
2nd-order Forces Within HydroDyn
Implimentation

A. Platt

December 4, 2014

Table of Contents

Todo list 1

1 Overview 1

2 Background information 2
2.1 Platform Displacement and Rotation . 2

3 Multi-directional Waves 3
3.1 Adjusting Θ within the Waves module . 3
3.2 Equal Energy Approach . 4

3.2.1 A few notes . 6
3.2.2 Implimentation and Testing . 6

3.3 Changes during implimentation . 11

4 WAMIT: Output Files 12
4.1 WAMIT Output . 12
4.2 Reading WAMIT Data Files . 13

4.2.1 First order WAMIT output files (.3) . 13
4.2.2 Second order WAMIT output files . 14

4.3 WAMIT Data Integrity Checks . 17

5 Second Order Force Calculations 18
5.1 Overview . 19
5.2 Frequency range . 21
5.3 Wave Amplitude . 21
5.4 Difference Frequency Force . 21

5.4.1 Mean-Drift Method . 22
5.4.2 Newman’s Approximation Method . 24

5.4.2.1 Mean drift and Newman’s approximation 24
5.4.2.2 Standing’s equation . 26

5.4.3 Difference QTF Method . 27
5.5 Summation Frequency Force . 28

5.5.1 Summation QTF Method . 28

6 Algorithms 29
6.1 FFT and IFFT . 29

6.1.1 Numerical Evaluation of IFFT . 30
6.1.2 Z[k] in HydroDyn . 30

6.2 Interpolation . 30
6.2.1 3D Interpolation . 30

6.2.1.1 Full array interpolation . 30
6.2.1.2 Sparse array interpolation . 31

iii

TABLE OF CONTENTS iv

6.2.2 4D Interpolation . 31
6.2.2.1 Full array interpolation . 31
6.2.2.2 Sparse array interpolation . 31

7 Integration of the WAMIT2 module within HydroDyn 32

8 Integration of the Waves2 module within HydroDyn 33

9 WAMIT2 Module Architecture 34

List of Figures

3.1 Flowchart of how to find a suitable value of Θ . 5
3.2 Test case 001. The right plot shows the randomly selected directions for each frequency. 8
3.3 Test case 002. The right plot shows the randomly selected directions for each frequency. 9
3.4 Test case 003. The right plot shows the randomly selected directions for each frequency. 9
3.5 Test case 004. The right plot shows the randomly selected directions for each frequency.

This is the same as test case 002 with θ̄ = 135 and S = 2.3. Note that the ordering of
the assigned frequencies is the same as in case 002. 9

3.6 Test case 005. The right plot shows the randomly selected directions for each frequency. 10
3.7 Test case 008. The right plot shows the randomly selected directions for each frequency. 10

4.1 Overview of scheme for reading in 2nd order WAMIT files with two periods (.10, .11,
.12). The algorithm for reading in 2nd order WAMIT files with only one period (.7, .8,
.9) should be a simplified version of this algorithm. 15

5.1 Generalized overview calculation of second order forces. Here Z(ω) is the combination
complex wave as a function of frequency and Φ(ω) is the associated wave direction
heading for each frequency. The 3D and 4D arrays containing the wave force transfer
function are interpolated at each step within the innermost summation containing the
F±k terms, or during assembly of the matrix for the FFT. 20

5.2 Flow diagram for the mean drift calculation method. The mean drift equation only
involves the diagonal terms where the frequencies ω1 = ω2, and the wave directions
β1 = β2. The WAMIT output files are read in and arranged in either a 3D or 4D array
and interpolated at each step in the summation. See text for how to solve the equation.
See Chapter 4 for requirements on which WAMIT output files can be used. 22

9.1 Information flow to and from the WAMIT2 module. The green boxes indicate informa-
tion or files passed into or out of the module. 34

List of Tables

3.1 New section for the HydroDyn input file for multi-directional waves. This section is
inserted where WaveDir is currently defined. 3

3.2 Notation for multi-directional wave equations . 4
3.3 Multi-directional waves test cases . 8

4.1 Notation for WAMIT output files . 12

v

LIST OF TABLES vi

4.2 Format of WAMIT output files . 13

5.1 Matrix of possible calculation methods and data file combinations. 18
5.2 Notation used in the second order force equations. The variable name used in the

fortran code is also listed where appropriate. 19

7.1 New section for the HydroDyn input file for the second order forces calculated by the
WAMIT2 module. 32

8.1 New section for the HydroDyn input file for the second order forces calculated by the
Waves2 module. 33

Chapter 1

Overview

This document serves two functions: first, as a guide to how second order forces and bi-directional
waves should be incorporated into HydroDyn, and second to document the actual changes as they are
made. While Tiago Duarte was visiting NREL over a 6 month period in 2012 and 2013, he sketched
out in detail how to incorporate both second order effects and bi-directional waves into HydroDyn.
This document is primarily based on his paper for the AIAA SciTech 2014 conference [1].

The second order forces can be developed in a standalone sub-module of HydroDyn called WAMIT2
following the FAST framework. This module will calculate the second order forces using information
from the Waves sub-module, inputs from the HydroDyn module (including options from the input
file), and data files produced by WAMIT. This module will be developed to use bi-directional waves,
though testing will be somewhat limited due to the availability of a complete second order solution
with bi-directional waves, in the form of a quadratic transfer function (QTF), produced by WAMIT.1

The addition of bi-directional waves to HydroDyn will require modification of existing code. Since
HydroDyn is still being developed, this addition will take place in the latter stages of the WAMIT2
module development. The bi-directional waves implimentation will use the equal energy approach
outlined by Tiago in his document titled “Multi-Directional Waves: Comparison and Implimentation.”

1Due to the complexity of the calculations, it has been estimated that a full QTF with 57 by 57 frequencies and 37
by 37 wave directions would take on the order of 52 years to calculate with our existing single threaded implimentation
of WAMIT.

1

Chapter 2

Background information

HydroDyn is currently undergoing a conversion to the FAST modularization framework. During this
conversion, some additional capabilities are being added to HydroDyn including jacket platforms. At
present, HydroDyn does not account for second order wave forces: those forces that arise from the
sum and difference of the frequencies of incident waves. HydroDyn also only includes uni-directional
waves where all waves are incident from the same direction.

At the start of a FAST simulation, HydroDyn is initialized and calculates the wave spectrum1 and
time history using the waves sub-module. This information is then used by the WAMIT sub-module
and a few other sub-modules to calculate the first order wave foreces on the platform. Because the
frequency, direction, and phase of each of the wave components is known at initialization, a time series
of the second order forces can be calculated using the WAMIT2 sub-module before the simulations
begins. This requires that the following assumptions are made:
• the wave information in frequency space is known before the start of the simulation (the time

series can be found through an FFT),
• the time series of second order forces will act on a single point at the origin (as the first order

forces do),
• wave forces and moments are fixed to a reference frame that translates (but does not rotate)

with the platform,
• Wavelengths are large compared to the motion of the platform.

2.1 Platform Displacement and Rotation
The complete timeseries for the forces and moments comprising the loads from the first and second
order waves are calculated during the initialization of a FAST simulation. These calculated loads are
given at the platform origin in the platform rest reference frame and applied during the simulation.
During the simulation, the platform will translate and rotate as a result of these loads, aerodynamic
loads, and other real time loads (mooring lines etc.). The calculation of the first and second order
wave loads do not take into account this displacement.

During the simulation, the FAST glue code calls HydroDyn to calculate the platform loads at
each timestep. Since the first- and second-order wave load timeseries were calculated during the
initialization, these values are looked up at each timestep and reported back to the glue code on a
point mesh (includes translation and rotation).

1 The wave spectrum is complex-valued and therefore includes all the phase information, so the time history of the
wave can be found easily through an FFT.

2

Chapter 3

Multi-directional Waves

In order to incorporate bi-directional waves, changes were made to the input files, how the data is
stored internally, and to the computation of the first order forces. The second order forces were
designed from the beginning to include bi-directional waves.

For our implimentation of the multi-directional waves, we are using the equal energy discretization
which is used in the commercial code OrcaFlex. With this method the same N/2 + 1 frequencies as
used in the uni-directional case are used here. A total of Θ (WaveNDir in input file) discrete directions
are used and each frequency is assigned to one of the discrete directions. The value of (N2)/Θ needs
to be an integer so that each direction contains the same number of frequencies. Θ may need to be
adjusted within the Waves module to ensure this is true (see Section 3.1).

1 0.0 WaveDir ! Incident wave propagation mean heading direction (degrees)
2 1 WaveDirMod ! Directional spreading function {0: unused, 1: COS2S} (-)
3 15 WaveDirSpread ! Wave direction spreading coefficient (> 0) (-)
4 11 WaveNDir ! Number of wave directions [odd number only] (-)
5 90 WaveDirRange ! Range of wave directions (full range: WaveDir +/- WaveDirRange/2) (degrees)

Table 3.1: New section for the HydroDyn input file for multi-directional waves. This section is inserted
where WaveDir is currently defined.

If WaveDirMod = 1, then a check is performed to make sure that WaveMod =2, 3, or 4 (JON-
SWAP, white-noise, user defined). If this is true, then an internal logical variable WaveMultiDir is
set to true and passed to modules that need to know about multiple wave directions.

Within the code in the HydroDyn_Input module, the maximum and and minimum directions
actually used stored as WaveDirMin and WaveDirMax. Since the wave direction assignments are
performed using the equal energy approach, the actual maximum and minimum values will cover a
smaller range than requested by the WaveDirRange variable (see Section 3.2.2).

WaveDirMin > WaveDir−WaveDirRange/2 (3.1)
WaveDirMax < WaveDir + WaveDirRange/2. (3.2)

These variables will be used in checking the WAMIT output files used (both first and second order).
Care should be taken to allow for crossing the ±π direction boundary.

3.1 Adjusting Θ within the Waves module
To use the equal energy approach outlined below, (N2)/Θ must be an integer, so it may be neces-
sary to change Θ from the user specified value. The difficulty with enforcing this arises from three
requirements:

3

CHAPTER 3. MULTI-DIRECTIONAL WAVES 4

1. WaveNDir is odd in order to keep the center direction
2. N is adjusted by HydroDyn to be a product of smallish numbers for efficiency in the FFT
3. (N2)/Θ needs to be an integer to keep the energy distribution correct1

The third requirement means that N/2 is a product of integers such that Θ is one of them. For
small values of Θ, this is unlikely to be an issue when N is large, but could be problematic for short
simulations where N is smaller.2 For large values Θ, it becomes less likely this would be true. In
order to satisfy these conditions, the value of Θ will be adjusted.3

For small values of Θ, it may only be necessary to increase it slightly to satisfy the requirements
(for example, change Θ = 7 to Θ = 9). For large values of Θ (perhaps > 60), it may be necessary
adjust the value several times before a suitable value is found. This could be done as outlined in
Figure 3.1. Note that we do not want to simply allow Θ to increase until a suitable value is found in
the unlikely event that N/2 is a prime number. In this case Θ will have to be increased until Θ = N/2,
which would mean each frequency has a unique wave heading and no binning occured. This can only
be corrected by having the user change WaveDT or WaveTMax since N is adjusted internally to
satisfy condition 2.

3.2 Equal Energy Approach

Table 3.2: Notation for multi-directional wave equations.

Variable Variable Name Description Units

Θ WaveNDir User defined number of wave directions -
θ Current wave direction degrees
θ̄ WaveDir Central (mean) wave direction degrees
δθ WaveDirRange Range of wave directions (full width) degrees
S WaveDirSpread Spreading function coefficient (1 typ) -

This method to simulate multi-directional waves assigns each frequency component of the wave to
one of Θ discrete wave directions. Each wave direction will have the same number of frequencies,
(N2)/Θ, assigned to it. In order to preserve the energy distribution in the wave spreading function,
the wave directions are assigned so that a greater number of directions are concentrated near the
central frequency.

This method is only valid if the equation describing the total spectrum is separable into the
frequency and direction parts as follows:

S(ω, θ) = S̄(ω) ·D(θ). (3.3)

The wave spreading function is given by

D(θ) = C

∣∣∣∣cos

(
π (θ − θ̄)

δθ

)∣∣∣∣2S , (3.4)

1Originally the requirement was set such that (N
2
− 1)/Θ was used (the ω = 0 frequency was ignored). However, it

was found that (N
2
− 1)/Θ was often a prime number, which would lead to user frustration.

2N is initially set to TMax/WaveDT and then increased until it is the product of small numbers.
3While it is theoretically possible to adjustN such that the third condition is satisfied, this would have the undesirable

consequence of changing the frequency step (see Equation (6.2)). This would in turn change the values of the complex
wave amplitude in frequency space (Am) for a given random number seed value. Subsequently, the ability to reproduce
the wave height and wave force timeseries for a given seed pair would not be preserved.

CHAPTER 3. MULTI-DIRECTIONAL WAVES 5

Θinit = Θ
Θmax = 1.25 × Θinit

Is Θ odd

Θ = Θ + 1
Θinit = Θ

Warn user that
it wasn’t odd
and new value.

n

(N2)/Θ
integer

y

No change
to Θ

y
Return

Θ = Θ + 2

n

Θ < Θmax
(N2)/Θ
integer

y Tell user what
Θ is and why

y
Return

n

No Solution in range:
Θinit → Θmax
Try changing Θ
or WaveTMax

n

Fatal Error: Return sug-
gested value of WaveNDir
if exists

Figure 3.1: Flowchart of how to find a suitable value of Θ such that (N2)/Θ is an integer. The reason for
suggesting that WaveTMax should be changed is that there is a possibility that N/2 is a prime number.
This is implimented at the start of the initialization subroutine of the Waves module if multidirectional
waves are selected.

CHAPTER 3. MULTI-DIRECTIONAL WAVES 6

where the normalization constant, C, is given by

C =

√
π Γ(S + 1)

δθ Γ(S + 1/2)
, (3.5)

and Γ is the gamma function. The spreading function should satisfy the normalization condition of

θ̄+δθ/2∫
θ̄−δθ/2

D(θ) dθ ≡ 1. (3.6)

The cumulative energy distribution within the wave spreading function up to angle θ is given by

P (θ) =

θ∫
θ̄−δθ/2

D(θ′) dθ′. (3.7)

The following method may be used to set the appropriate wave directions to satisfy the equal
energy approach.

1. Discretize the wave direction range δθ by nd steps and calculate D(θ) spreading function. Set
nd to a sufficiently large number such that the function is smooth enough for interpolation over
Θ directions (set nd = 3Θ).

2. While calculating D(θ), calculate the cumulative energy sum up to the current direction as P (θ).
3. Discretize P (θ) into Θ steps from 1/Θ ≤ Pi ≤ 1− 1/Θ. Interpolate the function D(θ) found in

step 1 to find the corresponding values of θi. The θi values are the wave directions used in the
equal energy method.

4. Randomly assign each of the N/2 frequencies (ignoring the end frequencies at which the wave
amplitude is defined as zero) to a θi direction such that each wave direction has (N/2)/Θ
frequencies assigned to it. This is the tricky bit to do such that the assignments are the same
given a certain random number seeed pair.

3.2.1 A few notes
There are a few things to take note of in this process. First, in order to preserve the equal energy
distribution within the wave direction spreading function, care must be taken so that (N/2)/Θ is an
integer (see Section 3.1 for caveats with using a user defined value for Θ). Second, if it is desirable
to have a greater number wave directions, it is preferable to increase Θ substantially. Alternatively,
the θi values could be treated as wave direction bins spanning a range of θ directions rather than a
single direction. The danger with this is that the distribution of random wave directions within the
bin will affect the overall energy distribution of the spreading function. A shaping function would
then need to be applied to the bin to distribute wave directions within it. In this case it would be
preferable to increase Θ significantly in order to allow for more wave directions while preserving the
energy distribution in the wave spreading function. Short tests using MATLAB code indicate that a
value of Θ = 399 works well for allowing a seemingly random set of wave directions. In practice, it
may be preferable to keep Θ < 50 for a more physical description of wave directionality.

3.2.2 Implimentation and Testing
Development testing During the implimentation of the multidirectional waves within the Waves
module, testing was performed to ensure that no errors were introduced into the equations used to
calculate the wave elevation, velocity, and acceleration. The following sequence was used to impliment
the multidirectional waves within the waves module.

CHAPTER 3. MULTI-DIRECTIONAL WAVES 7

1. Add code section to change the value of WaveNDir. This was originally implimented such that
(N2 − 1)/Θ was an integer. This was later changed when it was discovered that (N2 − 1) is often
a prime number (due in part to how NStepWave is adjusted – see Section 3.1 for details). This
code was tested before proceeding.

2. Split the main loop over NStepWave2 frequencies. The wave direction assignment loop is in-
serted between the first loop where the wave amplitudes and phases are assigned, and the second
loop where the IFFTs are setup and performed. Testing was performed to ensure that all the
information necessary in the second loop existed.

3. Create the wave direction assignment loop. Some temporary print statements were used to
output the wave direction information for plotting. These results are shown in Figures 3.2
to 3.7.

4. The code necessary for processing the input arrayWaveElevXY and return arrayWaveElevSeries
was developed at the Waves module and the WAMIT2 driver level. The subroutine for calculat-
ing the wave elevation at a specified (x, y) coordinate was developed. Movies were then created
of the test cases listed in Table 3.3 to verify that the wave elevation calculations were working
correctly (it too some iterating to get this working).

5. The code was then rearranged and modified so that the WaveElevXi, WaveElevYi elevation
data uses the wave elevation routine.

6. Now the wave velocity and acceleration equations were modified. In the original calculations,
the wave direction was handled after the FFT. This was revised so that the wave direction was
handled before the FFT was calculated. Testing of this was performed by setting WaveNDir =
1 and repeating a few CertTests that had been generated with the previous version of the Waves
module. The results agreed to within the precision used for outputting the CertTest results.

At this point, it was concluded that the Waves module was working as well as it had been prior to
the implimentation of multi-directional waves. A minor usability issue became apparent at this point
regarding how WaveNDir was adjusted within the code. The decision was then made to modify the
code such that we include the ω = 0 term in the wave direction assignment. This means that we now
force (N2)/Θ to be an integer. We also included code to give the user some idea of what values of
WaveNDir might work with their currently defined values of WaveTMax and WaveDT.

For testing the multi-directional waves there is one more test we can perform. This is to check the
correlation of the wave elevation at various (x, y) locations. This has not been performed yet. do thisdo this

Test Cases Multidirectional waves using the method described above are implimented within the
Waves module of HydroDyn. It is evaluated after the generation of the wave spectrum (JONSWAP
or other). The directions are assigned in groups of Θ frequencies so that one each frequency within
the group is assigned a unique direction. This is repeated for all (N/2)/Θ groups of frequencies.

Several test cases were performed to verify that the assignment of wave directions by frequency was
correctly performed. In each of the test cases listed in Table 3.3, a compiled version of the code with
partially implimented modifications to the Waves module was executed. The calculated spreading
function, integrated power of the spreading function, calculated wave directions, and the assigned
wave directions were output using appropriately placed print statements (this was merely intended as
an intermediate testing of the code, not a test that would be needed in this form later). The results
were plotted using gnuplot.

Tests numbered 002 and 004 are very similar with the only differences in θ̄, the mean wave direction,
and S, the spreading coefficient. A comparison of Figure 3.3 and Figure 3.5 shows the repeatablility
during the assignment of the wave direction for each frequency: in each test, the nth frequency is
assigned to the same wave direction index. Though the frequencies are randomly assigned, the same
seed was used in each of these tests and the random number generator had the same number of calls
for wave amplitude prior to the assignment of the directions.

Tests numbered 001, 005, and 008 are identical with the exception of the mean wave direction.

CHAPTER 3. MULTI-DIRECTIONAL WAVES 8

Table 3.3: Multi-directional waves test case parameters.

Test Case WaveDirMod θ̄ δθ S τmax ∆τ N/2 Θ N/2
Θ

(-) (deg) (deg) (-) (s) (s) (-) (-) (-)

001 1 0 50 1.0 85 0.25 170 17 10
002 1 45 60 1.0 150 0.25 300 25 12
003 1 -137 45 1.0 390 0.25 780 39 20
004 1 135 45 2.3 150 0.25 300 25 12
005 1 90 50 1.0 85 0.25 170 17 10
006 0 45 60 1.0 150 0.25 300 – –
007 0 -137 45 1.0 390 0.25 780 – –
008 1 15 35 1.0 85 0.25 170 17 10

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

-20 -10 0 10 20
 0

 0.2

 0.4

 0.6

 0.8

 1

C
O

S
2
 A

m
p

li
tu

d
e

In
te

g
ra

l

Wave Direction (deg)

Equal Energy Wave Directions

2014.06.22 17:33

COS
2
 envelope

Integral
Wave Dir. (17)

 0

 2

 4

 6

 8

 10

 12

 14

-20 -10 0 10 20

F
re

q
u

en
cy

 (
ra

d
/s

)

Wave Direction (deg)

Equal Energy Wave Direction Assign

2014.06.22 17:33

Figure 3.2: Test case 001. The right plot shows the randomly selected directions for each frequency.

Test 001 is oriented with the mean wave direction along the x axis, and test 005 is oriented with the
mean wave direction along the positive y axis. A movie of the sea surface for these two tests is useful
in checking that the coordinate transformations are working correctly.

CHAPTER 3. MULTI-DIRECTIONAL WAVES 9

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 20 30 40 50 60 70
 0

 0.2

 0.4

 0.6

 0.8

 1

A
m

p
li

tu
d

e

Wave Direction (deg)

Equal Energy Wave Directions

2014.06.22 17:33

COS
2
 envelope

Integral
Wave Dir. (25)

 0

 2

 4

 6

 8

 10

 12

 14

 20 30 40 50 60 70

F
re

q
u

en
cy

 (
ra

d
/s

)

Wave Direction (deg)

Equal Energy Wave Direction Assign

2014.06.22 17:33

Figure 3.3: Test case 002. The right plot shows the randomly selected directions for each frequency.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

-155 -150 -145 -140 -135 -130 -125 -120 -115
 0

 0.2

 0.4

 0.6

 0.8

 1

A
m

p
li

tu
d

e

Wave Direction (deg)

Equal Energy Wave Directions

2014.06.22 17:33

COS
2
 envelope

Integral
Wave Dir. (39)

 0

 2

 4

 6

 8

 10

 12

 14

-155 -150 -145 -140 -135 -130 -125 -120 -115

F
re

q
u

en
cy

 (
ra

d
/s

)

Wave Direction (deg)

Equal Energy Wave Direction Assign

2014.06.22 17:33

Figure 3.4: Test case 003. The right plot shows the randomly selected directions for each frequency.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 115 120 125 130 135 140 145 150 155
 0

 0.2

 0.4

 0.6

 0.8

 1

A
m

p
li

tu
d

e

Wave Direction (deg)

Equal Energy Wave Directions

2014.06.22 17:33

COS
2
 envelope

Integral
Wave Dir. (25)

 0

 2

 4

 6

 8

 10

 12

 14

 115 120 125 130 135 140 145 150 155

F
re

q
u

en
cy

 (
ra

d
/s

)

Wave Direction (deg)

Equal Energy Wave Direction Assign

2014.06.22 17:33

Figure 3.5: Test case 004. The right plot shows the randomly selected directions for each frequency. This
is the same as test case 002 with θ̄ = 135 and S = 2.3. Note that the ordering of the assigned frequencies
is the same as in case 002.

CHAPTER 3. MULTI-DIRECTIONAL WAVES 10

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 70 80 90 100 110
 0

 0.2

 0.4

 0.6

 0.8

 1

C
O

S
2
 A

m
p

li
tu

d
e

In
te

g
ra

l
Wave Direction (deg)

Equal Energy Wave Directions

2014.06.22 17:33

COS
2
 envelope

Integral
Wave Dir. (17)

 0

 2

 4

 6

 8

 10

 12

 14

 70 80 90 100 110

F
re

q
u

en
cy

 (
ra

d
/s

)

Wave Direction (deg)

Equal Energy Wave Direction Assign

2014.06.22 17:33

Figure 3.6: Test case 005. The right plot shows the randomly selected directions for each frequency.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20 25 30
 0

 0.2

 0.4

 0.6

 0.8

 1

C
O

S
2
 A

m
p

li
tu

d
e

In
te

g
ra

l

Wave Direction (deg)

Equal Energy Wave Directions

2014.06.22 17:33

COS
2
 envelope

Integral
Wave Dir. (17)

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

F
re

q
u

en
cy

 (
ra

d
/s

)

Wave Direction (deg)

Equal Energy Wave Direction Assign

2014.06.22 17:33

Figure 3.7: Test case 008. The right plot shows the randomly selected directions for each frequency.

CHAPTER 3. MULTI-DIRECTIONAL WAVES 11

3.3 Changes during implimentation
Waves module: InitOutputType%WaveDir will continue to contain the mean wave heading. A new

array InitOutputType%WaveDirArr will contain the direction headings for each wave elevation
(same number of elements as WaveElevCO).

Waves module: For calculations of wave height, velocity, and acceleration away from the origin,
modifications were made to split the wave into x and y components and calculate each separately
(used to be single component along wave direction).

Waves module: the equations for the wave velocity and acceleration used within the Waves module
are modified to accomodate the wavedirections as a function of frequency. In Jason’s dissertation,
the cos(β) and sin(β) terms in equation 2-31a, 2-31b, 2-32a, and 2-32b are moved inside the
IFFT.

WAMIT module: Change wording about WaveDir to correspond to the mean wave direction. Add
in a new variable WaveDirArr to handle the directions for each frequency.

WAMIT module: Change the code to use WaveDirArr at each frequency. This involved combining
what had been two one-dimensional interpolations into a single two-dimensional interpolation
scheme.

In addition to the above changes, a new pair of input and output arrays were specified to allow
for the calculation of the wave elevation at arbitrarily specified (X,Y) coordinates. The input array,
WaveElevXY, of size 2 × N allows the for a set of N arbitrary number of (x, y) coordinates to be
specified. For this array, index 1 corresponds to specifies which coordinate (x or y) and index 2
corresponds to point number. If WaveElevXY has been allocated at the gluecode or driver level,
an array, WaveElevSeries, of size NStepWave×N is returned. The first index of this array is the
timestep (of the NStepWave timesteps in the simulation), and the second index corresponds to the
point number (of N points) specified in the WaveElevXY input array. This has been implimented
both within the Waves module and within HydroDyn itself. It has been tested with the HydroDyn
driver and with the WAMIT2 driver code to generate sea surface movies corresponding to each of the
8 tests listed in Table 3.3.

Chapter 4

WAMIT: Output Files

Table 4.1: Notation for data contained in the WAMIT output files. Here F̄ is the force quadratic transfer
function. The units listed are those given within the WAMIT manual [2]. Note: some variable names
appear differently here than in the WAMIT manual.

Variable Type Units

τ Wave period Seconds
β Wave direction Degrees
k Force component None∣∣F̄ ∣∣ Force QTF Magnitude Nondimensional
θ Force QTF Phase Degrees
<(F̄) Force QTF Real part Nondimensional
=(F̄) Force QTF Imaginary part Nondimensional

WAMIT can use several methods to calculate the normalized second order wave force. Each of those
methods produces a different type of output file. The calculation methods available to the WAMIT2
module are limited by the WAMIT output files that are available. Table 5.1 shows what second order
force calculation methods are available depending on the WAMIT files available [2]. Table 4.1 lists
the variables used in this document to refer to the various WAMIT outputs. Note that the notation
here differs with the notation used in the WAMIT manual and in Tiago’s writings [1, 2].

4.1 WAMIT Output
Table 4.2 lists the format for each of the WAMIT output files. Within these files, the angles and
frequencies do not need to be evenly spaced. Also, it should also be noted that the discretization
between ω1 and ω2 are not necessarily the same. This also applies to the angles β1 and β2.

A value for the period τ = 0 in the WAMIT output file means that the frequency ω = ∞. A
period of τ < 0 is used in the WAMIT output file to indicate ω = 0.

The QTF in the WAMIT output files does not need to be complete since the following relationships
are true:

F̄ -
mn = F̄ - ∗

nm and F̄+
mn = F̄+

nm, (4.1)

where ∗ indicates the complex conjugate. Note that this implies that the diagonal terms in the second
order difference QTF, F̄ -(ωm, ωm) = F̄ - ∗(ωm, ωm), are real valued.

12

CHAPTER 4. WAMIT: OUTPUT FILES 13

Table 4.2: WAMIT output files and format (version 6.4/6.1s) [2]. In this table, τ is the period of the wave,
βm and βn are the wave directions. The second order complex force term is given by both the amplitude
and phase pair (

∣∣F̄m∣∣ and θm), and in terms of its real and imaginary parts (<(F̄m) and =(F̄m)). The
index k indicates the force (k = 1 . . . 3) or moment (k = 4 . . . 6) load components. The indices m and n
correspond to the period of the waves that are interacting (see pages 4-9 and 11-13 of Ref. 2).

File Ext. Description Output Format

.7
Mean drift based on mo-
mentum flux (WAMIT v.
7 only)

τm βm(1) βm(2) k
∣∣F̄−mm∣∣ θmm <(F̄−mm) =(F̄−mm)

.8 Mean drift (modes 1, 2,
and 6) τm βm(1) βm(2) k

∣∣F̄−mm∣∣ θmm <(F̄−mm) =(F̄−mm)

.9 Mean drift (all modes) τm βm(1) βm(2) k
∣∣F̄−mm∣∣ θmm <(F̄−mm) =(F̄−mm)

.10s Quadratic 2nd-order sum
forces

τm τn βm βn k
∣∣F̄+
mn

∣∣ θ+
mn <(F̄+

mn) =(F̄+
mn)

.10d Quadratic 2nd-order dif-
ference forces

τm τn βm βn k
∣∣F̄−mn∣∣ θ−mn <(F̄−mn) =(F̄−mn)

.11s Total 2nd-order forces by
indirect method (sum) τm τn βm βn k

∣∣F̄+
mn

∣∣ θ+
mn <(F̄+

mn) =(F̄+
mn)

.11d Total 2nd-order forces by
indirect method (diff) τm τn βm βn k

∣∣F̄−mn∣∣ θ−mn <(F̄−mn) =(F̄−mn)

.12s Total 2nd-order forces by
direct method (sum) τm τn βm βn k

∣∣F̄+
mn

∣∣ θ+
mn <(F̄+

mn) =(F̄+
mn)

.12d Total 2nd-order forces by
direct method (diff) τm τn βm βn k

∣∣F̄−mn∣∣ θ−mn <(F̄−mn) =(F̄−mn)

The normalized second order wave force in the WAMIT output files is non-dimensional (see Ref [2]
section 11.6 for details). These are written as

F̄ -
k =

F̃ -
k

ρgLaAmA∗n
and F̄+

k =
F̃+
k

ρgLaAmAn
, (4.2)

where a = 1 for forces (k = 1, 2, 3) and a = 2 for moments (k = 4, 5, 6), F̄k and F̃k are respectively
the non-dimensioned and dimensioned QTFs for the kth force component, and Am and A∗n are the
complex wave and complex conjugates of the amplitudes. Other variables are listed in Table 5.2. In
order to simplify using the dimensioned wave force in calculations, Equation (4.2) can be rewritten as

F̃ -
k = AmA

∗
n

(
F̄ -
kρgL

a
)

= AmA
∗
nF

-
k and F̃+

k = AmAn
(
F̄+
k ρgL

a
)

= AmAnF
+
k , (4.3)

where F±k is partially dimensioned by ρgLa, but does not include the wave amplitudes.

4.2 Reading WAMIT Data Files

Make pretty version of Figure 4.1

4.2.1 First order WAMIT output files (.3)
The algorithm used in reading in the first order WAMIT data files involves scanning through the data
file multiple times. This is roughly summarized as:

1. Get wave period information

(a) Read through file to find the number of wave periods

CHAPTER 4. WAMIT: OUTPUT FILES 14

(b) Allocate array to hold the wave periods in the order they appear in the file (WAMITPer
and WAMITFreq)

(c) Allocate array SortFreqInd to hold the ordered indices of the sorted frequencies
(d) Allocate array HdroFreq to hold the sorted frequencies
(e) Read through file to populate the WAMITPer, WAMITFreq and SortFreqInd arrays
(f) Read through file and store the sorted frequencies in HdroFreq

2. Get wave directions

(a) Read through first wave period to get the directions
(b) Allocate array to hold the wave directions in the order they appear in the file (WAMITDir)
(c) Allocate array SortWvDirInd to hold the ordered indices of the sorted directions
(d) Allocate array to hold the ordered indices of the sorted directions (HdroWvDir)
(e) Read through file to populate WAMITDir and assemble
(f) Read through file and store the sorted directions in HdroWvDir

3. Populate the complex wave information HdroExctn

(a) Read through the file again to populate HdroExctn(SortFreqInd(K),SortWvDirInd(J),I)

There are two subtle assumptions about the organization of the WAMIT output file that are made
here. First, the file is always organized such that the wave direction is looped through for each value
of the wave period. The second assumption is that all the force components are grouped for a given
wave direction and wave period. In the case of the second order WAMIT data, this may not be true.

4.2.2 Second order WAMIT output files
The calculations for the second order WAMIT output are very time consuming. In order to help
alleviate this problem, WAMIT allows the user to specify exactly which combinations of wave heading
and wave periods to calculate in a .PT2 input file. As a result, the output file may be very sparse,
and may not be ordered in any meaningful way. Therefore, a different approach that does not make
assumptions about the ordering of the file should be used.

CHAPTER 4. WAMIT: OUTPUT FILES 15

Figure 4.1: Overview of scheme for reading in 2nd order WAMIT files with two periods (.10, .11, .12).
The algorithm for reading in 2nd order WAMIT files with only one period (.7, .8, .9) should be a simplified
version of this algorithm.

CHAPTER 4. WAMIT: OUTPUT FILES 16

The overall idea of this approach is to read the entire data file a temporary array in memory,
and then figure out how many unique values of ω1, ω2, β1, and β2 there are. Once this has been
determined, the arrays storing the sorted frequencies and directions can be allocated along with the
array for storing F±. In addition to the array holding the data, a mask array (boolean?) of equal size
must be created to store information regarding which values are populated. This will be necessary for
knowing how sparse the array is and for interpolation algorithms that can handle limited sparseness.

Due to the number of times the file would need to be read for this algorithm, it will likely be faster
to read everything into memory and then process rather than rewind the file many times (disk IO
is slow). This does impose some memory usage that could be avoided, but given how long it takes
WAMIT to perform these calculations, the files are likely to be small (at least in comparison to the
wind files).

CHAPTER 4. WAMIT: OUTPUT FILES 17

4.3 WAMIT Data Integrity Checks
A few checks can be enforced to ensure that the calculations within the WAMIT2 module can be
performed using the provided data. If the limits of frequency or wave direction are set outside what
is provided within the WAMIT output data, an error should be issued and the program aborted.
This could be checked during the calculations by checking if either ω < min (ω̃) or ω > max (ω̃) is
true, where ω̃ is the array of frequencies given in the WAMIT output files. Alternatively, this could
be checked immediately after reading the WAMIT output file by checking against the limits in the
HydroDyn input file as follows:

WvLowCOffD > min (ω̃D) (4.4)
WvHiCOffD < max (ω̃D) (4.5)

for difference QTF files, and

WvLowCOffS > min (ω̃S) (4.6)
WvHiCOffS < max (ω̃S) (4.7)

for sum QTF files where ω̃D and ω̃S are the arrays of frequencies found in the difference and sum
WAMIT files, respectively.

In addition to checking the frequency range of the WAMIT output files, the wave direction range
should also be checked. The values can be checked agains theWaveDirMin andWaveDirMax variables
(derived from WaveDir and WaveDirRange in the HydroDyn input file – see Chapter 3). Care needs
to be taken to account for a possible boundary between positive and negative direction headings (π
and −π directions).

Chapter 5

Second Order Force Calculations

In this chapter, the equations and algorithms used to find the second order hydrodynamic forces from
the output of WAMIT are discussed. The forms of the equations presented here are what is used in
the WAMIT2 module within HydroDyn. Along with the equations, the methodology and processing
necessary to take the WAMIT output file types and parse them for use in the equations is also covered
in detail. The interpolation algorithms used are covered in Chapter 6.

Table 5.1 shows which calculations methods can be used depending on what WAMIT output files
are available. The criteria for downselecting information in the file for use in the calculations is given
for each method and file type combination.

The notation used in this chapter is given in Table 5.2 (note that this differs slightly from the
notation in the WAMIT manual [2] and in Tiago’s writings [1]).

Table 5.1: Matrix of possible calculation methods and data file combinations. The names given in the
column marked Variables are the independent variables within the file. The information used from each file
type is given under each method. Note that for the mean-drift calculation with multi-directional waves, only
the β1 = β2 terms are necessary with the equal-energy approach. However, if a different multidirectional
waves method is used, then all the data would be necessary.

Sea File Independent Method

Directionality Ext. Variables Mean Drift Newman’s Diff-QTF Sum-QTF

Uni-
Directional

Seas

7 ω
β1, β2

β1 = β2 β1 = β2
Not

possible
Not

possible8
9

10 ω1, ω2

β1, β2

ω1 = ω2

β1 = β2

ω1 = ω2

β1 = β2
β1 = β2 β1 = β211

12

Multi-
Directional

Seas

7 ω
β1, β2

All Data
Not

possible

Not
possible

Not
possible8

9

10 ω1, ω2

β1, β2
ω1 = ω2 All Data All Data11

12

18

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 19

Table 5.2: Notation used in the second order force equations. The variable name used in the fortran code
is also listed where appropriate.

Variable Fortran Variable Description

Am Complex amplitude of the mth frequency given in Z[m]
array from the Waves module. This includes a N/2 term
in it.

am Complex amplitude of the mth frequency given in Z[m]
array from the Waves module. This has the N/2 term
removed.

i ImagNmbr The imaginary number i =
√
−1 (i and j are not used as

indices here to avoid confusion)
k Index to load component (translation: 1 – 3; rotation: 4 – 6)
m Index to first wave
n Index to second wave
µ- Difference index of two waves frequencies (= m− n)
µ+ Summation index of two wave frequencies (= m+ n)
τ WAMITPer Period of wave in WAMIT file
τ1 WAMITPer1 Period of first wave in pair read from WAMIT file
τ2 WAMITPer2 Period of second wave in pair read from WAMIT file
ω Omega Frequency (rad/s)
N NStepWave Total number of timesteps (range 0:N)
N/2 NStepWave2 Total number of positive wave frequencies (range 0:N/2)
Z(ωm) WaveElevC0 The discretized complex wave form in the frequency domain
Φ(ωm) WaveDir Wave direction for each wave frequency
tmax WaveTMax The maximum time of the wave simulation
∆t WaveDT The timestep for the wave simulation
ωlo WvLowCOff The low frequency cutoff for first order waves
ωhi WvHiCOff The high frequency cutoff for first order waves
∆ω WaveDOmega The frequency stepsize
ωlo-d WvLowCOffD Difference frequency low-cutoff
ωhi-d WvHiCOffD Difference frequency high-cutoff
ωlo-s WvLowCOffS Sum frequency low-cutoff
ωhi-s WvHiCOffS Sum frequency high-cutoff
F̄ -
k kth component of the non-dimensional difference frequency

transfer matrix (data from WAMIT)
F -
k kth component of the dimensionalized difference frequency

transfer matrix
F̄+
k kth component of the non-dimensional sum frequency

transfer matrix (data from WAMIT)
F+
k kth component of the dimensionalized sum frequency

transfer matrix
ρg RhoXg Water density * gravity
L WAMITULEN WAMIT characteristic body length scale

5.1 Overview
In order to simplify the data processing as much as possible, the WAMIT output data will sorted
and stored in either a three-dimensional matrix for first order derived transfer matrices (.7, .8, and
.9 files), or a four-dimensional for data derived by full QTF methods (.10, .11, and .12 files). The
values needed for each step in the calculation are interpolated from these arrays using either three-

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 20

Solver

∑
Inner sum

Read 1st order
WAMIT output

(.7 .8 .9)
(Section 4.2)

3D matrix
(possibly sparse)
F -
k(ω, β1, β2)

Read 2nd order
WAMIT output
(.10d .11d .12d)
(Section 4.2)

4D matrix
(possibly sparse)
F±k (ω1, ω2, β1, β2)

F±k (ωm, ωn, βm, βn)
Z(ω)
Φ(ω)
Limits

F
±(2)
ex k

3D / 4D
Interpolation
at each mth

summation step
(Section 6.2)

Figure 5.1: Generalized overview calculation of second order forces. Here Z(ω) is the combination complex
wave as a function of frequency and Φ(ω) is the associated wave direction heading for each frequency.
The 3D and 4D arrays containing the wave force transfer function are interpolated at each step within the
innermost summation containing the F±k terms, or during assembly of the matrix for the FFT.

or four-dimensional linear interpolation subroutines (see Chapter 6 for details on the interpolation).
The interpolation of F±k occurs within each step of the summation or during the assembly of the FFT
array. This minimizes the memory storage requirements somewhat.

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 21

5.2 Frequency range

Add discussion of Nyquist frequency and its effects – see e-mail and discussion within the code

The number of timesteps used in the Waves module is determined by the total time, tmax, and
timestep, ∆t, specified for wave information (WaveTMax and WaveDT in the HydroDyn input file
and code). The number of timesteps (NStepWave) is then set to at least N ≥

(
tmax
∆t

)
such that N

is even and N/2 is a product of small numbers (this is advantageous in computing the FFT). The
number of timesteps also limits the number of frequencies present in the wave information to N/2 + 1
frequencies with a maximum frequency of 1/(2∆t) in Hz (the Nyquist frequency). The maximum
wave frequency is therefore ωmax = N/2 ·∆ω where ω is in radians. Due to the specifics of the FFT
used (see Section 6.1, the number of frequencies stored in the wave information is N/2 + 1 where
only positive frequencies are used (values for ω < 0 are derived from the values for ω > 0). The full
expression for N in can be written as

N =
tmax

∆t
=

2ωmax

∆ω
=

2π

∆t∆ω
. (5.1)

Three sets of wave frequency cutoffs are applied to the wave conditions. The first order frequency
range is bounded by the limits ωlo and ωhi (set in the HydroDyn input file by WvLowCOff and
WvHiCOff). These limits are imposed during generation of the wave frequencies in the Waves module
by setting the amplitudes of Z(ω) = 0 for all ω outside the limits.

The second order wave frequency limits for all three difference methods are given by ωlo-d and ωhi-d
(WvLoCoQTFd and WvHiCoQTFd). In the case of the mean-drift and Newman’s approximation
methods where only the diagonal elements (where ω1 = ω2) are considered, the low difference frequency
cutoff will likely not have any impact since it will be rare that ωlo-d > ωlo (a warning will be issued
if this does occur).1 The high frequency cutoff will likely be set so that ωhi-d < ωhi, so this will be
important to impose (a warning will be issued if this is not true).

The second order wave frequency limits for the full second order QTFs are then set for the difference
QTF and sum QTF methods individually. For the difference QTF method these limits are given by
ωlo-d and ωhi-d (WvLowCOffD and WvHiCOffD). For the sum QTF method these limits are given
by ωlo-s and ωhi-s (WvLowCOffS and WvHiCOffS). These limits are applied during the summations
of the amamF (ωm, ωm) and Hµ± terms.

5.3 Wave Amplitude
The complex wave amplitude in frequency space, Z(ω), provided by the Waves module contains an
extra N/2 factor on the amplitude. This factor is not present in the equations given in Ref. 1. The
relationship between the amplitude provided by the Waves module, Am and the amplitude used in
the paper, am, is

Am =
N

2
am. (5.2)

In the initialization of the WAMIT2 module, the values stored for the wave elevation from the Waves
module are divided by N/2 before being stored in the aWaveElevC0 variable.

5.4 Difference Frequency Force
There are three methods for calculating the difference frequency force: mean drift, Newman’s ap-
proximation, and through the full QTF. Each method has its advantages, and has different data
requirements. In this section, we explore the simplified equations used in the WAMIT2 module, the
data requirements, and the data processing steps for each of the three methods.

1The mean drift and Newman’s approximation will automatically be zeroed for frequencies less than ωlo since they
contain am terms for each ωm = ωm diagonal term.

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 22

5.4.1 Mean-Drift Method
This term arises from the quadratic interactions of the first order problem, and can therefore be
calculated without requiring solutions to the second order potential. This equation is identical to the
first part of the difference QTF equation, Equation (5.13), where just the diagonal elements of the
QTF are used. This is the simplest of the three difference frequency methods presented here. The
single summation equation is given by

F
-(2)
ex k = <

N/2∑
m=1

ama
∗
mF

-
k(ωm, βm)

 for k = 1, 2, . . . , 6, (5.3)

where k indicates the index to the load component, F -(2)
ex k is the resulting time independent mean

drift force, and am and a∗m are the complex wave amplitude and its complex conjugate for the mth

frequency. Note the lack of time dependence in this equation: the mean drift is the average drift force
over the entire simulation. Note that F -

k(ωm, βm) is the dimensionalized real valued diagonal of the
QTF read from the WAMIT file and interpolated for the mth wave frequency. Note that the ∆ω term
is necessary since this is a numerical integral. Note also that the summation starts at m = 1. The
value of a0 is exactly 0, so it does not need to be included.

Solver

∑
mωlo-d

mωhi-d

Read 1st order
WAMIT output

(.7 .8 .9)
(Section 4.2)

3D matrix
(possibly sparse)
F -
k(ω, β1, β2)

Read 2nd order
WAMIT output
(.10d .11d .12d)
(Section 4.2)

4D matrix
(possibly sparse)
F -
k(ω1, ω2, β1, β2)

AmA
∗
m F -

k(ωm, ωm, βm, βm) ·∆ω
Z(ω)
Φ(ω)
Limits

F
-(2)
ex k

3D / 4D
Interpolation
at each mth

summation step
(Section 6.2)

Figure 5.2: Flow diagram for the mean drift calculation method. The mean drift equation only involves
the diagonal terms where the frequencies ω1 = ω2, and the wave directions β1 = β2. The WAMIT output
files are read in and arranged in either a 3D or 4D array and interpolated at each step in the summation.
See text for how to solve the equation. See Chapter 4 for requirements on which WAMIT output files can
be used.

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 23

Solving the Mean-Drift Equations

As shown in Figure 5.2, the data is stored in either 3D or 4D arrays depending on the file type used.
This is handled by the WAMIT output file reading subroutine, Read_DataFiles, within the WAMIT2
module. At each step in the summation of the mth term, a call is made to the 3D or 4D interpolation
algorithm to find the value of F -

k(ωm, βm) corresponding to the Z(ωm) term in the complex wave
amplitude am. The limits of ωlo-d ≤ ωm ≤ ωhi-d are imposed during the summation with values
outside this range set to zero.

For multi-directional waves where the equal energy discretization is used, each frequency has a
single wave direction associated with it. Since the mean drift force calculation only involves summing
over terms involving only a single frequency at a time, only a single wave direction is involved at
each step. If all the diagonal elements where ω1 = ω2 and β1 = β2 were present in the F -

k arrays
were present, it would be possible to simplify the interpolation required to two dimensional interpo-
lation. However, since this calculation is performed only at initialization, the calculation penalty for
performing a full 3D or 4D interpolation is not as severe as it would be if it were performed at each
timestep of the simulation. Therefore we are choosing to ignore this in favor of simplifying the code
implimentation.

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 24

5.4.2 Newman’s Approximation Method
Newman’s original approximation:

F
−(2)
ex k ≈

<
N/2∑
m=1

am

√
2F−k (ωm, ωm) · eiωmt

2
∣∣∣∣∣∣∣
F−k (ωm,ωm)>0

−

<
N/2∑
m=1

am

√
−2F−k (ωm, ωm) · eiωmt

2
∣∣∣∣∣∣∣
F−k (ωm,ωm)<0

for k = 1, 2, . . . , 6, (5.4)

where k indicates the index to the load component, and am is the complex wave amplitude for the
mth frequency. Note that F -

k is the complex valued transfer function read from the WAMIT file and
interpolated. This equation is only valid for uni-directional sea states.

In evaluating the Newman approximation, it must be remembered that the purpose of it is to
estimate the off-diagonal (ω1 6= ω2) values from the diagonal values. If the QTF has large off diagonal
components (where ωm 6= ωn), the results will not agree well with the full difference QTF calculations
since these elements will be under estimated.

A revised form of Newman’s approximation is provided by Standing et. al. that is valid for
multidirectional sea states. For multidirectional sea states where each frequency only has on direction
assocatied with it, such as with the equal energy discretization, this is equivalent to

F
−(2)
ex k ≈

∣∣∣∣∣∣
N/2∑
m=1

am

√
F−k (ωm, ωm) · eiωmt

∣∣∣∣∣∣
2
∣∣∣∣∣∣∣
F−k (ωm,ωm)>0

−

∣∣∣∣∣∣
N/2∑
m=1

am

√
−F−k (ωm, ωm) · eiωmt

∣∣∣∣∣∣
2
∣∣∣∣∣∣∣
F−k (ωm,ωm)<0

for k = 1, 2, . . . , 6, (5.5)

This equation has been implimented as a Fourier sum rather than IFFT. It turns out that this
implimentation is exactly the same speed as doing the full DiffQTF (within 3%).

5.4.2.1 Mean drift and Newman’s approximation

The mean drift term is already included in the Newman’s approximation, so there is no need to add
it to the result. This can be proven by expanding out the squares of the summations and collecting
all terms where m = n together. These collected terms can be written as the mean drift term. For
this proof, it is helpful to remember that for a a given complex value, C = a+ ib, we can write:

(|C|)2
=
(√

a2 + b2
)2

= a2 + b2 = (a+ ib)(a− ib) = C · C∗ (5.6)

where C∗ is the complex conjugate of C.
Taking Equation (5.5) and expanding out the terms using Equation (5.6)

F
−(2)
ex k ≈

N/2∑
m=1

am

√
F−k (ωm, ωm) · eiωmt

N/2∑
m=1

a∗m

√
F− ∗k (ωm, ωm) · e−iωmt

∣∣∣∣∣∣
F−k (ωm,ωm)>0

−

N/2∑
m=1

am

√
−F−k (ωm, ωm) · eiωmt

N/2∑
m=1

a∗m

√
−F− ∗k (ωm, ωm) · e−iωmt

∣∣∣∣∣∣
F− ∗k (ωm,ωm)<0

.

(5.7)

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 25

Looking at just the first term (F−k (ωm, ωm) > 0) and remembering that F−k (ωm, ωm) = F− ∗k (ωm, ωm),
we can expand all the crossmultiplied terms, collect the terms where m = n, and group the other
terms where m 6= n. This yields for the first term

Term 1 = a1a
∗
1F
−
k (ω1, ω1)ei(ω1−ω1)t + a2a

∗
2F
−
k (ω2, ω2)ei(ω2−ω2)t + . . .

+ aN/2a
∗
N/2F

−
k (ωN/2, ωN/2)ei(ωN/2−ωn/2)t

+Om6=n

N/2∑
m=1

am

√
F−k (ωm, ωm) · eiωmt

N/2∑
m=1

a∗m

√
F− ∗k (ωm, ωm) · e−iωmt


=

N/2∑
m=1

ama
∗
mF
−
k (ωm, ωm)

+Om6=n

N/2∑
m=1

am

√
F−k (ωm, ωm) · eiωmt

N/2∑
m=1

a∗m

√
F− ∗k (ωm, ωm) · e−iωmt

 . (5.8)

The second term is very similar to the first term. Keeping the negative sign with the term, when
expanded and multiplied together it yields

Term 2 = −a1a
∗
1(−F−k (ω1, ω1))ei(ω1−ω1)t +−a2a

∗
2(−F−k (ω2, ω2))ei(ω2−ω2)t + . . .

− aN/2a∗N/2(−Fk)−(ωN/2, ωN/2)ei(ωN/2−ωn/2)t

−Om6=n

N/2∑
m=1

am

√
−F−k (ωm, ωm) · eiωmt

N/2∑
m=1

a∗m

√
−F− ∗k (ωm, ωm) · e−iωmt


=

N/2∑
m=1

ama
∗
mF
−
k (ωm, ωm)

+Om6=n

N/2∑
m=1

am

√
−F−k (ωm, ωm) · eiωmt

N/2∑
m=1

a∗m

√
−F− ∗k (ωm, ωm) · e−iωmt

 .

(5.9)

Combining the first terms from Equation (5.8) and Equation (5.9) where the first one contains all
positive F− terms and the second contains all negative F− terms, we arrive at the equation for the
mean drift given in Equation (5.3)

N/2∑
m=1

ama
∗
mF
−
k (ωm, ωm)

∣∣∣∣∣∣
F− ∗k (ωm,ωm)>0

+

N/2∑
m=1

ama
∗
mF
−
k (ωm, ωm)

∣∣∣∣∣∣
F− ∗k (ωm,ωm)<0

=

N/2∑
m=1

ama
∗
mF
−
k (ωm, ωm).

(5.10)

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 26

5.4.2.2 Standing’s equation

Starting with Equation (5.7), we can substitute in for the −F−k =
∣∣F−k ∣∣ within the square root for

when F− ∗k (ωm, ωm) < 0 and F−k =
∣∣F−k ∣∣ within the square root for when F− ∗k (ωm, ωm) > 0 to yield

F
−(2)
ex k ≈

N/2∑
m=1

am

√∣∣F−k (ωm, ωm)
∣∣ · eiωmt

N/2∑
m=1

a∗m

√∣∣F−k (ωm, ωm)
∣∣ · e−iωmt

∣∣∣∣∣∣
F−k (ωm,ωm)>0

−

N/2∑
m=1

am

√∣∣F−k (ωm, ωm)
∣∣ · eiωmt

N/2∑
m=1

a∗m

√∣∣F−k (ωm, ωm)
∣∣ · e−iωmt

∣∣∣∣∣∣
F− ∗k (ωm,ωm)<0

.

(5.11)

Now that F−k is treated in such a way that the sign of it is not kept within the square root, we can
collect the first and second term together in Equation (5.11) by introducing the sgn function as

F
−(2)
ex k ≈

N/2∑
m=1

sgn
(
F−k
)
am

√∣∣F−k (ωm, ωm)
∣∣ · eiωmt

N/2∑
m=1

a∗m

√∣∣F−k (ωm, ωm)
∣∣ · e−iωmt

∣∣∣∣∣∣
F−k (ωm,ωm)>0

+

N/2∑
m=1

sgn
(
F−k
)
am

√∣∣F−k (ωm, ωm)
∣∣ · eiωmt

N/2∑
m=1

a∗m

√∣∣F−k (ωm, ωm)
∣∣ · e−iωmt

∣∣∣∣∣∣
F− ∗k (ωm,ωm)<0

=

N/2∑
m=1

sgn
(
F−k
)
am

√∣∣F−k (ωm, ωm)
∣∣ · eiωmt

N/2∑
m=1

a∗m

√∣∣F−k (ωm, ωm)
∣∣ · e−iωmt


=

N/2∑
m=1

sgn
(
F−k
)
ãm

√∣∣F−k (ωm, ωm)
∣∣ · eiωmt−φm

N/2∑
m=1

ãm

√∣∣F−k (ωm, ωm)
∣∣ · e−iωmt+φm


(5.12)

which is Standings version of the equation with ãm e−φm = am (Standing carries the phase term of
the wave amplitude within the exponential).

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 27

5.4.3 Difference QTF Method

F
(−)(2)
ex k = <

N/2∑
m=1

ama
∗
mF
−
k (ωm, ωm) + 2 ·

N/2−1∑
µ-=1

Hµ-ei(ωµ-)t

 , for k = 1, 2, . . . , 6 (5.13)

where Hµ- =
1

2

N/2−µ-∑
n=0

aµ-+na
∗
nF
−
k (ωµ-+n, ωn), for 1 ≤ µ- ≤ N − 1 (5.14)

In the first term, the summation starts at m = 1. The value of a0 is exactly 0, so it does not need
to be included.

jjonkman
Sticky Note
Change to N/2-1

jjonkman
Sticky Note
There should not be 1/2 here

jjonkman
Sticky Note
Should be n=1

CHAPTER 5. SECOND ORDER FORCE CALCULATIONS 28

5.5 Summation Frequency Force
There is only one method for calculating the second-order forces from the sum frequency.

5.5.1 Summation QTF Method

F
(+)(2)
ex k = <

bN/4c∑
m=1

amamF
+
k (ωm, ωm)e2·iωmt + 2

N∑
µ+=2

Hµ+ei(ωµ+−1)t

 , for k = 1, 2, . . . , 6 (5.15)

where



Hµ+ =

⌊
µ+−1

2

⌋∑
n=1

anaµ+−nF
+
k (ωn, ωµ+−n), for 2 ≤ µ+ ≤ N/2 + 1

Hµ+ =

⌊
µ+−1

2

⌋∑
n=µ+−N

anaµ+−nF
+
k (ωn, ωµ+−n), for N/2 + 2 ≤ µ+ ≤ N

(5.16)

where µ+ = m+ n, bxc represents the floor function given by

bxc ≡ max {m ∈ Z|m ≤ x} .

In the first term of Equation (5.15), the exponential term is 2·iωmt. This means that in populating
the array that the IFFT uses for calculating the time series of this term, the frequency of the mth term
is 2 · ωm. So in the numerical implimentation, every other frequency is populated in the frequency
domain data.

The second term is an IFFT over the full range of sum frequencies from ω = 0 to ω = 2ωmax. The
IFFT contains twice as many terms as any of the IFFTs used in the other methods. This results in a
finer resolution in the resulting time series with timesteps of 1/2∆t. While this in and of itself is not
problematic, it is a problem when considering that the highest frequencies in this IFFT are above the
Nyquist frequency. The Nyquist frequency, as given in Section 6.1, is the highest frequency from the
sampling theorem that is possible for a given timestep. Any higher frequencies will be lost when we
report the force time series back to the calling code (assuming we keep only every other). So, rather
than calculate the full IFFT over the extended range, we will only calculate the second term for the
first N/2 terms up to the Nyquist frequency. This simplifies the second term so that Equation (5.15)
becomes

F
(+)(2)
ex k = <

bN/4c∑
m=1

amamF
+
k (ωm, ωm)e2·iωmt + 2

N/2∑
µ+=2

Hµ+ei(ωµ+−1)t

 , for k = 1, 2, . . . , 6 (5.17)

where

 Hµ+ =

⌊
µ+−1

2

⌋∑
n=1

anaµ+−nF
+
k (ωn, ωµ+−n), for 2 ≤ µ+ ≤ N/2 (5.18)

Chapter 6

Algorithms

This chapter will cover the various algorithms, including interpolation, that are required for either
preparing data or in the evaluation of the equations outlined in Chapter 5.

The reason for the interpolation is that the number of frequencies given in the WAMIT output files
(on the order of tens of frequencies) is not likely going to correspond to the number of wave frequencies
actually used by HydroDyn (on the order of hundreds to thousands), nor does the WAMIT output
necessarily have to be equally discretized or even complete. The WAMIT output files may be very
sparcely populated. So, it is necessary to interpolate in order to find the missing ones.

6.1 FFT and IFFT
The FFT (or discrete Fourier transform – DFT) and inverse FFT used in HydroDyn are found in the
FFTPACK version 4.1 from UCAR/NCAR. For a given discretized function, for example the complex
wave form Z[k] in the frequency domain, the inverse fourier transform to the time domain can be
written as:

z(tn) =
1

N

N
2∑

k=−N2 +1

Z[k]eiωktn = <


N ′∑
k=1

ake
iwktn

 , (6.1)

where N is given in Equation (5.1) as

N =
2π

∆t∆ω
=
tmax

∆t
=

2ωmax

∆ω
= 2(N ′ + 1). (6.2)

In Equation (6.1), the expression for the first summation is what is used within HydroDyn and the
second summation expression is used in some of Tiago’s writings. The relationship between Z[k] and
ak can be written as

Z[k] =


Nak

2
k = 1 . . . N/2− 1

0 k = 0 and k = N/2

Na∗|k|

2
k = −N/2 + 1 . . . − 1

(6.3)

where a∗ is the complex conjugate of a.

29

CHAPTER 6. ALGORITHMS 30

6.1.1 Numerical Evaluation of IFFT
In the evaulation of Equation (6.1) in HydroDyn to yield the wave height as a function of time, the
IFFT is evaluated as

z(tn) =
1

N

N
2∑

k=−N2 +1

Z[k]eiωktn = IFFT (Z[k]) (6.4)

where the IFFT is only evaluated over k = 0 . . . N/2 (the negative frequencies are evaluated internally
following the relationships in Equation (6.3)). The normalization constant of 1/N is also handled by
the IFFT subroutines and is set by the initialization of the IFFT.

There are some constraints imposed on what N can be because of the IFFT solver used. N must
be even, and preferably a product of small prime numbers for speed. Additionally, Z[k = 0] = 0 and
Z[k = N/2] = 0 must be specified.

6.1.2 Z[k] in HydroDyn
In HydroDyn the complex wave form in frequency space, Z[k], is given as

Z[k] = W [k]

√
2π

∆t
S2-sided
ζ (ωk) = W [k]

√
N∆ωS2-sided

ζ (ωk) (6.5)

where

W [k] =

√
N

2

√
−2 ln (U1[k])ei2πU2[k], (6.6)

the DFT of gaussian white noise using the Box-Muller method, and S2-sided
ζ (ωk) is the two sided power

spectral density (PSD) of the wave elevation per unit time.1

6.2 Interpolation
Four interpolation algorithms are required for the WAMIT2 module: two three-dimensional and
two four-dimensional interpolations. For each set of 3D and 4D interpolation algorithms, a linear
interpolation for full arrays and a linear interpolation for sparse arrays are needed. Due to the
complexity of implimenting an interpolation over sparse arrays and time constraints in the development
schedule, a placeholder will be created for it with an error message stating that an interpolation
scheme for sparse arrays is not implimented at this time. The WAMIT output file reading algorithm
is developed in such a way that an unordered sparse array can be read in and stored (see Section 4.2).

The first order wave forces calculated within the WAMIT module is interpolated with a linear
method. In light of this and considering time constraints on the development, we will use linear
interpolation algorithms for now. If time permits, we might investigate possibilities for other interpo-
lation algorithms that will produce smooth surfaces is cubic interpolation (and smoothly continuous
derivatives) or better allow for sparse data.

6.2.1 3D Interpolation
6.2.1.1 Full array interpolation

A three-dimensional linear interpolation routine is available in the InflowWind module. This routine
was written specifically for the full field wind files, so it will require some modification to generalize
it.

1Note that Tiago uses ak =
√

2∆ωS1-sided
ζ (ωk)ei2πUk which is a simplification where Uk = U2[k] and√

−2 ln (U1[k]) =
√

2.

CHAPTER 6. ALGORITHMS 31

6.2.1.2 Sparse array interpolation

Due to time constraints in the development schedule, a placeholder subroutine will be created that
tells the user that this is a currently unavailable feature. The user can then use an external data
manipulation program to do the interpolation on their WAMIT output to create a full array (that
can be unordered) that can be read in. The WAMIT output file reading algorithm will accomodate
the reading either a full array (both the upper and lower triangle of the QTF) or partial array (upper
half only, or a mix of upper and lower). This routine will expect a mask array (boolean?) of identical
size to the sparse array that indicates which elements of the data array are missing.

By creating this placeholder subroutine, we give ourselves the option of creating this interpolation
scheme as time permits with the ability to handle a limited sparseness of the QTF array (i.e. no more
than a two step gap in any dimension).

6.2.2 4D Interpolation
6.2.2.1 Full array interpolation

At present we do not have any four-dimensional interpolation routines. A four-dimensional linear
interpolation should be fairly simple to extend from the three-dimensional one.

6.2.2.2 Sparse array interpolation

See Section 6.2.1.2.

Chapter 7

Integration of the WAMIT2 module
within HydroDyn

In order to integrate the WAMIT2 module into HydroDyn, several changes need to be made to the
HydroDyn input file and to the file reading and parsing routines within the HydroDyn_Input.f90 file.
Additional changes to the input file are required for multi-directional waves (see Chapters 3 and 8).

1 !---------------------- WAMIT 2nd order PLATFORM forces -------------------
2 8 MnDrift ! Mean drift forces computed from WAMIT file
3 0 NewmanApp ! Slow drift forces computed with Newman’s approximation from WAMIT file
4 0 DiffQTF ! Full Difference-Frequency forces computed with full QTF’s from WAMIT file
5 0 SumQTF ! Full Sum-Frequency forces computed with full QTF’s from WAMIT file

Table 7.1: New section for the HydroDyn input file for the second order forces calculated by the WAMIT2
module.

The additional second order waves information that needs to be added into the HydroDyn input
file is give in Table 7.1. This is inserted between the sections marked FLOATING PLATFORM and
FLOATING PLATFORM FORCE FLAGS. To decide which force components are calculated, the
HydroDyn_Input copies the component direction information from the FLOATING PLATFORM
FORCE FLAGS section to the WAMIT2%InitInput. The WAMIT2_Init subroutine decides which
of the force components can be calculated based on the information available within the WAMIT
output file and method chosen.

Add in section here describing what combinations of MnDrift, NewmanApp, DiffQTF, and SumQTF
are allowed – table perhaps?

Add in description of the inputs with more detail about when used etc.

32

Chapter 8

Integration of the Waves2 module
within HydroDyn

In order to integrate the Waves2 module into HydroDyn, several changes need to be made to the
HydroDyn input file and to the file reading and parsing routines within the HydroDyn_Input.f90 file.
Additional changes to the input file are required for multi-directional waves and the WAMIT2 module
(see Chapters 3 and 7).

1 ---------------------- 2ND-ORDER WAVES ---
2 FALSE WvMnDrift - Mean-drift 2nd-order wave kinematics (switch) [only one of WvMnDrift or WvDiffQTF can be TRUE]
3 FALSE WvDiffQTF - Full difference-frequency 2nd-order wave kinematics (switch) [only one of WvMnDrift or WvDiffQTF can be TRUE]
4 FALSE WvSumQTF - Full summation-frequency 2nd-order wave kinematics (switch)
5 0 WvLowCOffD - Low frequency cutoff used in the difference-frequencies (rad/s) [Only used with a difference-frequency method]
6 3.5 WvHiCOffD - High frequency cutoff used in the difference-frequencies (rad/s) [Only used with a difference-frequency method]
7 0.1 WvLowCOffS - Low frequency cutoff used in the summation-frequencies (rad/s) [Only used with a summation-frequency method]
8 3.5 WvHiCOffS - High frequency cutoff used in the summation-frequencies (rad/s) [Only used with a summation-frequency method]

Table 8.1: New section for the HydroDyn input file for the second order forces calculated by the Waves2
module.

Add in description of the inputs with more detail about when used etc.

33

Chapter 9

WAMIT2 Module Architecture

This section is copied from the old writeup. It has not been updated.

Add in the registry infromation as needed

Figure 1 shows the development architecture of the WAMIT2 module for HydroDyn. Once it has
been developed, this module will eventually be incorporated into HydroDyn. During development, it
will interface with its driver routine which will mimic the interface of the HydroDyn module. Because
there is ongoing development in the existing HydroDyn modules, a copy of the modularized Waves
sub-module (Waves2) will be used and converted to handle bi-directional waves. This will be merged
back into the Waves module later.

WAMIT2Waves2

WAMIT2 driver

WAMIT output files
(7, 8, 9)

WAMIT QTF files
(10, 11, 12)

settings
options

settings
options

wave infoZ[k]
WaveDir[k]

Forces

WAMIT2 Input
settings file Output file

WAMIT2_Output

Outfile
params

data
Output

info

Figure 9.1: Information flow to and from the WAMIT2 module. The green boxes indicate information or
files passed into or out of the module.

34

Bibliography

[1] T. Duarte, A. JNA. Sarmento, and J. Jonkman. Effects of second-order hydrodynamic forces on
floating offshore wind turbines. Technical Report CP-5000-60966, NREL, Golden, Colorado, Apr.
2014.

[2] WAMIT User Manual. Chestnut Hill, MA.

35

	Todo list
	Overview
	Background information
	Platform Displacement and Rotation

	Multi-directional Waves
	Adjusting within the Waves module
	Equal Energy Approach
	A few notes
	Implimentation and Testing

	Changes during implimentation

	WAMIT: Output Files
	WAMIT Output
	Reading WAMIT Data Files
	First order WAMIT output files (.3)
	Second order WAMIT output files

	WAMIT Data Integrity Checks

	Second Order Force Calculations
	Overview
	Frequency range
	Wave Amplitude
	Difference Frequency Force
	Mean-Drift Method
	Newman's Approximation Method
	Mean drift and Newman's approximation
	Standing's equation

	Difference QTF Method

	Summation Frequency Force
	Summation QTF Method

	Algorithms
	FFT and IFFT
	Numerical Evaluation of IFFT
	Z[k] in HydroDyn

	Interpolation
	3D Interpolation
	Full array interpolation
	Sparse array interpolation

	4D Interpolation
	Full array interpolation
	Sparse array interpolation

	Integration of the WAMIT2 module within HydroDyn
	Integration of the Waves2 module within HydroDyn
	WAMIT2 Module Architecture

