Solve Algorithms in OpenFAST

Bonnie Jonkman

March 24, 2022

1 Definitions and Nomenclature

Module Abbreviation Abbreviation
Name in Module in this Document
ElastoDyn ED ED
BeamDyn BD BD
AeroDynl4 AD14 AD14
AeroDyn AD AD
ServoDyn SrvD SrvD
SubDyn SD SD
ExtPtfm ExtPtfm ExtPtfm
HydroDyn HydroDyn HD
MAP++ MAPp MAP
FEAMooring FEAM FEAM
MoorDyn MD MD
OrcaFlexInterface Orca Orca
InflowWind Itw Itw
IceFloe IceFloe IceF
IceDyn IceD IceD

Table 1: Abbreviations for modules in FAST v8&

Nomenclature

u_AD AeroDyn inputs
u_ED FElastoDyn inputs

2 Initializations

3 Input-Output Relationships

3.1 Input-Output Solves (Option 2 Before 1)

This algorithm documents the procedure for the Input-Output solves in FAST,
assuming all modules are in use. If an individual module is not in use during
a particular simulation, the calls to that module’s subroutines are omitted and
the module’s inputs and outputs are neither set nor used.

1: procedure CALCOUTPUTS_AND_SOLVEFORINPUTS()

2:
y-ED < ED_CaArLcOuTpruT(p-ED,u_ED,x_ED, zd_ED,z_ED)
u-BD < TRANSFEROUTPUTSTOINPUTS(y_ED, y_SrvD)

y_BD + BD _CarcOutpuT(p_BD,uw_BD,x_BD,xd_BD, z_BD)
u-AD(no IfW) <— TRANSFEROUTPUTSTOINPUTS(y_ED, y_BD)
u_IfW < TRANSFEROUTPUTSTOINPUTS(y_EDatu_ADnodes)

10: y_IfW + IFW _CALcOUTPUT(u_IfWandother IfW datastructures)
11: u_AD(InflowWind only) < TRANSFEROUTPUTSTOINPUTS(y_IfW)
12: u_SrvD < TRANSFEROUTPUTSTOINPUTS(y_ED, y_IfW,y_BD)

13:

14: y-AD < AD_CALcOUTPUT(p-AD,u_AD,z_AD,zd_AD,z_AD)

15: y_SrvD < SRVD_CALCcOUTPUT(p_SrvD, u_SrvD,

z_SrvD, xd_SrvD, z_SrvD)

16: u-ED < TRANSFEROUTPUTSTOINPUTS(y_-AD, y_SrvD)
17: u-BD < TRANSFEROUTPUTSTOINPUTS(y_AD, y_SrvD)
18:

19: u_HD < TRANSFERMESHMOTIONS(y_ED)

20: 4-SD <~ TRANSFERMESHMOTIONS(y_ED)

21: u_ExtPtfm < TRANSFERMESHMOTIONS(y_ED)

22: u-MAP < TRANSFERMESHMOTIONS(y-ED)

23: u-FEAM < TRANSFERMESHMOTIONS(y_ED)

24: u-MD < TRANSFERMESHMOTIONS(y_ED)

25: u-Orca < TRANSFERMESHMOTIONS(y_ED)

26: u-SrvD%PtfmStC < TRANSFERMESHMOTIONS(y_ED)*
27:

28: SOLVEOPTIONI()

29:

30: u_IfW < TRANSFEROUTPUTSTOINPUTS(u_-AD, y_ED)
31: u-AD < TRANSFEROUTPUTSTOINPUTS(y_ED)

32: u-SrvD < TRANSFEROUTPUTSTOINPUTS(y-ED,y_-AD,y_BD,y_SD)
33: end procedure

Note that inputs to ElastoDyn before calling CalcOutput() in the first step
are not set in CalcOutputs_And_SolveForInputs(). Instead, the ElastoDyn in-

*Only if using ServoDyn Structural control with platform TMD.

puts are set depending on where CalcOutputs_And_SolveForInputs() is called:

At time 0, the inputs are the initial guess from FElastoDyn;

On the prediction step, the inputs are extrapolated values from the time
history of ElastoDyn inputs;

e On the first correction step, the inputs are the values calculated in the
prediction step;

On subsequent correction steps, the inputs are the values calculated in the
previous correction step.

3.2 Input-Output Solve for HydroDyn, SubDyn, OrcaFlex-

Interface, BeamDyn, ExtPtfm, MAP, FEAMooring,
MoorDyn, FEAMooring, IceFloe, IceDyn, and the
Platform Reference Point Mesh in ElastoDyn

This procedure implements Solve Option 1 for the accelerations and loads in Hy-
droDyn,SubDyn,MA P,FEA Mooring, OrcaFlexInterface, MoorDyn, BeamDyn, ExtPtfm,
IceFloe, IceDyn, and ElastoDyn (at its platform reference point mesh). The
other input-output relationships for these modules are solved using Solve Op-

tion 2.

1:
2:

procedure SOLVEOPTION1()

y-MAP < CALCOUTPUT(p-MAP,u_MAP,x_MAP,xd_MAP,z_MAP)

y-MD + CALcOUTPUT(p-MD,u_MD,x_MD,xd_MD, z_MD)

y_FEAM « CALCOUTPUT(p_FEAM ,u_FEAM,x_FEAM, zd_FEAM, z_.FEAM)
y_IceF < CALCOUTPUT(p_IceF, u_IceF, x_IceF | xd_IceF, z_IceF)

y_IceD(:) <~ CALCOUTPUT(p_IceD(:), u_IceD(:),x_IceD(:), zd_IceD(:), z_IceD(:))
y_SrvD < CALCOUTPUT(p_SrvD, u_SrvD, z_SrvD, zd_SrvD, z_SrvD)}

> Form wu vector using loads and accelerations from u_HD, u_BD, u_SD,
u_Orca, u_ExtPtfm, u_SrvD*% and platform reference input from u_ED

u 4 U_VEC(u-HD, u_SD, u_ED,u_BD, u_Orca, u_EztPtfm)
k+0
loop > Solve for loads and accelerations (direct feed-through terms)
y_ED + ED_CavrcOutpuT(p_ED,u_ED,z_ED,xd_ED, z_ED)
y-SD + SD_CarLcOuTtpuT(p_SD,u_SD,x_SD,zd_SD, z_5SD)
y-HD + HD_CaLcOutpUT(p-HD,uw_HD,z_HD,zd_HD, z_HD)
y-BD + BD_CaLcOutrUT(p_-BD,u_-BD,z_BD,zd_BD, 2_BD)
y-Orca + ORCA_CALCOUTPUT(p-Orea, u_Orca, x_Orca, xd_Orca, z_Orca)
y_ExtPtfm < CALCOUTPUT(p_ExtPtfm, u_ExtPtfm, x_FExtPtfm, xd_ExtPtfm, z_ExtPtfm)
if k> k_max then
exit loop

TOnly if using ServoDyn Structural control with platform TMD.
*Only if using ServoDyn Structural control with platform TMD and SubDyn.

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

34:

35:
36:

37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:

end if

u_-BD_tmp < TRANSFERMESHMOTIONS(y_ED)
u-MAP_tmp + TRANSFERMESHMOTIONS(y_ED)
u-FEAM _tmp < TRANSFERMESHMOTIONS(y_E D)
u-Orca_tmp < TRANSFERMESHMOTIONS(y_E D)
u-MD _tmp < TRANSFERMESHMOTIONS(y_ED)
u_IceF _tmp < TRANSFERMESHMOTIONS(y-SD)
u_lceD _tmp(:) < TRANSFERMESHMOTIONS(y-SD)
u_HD _tmp < TRANSFERMESHMOTIONS(y_ED,y_SD)
u_SrvD_tmp < TRANSFERMESHMOTIONS(y_BD,y_ED,y_SD)?
u-SD_tmp < TRANSFERMESHMOTIONS(y_ED)

U TRANSFERMESHLOADS(y_SD,
y-HD,uw_HD _tmp,
y_lceF u_IceF _tmp,

y-IeeD(:), u_IceD _tmp(:),
u-ED _tmp < TRANSFERMESHLOADS(y_ED,

y_HD,u_HD _tmp,

y_SD, u_SD _tmp,
y_-MAP, u_MAP _tmp,
y_FEAM ,u_FEAM _tmp,
y_AD,u_AD_tmp1,
y_SrvD, u_SrvD _tmp!)

U_Residual < u — U_VEC(u_HD _tmp,
u_SD_tmp,
u_ED _tmp,
u_BD _tmp,
u_Orca_tmp,
u_EztPtfm_tmp)

if last Jacobian was calculated at least DT_UlJac seconds ago then
Calculate g—g

end if

Solve %—ZAU = — U _Residual for Au

if ||Aull2 < tolerance then > To be implemented later
exit loop

end if

u <+ u+ Au

$Only if using ServoDyn Structural control.

48: Transfer v to u_HD, v_SD, u_BD, u_Orca, u_ExtPtfm, and uv_ED >
loads and accelerations only

49: E=k+1

50: end loop

51: > Transfer non-acceleration fields to motion input meshes
52:

53: u-BD(not accelerations) <~ TRANSFERMESHMOTIONS(y_ED)

54: u_-HD(not accelerations) «+— TRANSFERMESHMOTIONS(y_ED, y_SD)
55: u-SD(not accelerations) - TRANSFERMESHMOTIONS(y_ED)

56: u_Orca(not accelerations) <— TRANSFERMESHMOTIONS(y_ED)

57: u_FztPtfm(not accelerations) <~ TRANSFERMESHMOTIONS(y_ED)
58:

59: u-MAP <+ TRANSFERMESHMOTIONS(y_ED)

60: u-MD < TRANSFERMESHMOTIONS(y_ED)

61: u-FEAM < TRANSFERMESHMOTIONS(y_ED)

62: u_IlceF <~ TRANSFERMESHMOTIONS(y_SD)

63: u_IceD(:) + TRANSFERMESHMOTIONS(y_SD)

64: u-SrvD < TRANSFERMESHMOTIONS(y_BD,y_ED,y_SD)**
65: end procedure

3.3 Implementation of line2-to-line2 loads mapping

The inverse-lumping of loads is computed by a block matrix solve for the dis-
tributed forces and moments, using the following equation:

FPL A 0] [FP
MDPL = B Al |MmP (1)
Because the forces do not depend on the moments, we first solve for the
distributed forces, FP:

[FPE] = (A [F7] (2)

We then use the known values to solve for the distributed moments, MP:
2 =5 4] [0] = (81 [FP] + L4 [r”] ®
[MPE] — [B] [FP] = [A] [M”] (4)

Rather than store the matrix B, we directly perform the cross products that
the matrix B represents. This makes the left-hand side of Equation 4 known,
leaving us with one matrix solve. This solve uses the same matrix A used to
obtain the distributed forces in Equation 2; A depends only on element reference
positions and connectivity. We use the LU factorization of matrix A so that the
second solve does not introduce much additional overhead.

**Only if using ServoDyn Structural control.

4 Solve Option 2 Improvements

4.1 Input-Output Solves inside AdvanceStates

This algorithm documents the procedure for advancing states with option 2
Input-Output solves in FAST, assuming all modules are in use. If an individual
module is not in use during a particular simulation, the calls to that module’s
subroutines are omitted and the module’s inputs and outputs are neither set
nor used.

1: procedure FAST_ADVANCESTATES()
2: ED_UpPDATESTATES(p-ED,u_-ED,x_ED zd_ED, z_ED)
y-ED + ED_CALcOuTPUT(p-ED,u_ED,x_ED,xd_ED, z_ED)

u-BD(hub and root motions) - TRANSFEROUTPUTSTOINPUTS(y_ED)
BD_UPDATESTATES(p-BD, u_-BD,z_BD,xd_BD, z_BD)
y-BD + BD_CavrcOurpuT(p-BD,u_-BD,x_BD,xd_BD, z_BD)

u-AD(not InflowWind) - TRANSFEROUTPUTSTOINPUTS(y_ED, y_BD)
10: u_IfW < TRANSFEROUTPUTSTOINPUTS(y_ED, y_BD at u_AD nodes)
11: IFW _UPDATESTATES (p_If W, u_IfW,x _IfW xd _IfW, z_IfW)
12: y-IfW « IrW_CarLcOuTpUT(u_IfW and other IfW data structures)
13:
14: u-AD(InflowWind only) + TRANSFEROUTPUTSTOINPUTS(y_IfW)
15: u_SrvD < TRANSFEROUTPUTSTOINPUTS(y_BD,y_ED,y_IfW,y_SD)
16: AD _UPDATESTATES(p_AD, u_AD,x_AD,zd_AD, 2_AD)
17: SRVD _UPDATESTATES(p_SrvD, u_SrvD, z_SrvD, xd _SrvD, z_SrvD)
18:
19: All other modules (used in Solve Option 1) advance their states
20: end procedure

Note that AeroDyn and ServoDyn outputs get calculated inside the CalcOutputs_And_SolveForInputs
routine. ElastoDyn, BeamDyn, and InflowWind outputs do not get recalculated
in CalcOutputs_And_SolveForInputs except for the first time the routine is
called (because CalcOutput is called before UpdateStates at time 0).

5 Linearization

5.1 Loads Transfer

The loads transfer can be broken down into four components, all of which are
used in the Line2-to-Line2 loads transfer:

1. Augment the source mesh with additional nodes.

2. Lump the distributed loads on the augmented Line2 source mesh to a
Point mesh.

3. Perform Point-to-Point loads transfer.

4. Distribute (or unlump”) the point loads.
The other loads transfers are just subsets of the Line2-to-Line2 transfer:
e Line2-to-Line2: Perform steps 1, 2, 3, and 4.
e Line2-to-Point: Perform steps 1, 2, and 3.
e Point-to-Line2: Perform steps 3 and 4.
e Point-to-Point: Perform step 3.

Each of the four steps can be represented with a linear equation. The lin-
earization of the loads transfers is just multiplying the appropriate matrices
generated in each of the steps.

5.1.1 Step 1: Augment the source mesh

The equation that linearizes mesh augmentation is

aP Iy, O 0 0 aP

@A 0o M2 0 0 T

j?SA = 0 0 MA 0 fT’S (5)
moA 0 0 0 MA| |\mS

where M4 € R¥s4:Ns indicates the mapping of nodes from the source mesh (with
Ng nodes) to the augmented source mesh (with Ng4 nodes). The destination
mesh (with Np nodes) is unchanged, as is indicated by matrix I, .

5.1.2 Step 2: Lump loads on a Line2 mesh to a Point mesh

The equation that linearizes the lumping of loads is

@ Ing, O 0 asA
e T Y e R ©)
MSAL MESL M;?L Mlsi‘L mSA

where Mj%, M3%, MP* € RNs:Nsa are block matrices that indicate the map-
ping of the lumped values to distributed values. leL is matrix A in Equation
2, which depends only on element reference positions and connectivity. Matrices
MZ§and M7" also depend on values at their operating point.

5.1.3 Step 3: Perform Point-to-Point loads transfer

The equation that performs Point-to-Point load transfer can be written as

a> In, 0 0 0 P
@@ | |0 Iy, 0 0 |])u ;
Fo (= | o 0 MP 0 BS (7)
MP My, My Mp o MP| DS

where M/Z?, Mfs, M]P € R¥2:Ns are block matrices that indicate the transfer of
loads from one source node to a node on the destination mesh. M5, € RVNp:Np
is a diagonal matrix that indicates how the destination mesh’s displaced position
effects the transfer.

5.1.4 Step 4: Distribute Point loads to a Line2 mesh

Distributing loads from a Point mesh to a Line2 mesh is the inverse of step 2.
From Equation 6 the equation that linearizes the lumping of loads on a
destination mesh is

aP In, 0 0 P
FPy=1| 0 MPE 0 FD (8)
i) g wpr wp] e

where MP*, M5, MP* € RN?N2 are block matrices that indicate the map-
ping of the lumped values to distributed values. It follows that the inverse of
this equation is

uP In, 0 0 P
oY= 0 [MpPr) ™! 0 FP
mP)| = [MPE T MBY — [MPY) T MPE (PR T [Mpr T P

The only inverse we need is already formed (stored as an LU decomposition)
from the loads transfer, so we need not form it again.

5.1.5 Putting it together

To form the matrices for loads transfers for the various mappings available, we
now need to multiply a few matrices to return the linearization matrix that
converts loads from the source mesh to loads on the line mesh:

,L—L'D
Y _[o 0 M; o0])a (10)
mP [|Myp Mys My M;|) fP

D

e Line2-to-Line2: Perform steps 1, 2, 3, and 4.
{ 7P } _ 0 e 0
mP | = [MPE] T MBE — [MPE]TT MPE [MPE]T [MPE]T

In, O 0 0 s
0 0 MP o0 Msa
Myp Mgy MP M7

f
In, 0O 0 0 a>
0 MA 0 0 ¥
0 0 MA 0 f_"S (11)
0 0 0 MA| |mS
—1
My = (ME") ™ M MG My (12)
—1
Map = (MPP) ™ [MB, ~ M) (13)
—1
Mys = (MP") " [Mys + M7 MZE] My (14)
DLy~ 1 D DL DIN=L1 2 D SL DasSL
My = (M) ([Mf — M (M) Mli}Mli + Mj; My)MA
(15)
e Line2-to-Point: Perform steps 1, 2, and 3.
Ing, 0 0 0
FPY T o0 0 M7 0 0 Ing,, O 0
wof =B, MBoapowpll o o a0
0 M M M
In, 0O 0 0 a®
0o M4 0 0 i
0 0 MA 0 j_"S (16)
0 0 0 MA| \mS
The linearization routine returns these four matrices:
My = MP MZEM 4 (17)
M,p =MD, (18)
Mys = [MJs + M2 MJE] Mo (19)
My = [MfDszL +M1?M]§L] Ma (20)

e Point-to-Line2: Perform steps 3 and 4.

{ fP } _ 0 [MPF] 0
aiP = [MPE) T My — PR MPE [P [Pt

f[D
In, 0 0 0 s
OD OD Mlg OD 7S (21)
MuD MuS Mf Mli MS’
The linearization routine returns these four matrices:
1
= (M7*) M (22)
1
Mup = (M;7")" [- M;p] (23)
1
Mys = (M;7") (24)
1
My = (Mg") [PLAG,) (25)
e Point-to-Point: Perform step 3.
a*D
{ﬁD } _ [0 0 MP 0 a° (26)
MP ME, MP MP MP|) F?
]\;[’S
The linearization routine returns these four matrices:
My; = M} (27)
M,p =MD, (28)
M,s = ME, (29)
My = M7 (30)

10

