
Development plan for the linearization about a rotational speed

set-point in OpenFAST

E. Branlard, J.Jonkman

February 15, 2019

Introduction

This document describes the implementation of an algorithm to perform linearization about a rota-
tional set-point in OpenFAST. Currently, the user needs to manually adjust operating parameters
until the desired rotational speed is reached, or until the transient are eliminated, before the lin-
earization can be performed. This procedure is here automatized using a simple iterative algorithm.
The method supports simulations with zero rotational speed, a fixed rotational speed (generator
off), or simulations with a variable speed (generator on). In the later case, the algorithm presented
adjusts one of the following operating parameter to reach the target rotational speed: the blade
pitch angle, the generator torque or the neutral yaw position of the turbine. A proportional gain
on the rotational speed error is used to adjust the parameters. To speed-up the convergence, the
damping may be artificially increased in the iteration step. At the end of the iteration algorithm,
the transient have dissipated, the rotor is at the target rotational speed and a steady or periodic op-
erating point is reached. The linearization is then performed for one rotor revolution (if applicable)
without the previously added damping. The algorithm is such that it only involves modifications
of the OpenFAST glue-code and of ServoDyn.

1 OpenFAST implementation

1.1 Basic workflow and changes to the code

The basic workflow is listed below. More details follow in subsequent sections.

• New parameters are read from the input files (given in subsection 1.2)
• If the parameter CalcSteady is false, OpenFAST the linearization process will happen as

before (at LinTimes)
• If CalcSteady is true, OpenFAST will iterate and update a controller parameter until the

rotational speed matches the parameter RotSpeed given in ElastoDyn’s input file, and then
perform the linearization at this periodic operating point. A different controller variable is
adjusted in the iterative step based on the value of the parameter TrimCase: the neutral yaw
YawNeut, the generator torque GenTrq or the blade pitch BlPitch. The procedure follows the
steps below.
• After the initialization of ElastoDyn, additional initialization inputs are passed to ServoDyn

for its initialization: the glue-code inputs CalcSteady, TrimCase and TrimGain and the

1

reference rotational speed RotSpeedRef. These initialization inputs will be used by ServoDyn
to adjust one of the controller parameter based on the current rotational speed error. If the
reference rotation speed is 0 or if the generator degree of freedom is off, no controller trimming
is required.
• ServoDyn is initialized. The discrete-time state CtrlOffset is added to the module to keep

track of the controller parameter offset.
• The glue-code starts a special time stepping loop where a convergence criteria is checked upon

after each revolution, or time step if the rotational speed is zero. The time stepping loop has
the following characteristics:

– At each time step, if the controller trimming is active, ServoDyn updates its controller
offset state (CtrlOffset) based on the proportional gain TrimGain and the error in
rotational speed. This offset is added to the controller commands of ServoDyn and will
hence have an influence on ElastoDyn.

– At each time step, the glue-code adds additional damping, via external forces, to the
structure of the modules ElastoDyn and BeamDyn.

– At given azimuthal positions (defined by NAzimStep), the glue-code computes the rel-
ative difference between the output vector of the current revolution and the previous
revolution. If the rotational speed is zero, the difference is computed between two suc-
cessive time steps and the number of azimuthal step is effectively 1.

– When this difference is below the tolerance TrimTol for all the reference azimuthal
positions, the simulation has reached a periodic steady state, which also implies that
the controller offset parameter has also converged and the rotational speed of the rotor
matches the requested set-point. The time-stepping is stopped

• The linearization is performed for one rotor revolution (if applicable) at steps of NAzimStep.
The operating point is at the requested rotational speed and it uses the controller offset
obtained by the iteration procedure above.

The following sections describe the changes needed to the code:

• subsection 1.2: new input parameters to be added to the OpenFAST glue-code

• subsection 1.3: iterative procedure of the glue-code to ensure a periodic steady state is reached

• subsection 1.5: glue-code procedure to increase the damping and accelerate the convergence

• subsection 1.4: changes to ServoDyn to compute the controller parameter offset

1.2 New glue code inputs

The following input are added to the main OpenFAST input file (.fst file):

• CalcSteady - Calculate a steady-state periodic operating point before linearization

(-) (switch)

• TrimCase - Controller parameter to be trimmed {1:yaw; 2:torque; 3:pitch} [used

only if CalcSteady=True]

• TrimTol - Tolerance for the rotational speed convergence [>0] [used only when

CalcSteady=True]

2

• TrimGain - Proportional gain for the rotational speed error (rad/(rad/s) or Nm/(rad/s))

[>0] [used only when CalcSteady=True]

• Twr Kdmp - Damping factor for the tower (N/(m/s)) [>=0] [used only when CalcSteady=True]

• Bld Kdmp - Damping factor for the blade (N/(m/s)) [>=0] [used only when CalcSteady=True]

• NAzimStep - Number of equally-spaced azimuth steps in periodic linearized model

(-) [>=1]

Do we want to adjust more damping values? Linearization inputs are read in Fast Subs.f90, rou-
tine FAST ReadPrimaryFile about line 2273. They are returned in the structure named p or p FAST

of type FAST ParameterType. The parameters above needs to be added to the FAST Registry.txt

file as FAST ParameterType.

1.3 Main glue-code procedure

Main program

• If CalcSteady is false, set Twr Kdmp and Bld Kdmp to 0 and proceed as usual
• If CalcSteady is true, follow the iterative procedure below

Iterative procedure The subscript p is used to refer to the previous time step, the subscript c is
used for the current time step, the subscript 0 is used to refer to the target azimuthal positions. The
azimuthal angle ψ at a given time step are taken from the outputs of ElastoDyn: ED%y%LSSTipPxa.
The following storage variables are used by the iterative algorithm:

Variable Dimensions Description

ψ0 1× NAzimStep Target azimuthal positions ψ0, indexed with the variable j
yc 1× ny Output vector (from all modules) at current time step
yp 1× ny Output vector (from all modules) at previous time step

y0 1× ny Output vector interpolated at a target azimuthal position
Y 0 ny × NAzimStep Output vector at each target azimuthal position ψy

εy 1× NAzimStep Relative error in the output vector between two revolutions
at the same target azimuthal position

The following steps make up the iterative procedure:

• If the generator degree of freedom is off or if the rotational speed is zero, TrimCase is set to
0 so that the trimming is cancelled. This step is done prior to the initialization of ServoDyn
presented in subsection 1.4.
• If the reference rotational speed is 0, ensure that NAzimStep=1. The number of rotations is

then understood as the number of time steps.
• Initialize the number of full rotor revolutions and the index of target azimuthal positions:

nrot = 0, j = 1 (1)

• Perform time stepping until TMax (the time loop will be stopped before TMax if the convergence
criteria is met). For each time step:

3

jjonkman
Sticky Note
The generator DOF flag and the rotor speed must be initialization outputs from ElastoDyn or similar structural module.

jjonkman
Sticky Note
psi_y should be psi_0[j]

– Call the time step integration routine FAST Solution T. This routine applies an increased
damping (based on Twr Kdmp and Bld Kdmp, see subsection 1.5) If the rotational speed
is none zero and if the generator is on, ServoDyn applies an offset to the controller
variables (based on εΩ, see subsection 1.4).

– Store the current azimuthal angle and output vector: ψc and yc
– If t = 0 (or first time step):

∗ Set the initial azimuthal position as ψinit = ψc The azimuthal angle is stored as a
number in the interval [0; 2π[(2π excluded), i.e. ψc = mod(ψ, 2π), implemented as
ψc=Zero2TwoPi(ψ).
∗ Set the vector of target azimuthal positions ψ0 (also in [0; 2π[):

k = 1..NAzimStep, ψ0[k] = mod(ψinit + (k − 1)∆ψ, 2π), ∆ψ
4
=

2π

NAzimStep
(2)

∗ Set yp = yc ans ψp = ψc

– If (ψc − ψp) ≥ ∆ψ, return an error: the rotor is spinning too fast, the time step or
NazimStep are too large

– If ψc ≥ ψ0[j]

∗ Interpolate the output vector to the target azimuthal position ψ0[j] using the current
output values yc and the previous ones yp:

if t = 0 or Ωref = 0, y0 = yp, else y0 = yp + (yc − yp)
ψ0[j]− ψp

ψc − ψp
(3)

Note: outputs that are 3D rotations should be transformed to logarithmic maps.
Note: special care is needed if angles are close to 0 or 2π, in which case they should
be taken between −π and π.

∗ If nrot > 0, compute the mean squared relative error of the output vector at the
azimuthal position ψ0[j] between the current revolution and the previous one:

ε2y[j] =
1

ny

∑
i

(
y0[i]− Y0[i, j]

yref[i]

)2

(4)

The reference value yref is defined in Equation 7.
Note: if the variable y0[i] is in radian or degree, the difference of the variable should
be taken between −π and π, implemented using MPi2Pi.

∗ Store the interpolated value

Y 0[:, j] = y0 (5)

∗ Increment j

– Set the current values as previous values for the next time step

ψp ← ψc, yp ← yc (6)

– If j > NAzimStep:

4

∗ Increment nrot

∗ Check convergence over all azimuthal positions: ε2y[k] < TrimTol for all k

∗ If converged, exit the time loop

∗ Otherwise, compute a reference value for each of the index of the output vector,
based on the maximum and minimum values taken over one rotor revolution.

yref[i] = max(Y0[:, i])−min(Y0[:, i]) if yref[i] > 10−6, else yref[i] = 1 (7)

Set j = 1 and continue the time stepping.

• If the time loop run up to TMax, return an error, otherwise perform the linearization step
below

Linearization

• The values Twr Kdmp and Bld Kdmp are set to 0

• The standard linearization procedure takes place

1.4 Changes in ServoDyn

In the updated implementation, ServoDyn has the possibility to modify some of its outputs based
on offset that is updated internally as a discrete state.

New registry types The inputs RotSpeedRef, TrimCase, TrimGain are added:

InitInputType IntKi TrimCase - - - "Controller parameter to be trimmed" -

InitInputType ReKi TrimGain - - - "Proportional gain on rotational speed error"

-

InitInputType ReKi RotSpeedRef - - - "Reference rotational speed" rad/s??

These inputs should also be added as ParameterType in the registry file. The discrete state
CtrlOffset (also noted xoff) is added:

DiscreteStateType ReKi CtrlOffset - - - "Controller offset parameter" -

Glue-code transfer before the init routine The controller trimming option of ServoDyn
requires additional parameters from the glue-code and ElastoDyn. These parameters need to be
transferred via the SrvD InitInputType structure. Currently, these transfer occur in the routine
FAST InitializeAll of FAST Subs.f90. The following transfer is added:

InitInData_SrvD%TrimCase = p_FAST%TrimCase

InitInData_SrvD%TrimGain = p_FAST%TrimGain

InitInData_SrvD%RotSpeedRef = ED%Output (1)%RotSpeed

If the generator degree of freedom is off or if the rotational speed is zero, TrimCase is set to 0 so
that the trimming is cancelled.

Initialization routine Srvd Init The added variables from InitInputType are copied to the
ParameterType variables. The state variable CtrlOffset is initialized to 0. If the parameter
TrimGain is not strictly positive, an error is thrown.

5

jjonkman
Sticky Note
The RotSpeed must be an initialization output from ElastoDyn or similar structural module.

Update state routine Srvd UpdateDiscState A simple proportional gain on the rotational
speed error is used to correct the control parameters. The error in rotor speed εΩ is the difference
between the target speed and the current rotor speed:

εΩ = Ωc − Ωref (8)

The current rotor speed is Ωc = u%RotSpeed. The offset on the controller variable is computed
using the speed error and a proportional gain kp > 0. The offset is computed as:

xoff = xoff + s kp εΩ (9)

The variable s above accounts for possible sign adjustments. The offset is such that it will converge
to a constant value as εΩ tends to 0. When TrimCase=1, xoff is the yaw angle offset (in rad).
When TrimCase=2, xoff is the generator torque offset (in N). When TrimCase=3, xoff is the pitch
angle offset (in rad). For the pitch and generator torque, s = 1. Indeed, when the rotational
speed is faster than Ωref (εΩ > 0), the pitch or generator torque needs to be increased to lower the
rotational speed. The opposite holds when the rotor spins slower than Ωref. On the other hand,
when εΩ > 0, the yaw angle needs to be increased if the yaw angle is positive, or decreased if this
angle is negative, in order to decrease the rotational speed. For this case, s = sign(θyaw,0 + xoff),
where θyaw,0 is the neutral yaw angle defined by p%YawNeut. Another subtlety arises for the yaw
case, since the main variable of ServoDyn is actually the yaw moment. Yet, it is more convenient
to manipulate an offset on the yaw angle since the offset sign depends on the yaw angle. This
issue will be addressed in the next paragraph. The update of the discrete state is implemented as
follows:

i f ((TrimCase ==2).or.(TrimCase ==3)) then
xd%CtrlOffset += (u\%RotSpeed - p%RotSpeedRef) * TrimGain

else i f ((TrimCase ==3) then
xd%CtrlOffset += (u%RotSpeed - p%RotSpeedRef) * sign(TrimGain , p%YawNeutr +

xd%CtrlOffset)

else
xd%CtrlOffset = 0

endif

Output routine SrvD CalcOutput The output variables of ServoDyn are directly modified using
the offset CtrlOffset. As mentioned in the previous paragraph, in the yaw case, the main variable
outputted by ServoDyn is the yaw moment and not the yaw angle. The part of the yaw moment
that depends on the yaw angle is computed as:

Qyaw = −kyaw(θyaw,ED − θyaw,0) (10)

Hence, if θyaw,0 is replaced by θyaw,0 + xoff, it is seen that the yaw moment is given the offset
kyawxoff. For the implementation, the control outputs are trimmed just after their computation
within the SrvD CalcOutput routine, that is after calling Pitch CalcOutput, Torque CalcOutput

and Yaw CalcOutput, as follows:

i f (TrimCase ==1) then
y%YawMom = y%YawMom + xd%CtrlOffset * p%YawSpr

else i f (TrimCase ==2)

6

jjonkman
Sticky Note
Should be TrimCase=1

y%GenTrq = y%GenTrq + xd%CtrlOffset

else i f (TrimCase ==3)

y%BlPitchCom = y%BlPitchCom + xd%CtrlOffset

else
! do nothing

endif

By doing the update in Svrd CalcOutput, it is ensured that the operating point will be about the
proper conditions. Indeed, in Svrd GetOP, the operating point variables are set from the outputs
directly:

y_op(Indx_Y_BlPitchCom) = y%BlPitchCom

y_op(Indx_Y_YawMom) = y%YawMom

y_op(Indx_Y_GenTrq) = y%GenTrq

It is important to note that the routines CalculateStandardYaw and CalcuateTorque returns val-
ues without offset. These routines are for instance called by Yaw UpdateStates and Torque UpdateStates.

Linearization routine SrvD JacobianPInput This routine uses a generator torque which does
not have an offset. It may require the following modification:

i f (TrimCase ==2)

GenTrq = GenTrq + xd%CtrlOffset

endif

1.5 Additional glue-code procedure to increase the damping

Artificial damping forces are added to the external forces applied on the structure. For now, the
extra damping is only applied to ElastoDyn and BeamDyn. The extra damping force is set to be
proportional to the velocity of each node of the structure. The proportionality constants Twr Kdmp

and Bld Kdmp are used respectively for nodes on the tower or the blade. In general, the force F on
a given node of velocity v is updated as follows:

F ← F − kdmp v (11)

To avoid damping the rotation of the blade, the following is applied for nodes along the blade:

F ← F − kdmp (v −Ωc × r) (12)

where r is the instantaneous position vector of a blade node. The forces are usually found as inputs
of a module while the kinematics are found in the outputs. The additional damping forces can be
implemented in the procedure ED InputSolve of the glue-code. For ElastoDyn, the update of the
forces

u%TowerPtLoads %Force (1:3,J) -= Twr_Kdmp * y%TowerLn2Mesh %

TranslationVel (1:3,J)

u%BladePtLoads(K)%Force (1:3,J) -= Bld_Kdmp * (

y%BladeLn2Mesh(K)%TranslationVel (1:3,J) - Vrot)

where K is the blade number and J is the node index (along the tower or blade, looping til NNodes),
u and y are the module input and outputs, and Vrot = Ωc × r is the velocity due to the rotation
of the blade node, computed using Equation 13. For BeamDyn, the additional damping is added
as follows:

7

u(k)%PointLoad%Force (1:3,J) -= Bld_Kdmp * (y(k)%BladeMotion%TranslationVel (1:3,J)

- Vrot)

The variable Vrot = Ωc × r is computed for each blade node using

Ωc = Ωc · y%HubPtMotion%Orientation(1,:,1)
r = rnode − rhub (13)

rhub = y%HubPtMotion%Position(1:3,1) + y%HubPtMotion%TranslationDisp(1:3,1)

rnode = y%BladeLn2Mesh(K)%Position(1:3,J) + y%BladeLn2Mesh(K)%TranslationDisp(1:3,J)

where rnode is defined for ElastoDyn above. It is defined in BeamDyn as:

rnode = y(k)%BladeMotion%Position(1:3,J) + y(k)%BladeMotion(K)%TranslationDisp(1:3,J)

8

