computed Tomography (CT)
lung images. We create manipulated images by injecting or
removing lung cancer nodules in real CT scans, using three
different methods based on Generative Adversarial Networks
(GAN) or Diffusion Models (DM), for a total of 8,577 ma-
nipulated samples. Experiments show that these images eas-
ily fool automated diagnostic tools. We also tested several
state-of-the-art forensic detectors and demonstrated that, once
trained on the proposed dataset, they are able to accurately
detect and localize manipulated synthetic content, even when
training and test sets are not aligned, showing good gener-
alization ability. Dataset and code are publicly available at
https://grip—-unina.github.io/M3Dsynth/.

Index Terms— Synthetic image detection, medical im-
age tampering, GANs, Diffusion Models, DeepFakes.

1. INTRODUCTION

Nowadays, the diagnosis of diseases relies heavily on non-
invasive medical imaging techniques, such as Magnetic Res-
onance Imaging (MRI) and Computed Tomography (CT),
which can produce high-resolution images of the body’s in-
ternal organs. 3D medical images are typically stored in
secure Picture and Archive Communication System (PACS)
servers. In [1], however, it was shown that an attacker could
enter the system and use deep learning to modify medical
CT scans, injecting or removing lung cancer nodules. Such
actions may have the purpose of committing insurance fraud,
falsifying scientific research data or even have political or
terrorism-related purposes. Unfortunately, such manipulated
images can easily fool automated cancer detectors and even
medical experts [1]. This motivates the search for methods
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Fig. 1: Examples of injection (top) and removal (bottom) of a large
lung nodule from our dataset. Next to the pristine image, we show
the manipulated versions obtained from tools based on Pix2Pix, Cy-
cleGAN and Diffusion Models.

that can reliably detect and locate such manipulations

In recent years, there has been intense research on fake
image detection [2], but most efforts have focused on ma-
nipulated faces in video (deepfakes) [3]. Indeed, very lim-
ited attention has been paid to detect tampering in medical
images, except for some works on misuse of images pub-
lished in biomedical scientific papers [4], despite this being
a serious threat in several application scenarios [5]. The first
studies appear in [1] where a small dataset of 100 tampered
medical images is created by injecting or removing in origi-
nal images nodules (both malignant and benign) generated by
a 3D conditional GAN. The same dataset has been used for
several subsequent studies. In [6] the performance of various
machine learning and deep learning detectors is investigated,
showing that high detection accuracy can be obtained through
suitable augmentation and fine-tuning. In [7], instead, a 3D
Convolutional Neural Network (CNN) model is proposed that
can better exploit the tridimensional nature of the CT scans,
obtaining also in this case good performance.

However, all above detectors only focus on the detection
task and were trained and tested on the same type of manipu-
lations, without exploring their ability to generalize. Indeed,
it is well known that data driven detectors perform very well
on the image manipulations they were trained for but exhibit
a sharp performance drop on images displaying new types
of synthetic generation [2], because the forensic traces intro-
duced by unrelated generators may be very different [8]. On
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Fig. 2: Scheme of the manipulation process. Pre-processing (top): selection of candidate site, extraction of cubic sample, scaling to
32x32x32 pixels, equalization, center masking. The input datacube feeds a GAN/DM model which generates the synthetic datacube.
Post-processing (bottom): data restoration by de-equalization and inverse scaling, touch-up to improve blending into the host CT scan.

the other hand, this latter case is very relevant, since new tools
for creating synthetic images are developed by the day.

In this work, with the aim of providing a solid framework
for the development and testing of new forensic detectors, we
propose M3Dsynth, a large dataset of manipulated lung CT
images. Over 8,000 manipulated 3D scans are generated by
injecting or removing lung cancer nodules in real CT scans,
using three different GAN/DM generative models. The size
and variety of the proposed dataset allows for a better assess-
ment of new detectors in diverse operating conditions. We
show that the manipulated images easily fool automated di-
agnosis tools. Moreover, we carry out a preliminary study of
several state-of-the-art detectors showing that, by training on
our large dataset of pristine and synthetic images, it is pos-
sible to detect and also localize both injections and removals
even in a cross-generator scenario.

2. M3DSYNTH DATASET

CT images are precious sources of information for lung can-
cer diagnosis. The decision relies mostly on the presence of
lung nodules, and especially on their number and size. While
small nodules are not alarming, multiple large nodules, with
diameter D >10mm, represent important diagnostic clues.
Therefore, in our dataset we focus on large (malignant) lung
nodules. Given a real CT scan, we either inject a single malig-
nant nodule in it or remove an existing one from it. Actually,
most of the times we do not create a large nodule anew but
enlarge an existing small one and, likewise, do not remove
altogether an existing large nodule but reduce it to a smaller
size. This is to reduce the visual impact of manipulations.
For the same reason, newly generated nodules are placed near
existing benign ones. Fig.l1 shows a few examples of both
manipulations. The pristine CT scans are from the dataset
proposed in [9], comprising 1018 CT scans of 1010 patients,
fully annotated with position and size of all detected nodules.
Details about training and test sets are present in Tab.1.

2.1. Generation

The manipulation pipeline is described in Fig.2. Only a local
3D cube of the CT scan is modified. In particular, following
[1], we consider a cube of side 32mm, which is much larger
than the nodules, both benign and malignant, found in the
lungs. In fact, only the inner part of the cube, of side 16mm,
is processed, masking (zeroing) all input data and generat-
ing them anew, while the outer part is used for conditioning
the whole process. That is, the generator replaces the in-
ner part with synthetic material, preserving the surrounding
anatomical tissue which will therefore fit seamlessly in the
original image. In case of removal, the generator replaces the
existing malignant nodule (D >10mm) with a smaller nod-
ule (D <8mm). In case of injection, instead, a large nod-
ule (D >10mm) is generated. We manipulate the same CT
scan by means of three different generative architectures, two
based on GANs and one on DMs.

All networks accept in input a datacube of 32x32x32
pixels. Note that this requires some preprocessing, since a
physical cube of side 32mm corresponds to [V slices of M x
M pixels in the CT scan, where neither N nor M need nec-
essarily be 32, and both numbers depend on the actual CT
machine. Therefore, to obtain a fixed-size network input, the
original data are suitably rescaled in advance. Also, to ensure
uniformity, data are also equalized to the same range of val-
ues. Of course, all operations are inverted in output before
reinserting the generated data in the original CT scan.

GAN-based generation. Our first generator is the CT-GAN
network proposed in [1], a 3D version of the Pix2Pix GAN
proposed originally [10] for 2D images. We train two mod-
els of the same architecture, one for the injection and one
for the removal task. Our second generator is based on a
3D CycleGAN, originally designed for the translation of
MRI brain images between two different domains [11]. We
adapted it to operate on 3D cubes, considering two translation
tasks. For injection, the translation is between real cancerous
tissues and the corresponding masked cubes, while for re-
moval the translation is between samples without cancer and
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Fig. 3: Histograms of lung nodule classification scores. Top: before
manipulation, the diagnostic tools separates relatively well benign
(blue) form malignant (red) nodules. Bottom: after manipulation the
removed/shrinked malignant nodules (red) have the same histogram
as benign nodules had before manipulation and vice-versa.

the corresponding masked cubes. For the manipulation, we
use the two transformations from masked cubes to synthetic
cancerous/non-cancerous tissue.

DM-based generation. Finally, we created synthetic samples
using a DM tool, namely, the Denoising Diffusion Probabilis-
tic Model (DDPM) [12], extended to deal with 3D medical
images in [13], by replacing the original denoiser based on a
2D U-Net architecture with an analogous denoiser based on
a 3D U-Net. 3D Diffusion Models were also used in [14] to
support the registration of cardiac images. We adopted the 3D
model for our inpainting task, where the generated cube has to
be coherent with the available masked cube. Therefore, with
respect to [12, 13] we modify the architecture by providing
the denoiser with an additional input set to the masked cube.
In detail, we adopted a 2000-step linear scheduling of noise
levels and the 3D U-Net-like architecture used in [14].

2.2. Analysis

To evaluate the quality of generated data, we used the
computer-aided diagnostic tool proposed in [15]. This is
a deep learning-based tool that comprises a detection network
to localize the nodules and a classification network working
on each of them. We applied only the classification network
at the position where the nodule was injected or removed.
In Fig.3, we show the histograms of the classification scores
on pristine data (top) and after manipulation (bottom). Large
values indicate malignant nodules. Although the separation
between benign and malignant nodules is not perfect, in pris-
tine images the classifier tends to assign higher values to ma-
lignant nodules'. After manipulation, the removed/shrinked
nodules have lower scores and the injected/enlarged nodules
have larger scores, with the two histograms exchanging roles.

!t is worth pointing out that actual diagnosis for a patient relies on the
observation of all nodules in the CT, not just one.

Pix2Pix CycleGAN DM TOTAL
Injection 2009 2220 2009 6238
Removal 509 1016 814 2339
TOTAL 2518 3236 2823 8577

Table 1: Distribution of manipulated images of the dataset.

Test Set
Training G.P. images M3Dsynth

Set ProGAN StyleGAN2 LDM Pix2Pix CycleGAN DM
fn ProGAN 99.9 98.1 57.1 50.0 47.1 48.8
£ StyleGAN2|  99.8 100 57.9 50.4 49.6 52.0
S LDM 50.8 50.0 100 44.6 44.5 46.2
‘i Pix2Pix 50.5 49.0 489 99.5 96.6 95.8
é CycleGAN| 495 49.0 49.9 97.7 98.5 91.6
= DM 50.9 50.6 50.7 96.1 92.8 97.3

Table 2: Detection Accuracy of the method proposed in [16] (thresh-
old equal to 0.5). Top: training on general purpose (G.P.) images.
Bottom: training on the M3Dsynth dataset.

Therefore, the manipulated data fool the classification tool.

The proposed dataset may be precious to assess new de-
tectors but it is even more important in the training phase.
This latter point can be fully appreciated by means of a further
preliminary experiment. We consider the detector of synthetic
images proposed in [16], that is trained general purpose (G.P.)
images, and test it on such generic images and on the images
of the M3Dsynth dataset, assuming to know in advance the
position of the forged area, as the tool performs only detec-
tion, not localization. Results are reported in the upper part of
Tab.2. On generic images the detector achieves good results,
while on medical images an accuracy around 50% is obtained,
showing that the detector, although trained on images gener-
ated by both GAN and DM-based methods, has no clue on
the nature of test images. Then, we repeated the analysis after
fine tuning on the proposed dataset obtaining very different
results (bottom part of Tab.2). Now the detection accuracy is
always over 90% even when training and test images are gen-
erated with different methods, while performance on generic
images decreases, as expected.

3. BENCHMARK EVALUATION

We now test some state-of-the-art forensic methods on the
proposed dataset so as to establish a first benchmark. Not all
image forensics tools are appropriate for our task. In fact,
several classical approaches look for compression artifacts or
traces of internal camera processing [2], but compression is
not customary for CT images, and medical imaging sensors
have very different properties than smartphones or general-
purpose cameras. Therefore, for the time being, we restrict
attention to deep learning-based methods that may be used
or adapted to perform both detection and localization of syn-
thetic content, and such to be easily fine-tuned on our dataset.



Test Set: Pix2Pix CycleGAN DM
Training Set: Pix2Pix CycleGAN DM Pix2Pix CycleGAN DM Pix2Pix CycleGAN DM

o [17]U-Net 44.5/30.7  39.7/26.6 355/232 34.4/233 575/43.6 22.7/155 46.9/33.3 49.1/358 57.7/43.6
2 [18] HP-FCN 85.0/753  59.1/434 45.6/31.3 63.6/49.8 84.5/753 36.4/246 77.0/649 73.6/61.9 84.9/75.4
~ [19] ManTraNet = 87.0/79.1  66.5/50.5 61.4/455 74.8/63.3 855/77.2 60.5/47.4 83.2/73.0 81.8/70.7 87.2/78.5
o [20] MVSS-Net  81.4/704  63.2/498 56.8/425 74.7/642 86.2/78.0 55.1/44.1 79.5/68.5 72.8/62.2 84.9/75.4

[21] TruFor 890.9/829  68.1/55.5 68.0/54.7 79.0/70.1 88.2/81.2 65.0/54.1 84.4/752 76.9/66.7 89.3/82.0
¥ [22] Xception 83.7/99.8  86.9/952 71.9/80.3 81.3/86.1 87.4/99.2 64.1/37.8 83.5/97.7 86.8/94.1 71.9/96.9
® [17]1U-Net 529/93.1  60.3/745 53.7/56.5 52.1/644 60.6/954 53.0/29.2 529/91.1 60.3/79.5 53.7/96.8
T [18] HP-FCN 59.8/45.6  71.4/50.8 60.2/31.7 59.8/43.1 71.4/520 60.3/289 59.8/454 71.4/51.4 60.4/33.6
~ [19] ManTraNet ~ 52.7/100.  56.6/99.9 52.8/91.2 52.7/934 56.6/99.7 52.8/873 52.7/99.9 56.6/100. 52.8/100.
8 [20] MVSS-Net  73.0/95.8  925/972 75.4/862 72.1/70.8 92.7/99.3 73.7/674 73.0/91.2 92.6/97.9 76.0/99.3
< [21] TruFor 95.0/100.  95.8/97.8 943/97.0 93.3/959 96.0/99.4 91.2/89.1 95.0/99.9 96.0/98.1 94.9/99.6

Table 3: Benchmark results on M3Dsynth. Top: F1 and IOU localization metrics. Bottom: Accuracy and Pd@ 1% detection metrics.

Baseline methods. Xception is a generic deep convolutional
neural network (CNN) [22] often used for deepfake detec-
tion and as a backbone in more sophisticated architectures [3].
Also U-Net [17], the well-known segmentation workhorse, is
often used as a backbone for multiple forensic tasks [23, 24].
HP-FCN is a fully convolutional network with a high-pass
pre-filtering layer, proposed to localize inpainting in natural
images [18]. MantraNet is a fully convolutional network
[19], that uses a long short-term memory module to assess
local anomalies and self-supervised pre-training on 385 dif-
ferent image operations. MVSS-Net has been proposed re-
cently for image forgery localization and detection in [20].
The network has multi-scale modules and two branches to
exploit both noise and edge information. TruFor [21] is a
transformer-based network that performs forgery localization
and detection by jointly exploiting RGB data and a learned
noise-sensitive fingerprint.

All networks are trained using the focal loss for local-
ization, the binary cross-entropy loss for detection, and their
combination when both tasks are performed. When network
weights are available, they are imported and fine-tuned on the
proposed dataset. A pristine CT scan can be used to gener-
ate multiple manipulated images by injecting and removing
nodules in different places. Therefore, to avoid any biases,
the data are split on a per-patient basis, with 488 patients for
training, 100 for validation and 150 more for testing. Note
that some preliminary experiments have shown that all these
methods trained on the original datasets provide unsatisfac-
tory results both for localization and detection on M3Dsynth,
hence in the following we fine-tune on our medical data.

Localization and detection. To evaluate their generalization
ability, methods are trained on images manipulated by a single
synthetic generator and tested against all the others. Experi-
mental results are collected in Tab.3, where the top part refers
to the localization task. Methods generate a 3D localization
map which is compared with the ground truth to compute
two performance metrics: F1 measure and Intersection-over-
Union (IoU) score averaged on all images of the same type.
The performance is very good on average, especially for Tru-

For and ManTraNet, and only plain U-Net seems to struggle.
As expected, the best results are for aligned data (same train-
ing and test), but only a limited impairment is observed on
non-aligned data, testifying of a good generalization ability.

In the bottom part, detection results are shown, again for
two different metrics. Accuracy is computed as the (balanced)
probability of correct decision. Decisions are made by com-
paring the maximum detection score obtained over all slices
of an image with the fixed 0.5 threshold. Several methods
provide dismaying results, close to 50%, but these may be
also due to the fixed choice of the threshold, and could be im-
proved through calibration. This latter problem is overcome
by the second metric Pd@1%. In this case, the threshold is
set off-line, working only on pristine images, to ensure a 1%
probability of false alarm, and the corresponding probability
of detection measures performance. A small false alarm rate
guarantees correct operations in a real-world scenario where
the vast majority of images is pristine. Despite this strong
constraint, several methods show a very good detection per-
formance and only HP-FCN provides poor results.

4. CONCLUSION

We introduced M3Dsynth, a large dataset of tampered 3D
medical images with local Al-based manipulations that in-
cludes CT scans with both injection and removal of lung nod-
ules. The dataset has been used to train and test several state-
of-the-art detectors in different situations and evaluate their
performance across different synthetic generators. Some of
the tested methods proved very good both at detecting and lo-
calizing local manipulations, even when training and test are
mis-aligned. We hope this dataset will stimulate the research
community to work on this topic, contributing new data and
methods, and exploring challenging situations such as using
adversarial attacks to fool the detectors.
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