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1 Overview

In many engineering applications, especially in deep watken hydrodynamic loads are to be considered on
structures, waves are modeled as long-crested and geshasaém irregular sea surface elevation process using
linear Airy wave theory and associated kinematics. Howedweegenerate realistic wave fields in shallow water, it is
essential to account for both wave directionality and m@drity, which is achieved by employing the directional
irregular second-order wave modeling approach of Sharrddaan [1]. Using wave steepness as a perturbation
parameter, Stokes [2] provided solutions for the analylsiegular waves. In Stokes study, only the sum frequencies
of first-order waves are considered. For irregular waveth som- and difference-frequency interactions up to
second order are considered. The second-order wave sdditivinfinite water depth including the contribution of
the difference frequencies were provided by Longuet-Higgi al. [3]; Sharma and Dean [1] extended the theory for
infinite water depth to intermediate water depths.
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2 Synthesis of Directional Waves

In irregular waves, this is usually described with a direcél spectrum or spreading function, similar to a frequency
spectrum. Itis assumed that the total spectrum can be defed

S(w, 0) = Sw)D(w, ) (2.1)

where(w) is the frequency spectrum, independent of the directioh®ftaves, an®(w, 0) is the directional
spectrum, which is a function of frequencyas well as wave directior8.

2.1 Double Summation Method

The most intuitive method for the generation of determiaistves is to use the double summation method. The
basic double summation model for directional waves is ardisosersion of the standard double integral equation for
the wave elevation of a random sea with continuous disiobuif energy over frequency and angle of propagation.
Itis given by
N M .
nEt)=Re| > Y Amexpli(ant —knm-X)] (2.2)
n=1lm=1

where X = (x,y) is a point on the horizontaty plane;Anm = anmexp(i&énm); tn is the angular frequencg, is the
wave directiongnm is the wave phase, which is uniformly distributed betwfger] ; Kam= (|an| €0SB, |an| sinBm)
is the wave numbell is the total number of frequencies considered; hid the total number of wave directions.
Also, an,m are the component spectral amplitudes, which are calclitetdollows:

anm = v/ 2, Bm)AwAB (2.3)

The wave field is thus a superpositionMftwo-dimensional wave trains propagatingvhdifferent directions with
each individual wave train.

Although this double summation model has been used quiemsixiely for directional wave simulation, several re-
searchers (Forristall [4]; Lambrakos [5]; Pinkster [6]ybaeported two basic problems, which are that the resultant
wave field is neither ergodic nor spatially homogeneous fitefivalues ofN andM, regardless of the record length
used. As pointed out by Jefferys [7], these effects are chlogartificial phase locking in any particular realization
due to components traveling in different directions witritical frequencies. The wave energy in any one frequency
band will therefore typically vary over space from approataly O to 4 times its average value regardless of how
many directions are used.

The problem can be illustrated by derivation of the crossspm between the wave elevations at two spatially
separated points. Waves of different frequencies cantegat linearly so it is safe to consider one frequency in
isolation; dropping the subscript, th& frequency of the Eq.2.2 contributes to the surface elenatizording to
Eq.2.4

M
NEtw) =Y ancogwt — K- X+ &m) (2.4)
m=1

The cross spectrum between the wave elevations at pgirts(Xp,Yp) andXy = (Xq,Yq) iS denoted bysyq(w); it is
the Fourier transform of the cross correlatRgy(7) between the two signals at the two points.

1T

Rpq(T) = Jim = /O N (Xp,t)n (Xg,t+ T)clt (2.5)
1 e |

Spal ) = 5= /700 Req(T)eXH —iwT)dr 2.6)
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Again, I only skimmed this chapter because our chosen approach for including wave directional spreading in HydroDyn has not changed.


Jefferys(1987) showed that the cross spectBygiw) can be evaluated by the following discrete double summation

M M

Spa(w) = 12 S namexpli (kn - Xp — k- X+ &n — &m)) 2.7)

n Im=1

The real part and imaginary part 8fq are called co-spectrum and quad-spectrum, respectiviiy.eQuation can be
written in terms of 1) the target cross spectrum and 2) an atedkinteraction component introduced by the phase
locked waves.

M
Z anamexp(i(kn - Xp — km* Xg+ & — &m)) (2.8)
m;é

uMz

I\)lH

M L1
mZ a2 exp(i(km 5

target

interaction

If X, andXy are the same point, this expression yields the auto spe@gyfw) as following

Spp(w 2 Z an+ ; Z Z 8nam COSXp - (kn — km) + & — &m) (2.9)
m;én

target

interaction

The interaction terms in Egs.2.8 and 2.9 make the wave figiérg¢ed by the double summation method neither
ergodic nor spatially homogeneous. Only way to effectieimninate the interaction term is to increase the length of
a realization by decreasidgo or to be averaged over many realization.

2.2 Single Summation Method

Alternatively, a single summation method with only one diien per each frequency component reproduces all de-
sirable feature of the double summation method but avoigisdecity problem. This synthesis method will produce a
spatially homogeneous wave field because all cross-proeiues will average to zero regardless of the direction of
propagation of each component. The single summation mestaefined by

NM
n(xt) = Re[ > Anexpi wnt — i|kn| (xcOSBr + ysinen))] (2.10)
n=1

The complex amplitudes;, are given by

A= (,/25@’“, Gn)AwAG) exp(icn) (2.11)

For any specified time steft and the length of simulatiof,ay, the required frequency intervAto can be obtained
>y 2m 2m
Tmax N m
In each frequency bantkw, the directional spreading function is calculatedN¥brvave directions. There are thus
M sub-frequencies within each frequency bdwad, each corresponding to a different wave spreading angle. Th
sub-frequencies are given by

Aw =

(2.12)

wh=(n-1)57 (2.13)

There is no formal recommendation about how to distribuéMhangles into the sub-frequencies. One approach is
to chose the angle randomly for each frequency componeiig atother approach is to assign a wave angle into
each frequency with an ascending order as followings

6 = Omin+ N AD (2.14)



where,n = (n—1) modM. The length of synthesized waves from this methoﬁ;jg,(: M - Tmax although onlyTax
is requested for the time domain analysis.

Although the frequency spacing is clearly artificial, thevevéield should become realistic for sufficiently lafge
and sufficiently small\w. Based on the cross-spectrum analysis, Mile and Funke{Bidehat minimum number of
32 wave directions should be used to guarantee the reasomahiracy.

2.3 Equal Energy Method

This method to simulate directional waves assigns eacliémecy component of the wave to oneMfdiscrete wave
directions and a commercial code OrcaFlex uses this methsidiulate a wave time history. Unlike the single sum-
mation method, the equal energy method does not divide eaghdncy bandw into M sub-frequencies. Each
wave direction will have the same number of frequenciegassi to it. In order to preserve the energy distribution
in the wave spreading function, the wave directions areyassi so that a greater number of directions are concen-
trated near the central frequency. The wave elevation atediby the equal energy method is given by

N
N(Et) =Re| S Asexplicnt —ilke| (xCOS6n +ysin6n)) (2.15)
n=1

The complex amplitude&;, are given by
An = [/2S(an)Bw] explien) (2.16)
~—_—————

an

2.3.1 Frequency Independent spreading function, D(6)

This method is only valid if the directional spreading fuootD(w, 6) is independent in frequency component as
follows:

S(w,8) = S(w)D(6) (2.17)
There are seferal way to define the directional spreadingtimm The most commonly used@OSINE- 2s spread-
ing function, which was proposed by Longuet-Higgins et3l.gnd given by

B HCE) N
D(6)=C COS<T> , (2.18)
where,Sis the spreading parameter and the normalization con§aistgiven by
_ Jml(s+1)
- 86T (s+1/2)’ (2.19)

andr is the gamma function. The cumulative energy distributidgthiy the wave spreading function up to an@lés
given by
0
P(6) = / D(6')d6'. (2.20)
0-56/2
where,8 is a mean wave direction.
The following method may be used to set the appropriate wareetibns to satisfy the equal energy approach.

e Stepl: Discretize the wave direction ran@® by nq steps and calculat®(6) spreading function. Set to
a sufficiently large number such that the function is smoathugh for interpolation ovevl directions (set
Ng = 3M).



e Step2: While calculatin®(8), calculate the cumulative energy sum up to the current tiineasP(6).

e Step3: Discretiz€(0) into M steps from M < B <1-—1/M. Interpolate the functio®(6) found in step 1
to find the corresponding values &f The 6 values are the wave directions used in the equal energy hetho

e Step4: Randomly assign each of thdrequencies (ignoring the end frequencies at which the \aawelitude
is defined as zero) to @ direction such that each wave direction N8V frequencies assigned to it.

2.3.2 Frequency dependent spreading function, D(w, 8)

In many cases, for simplicity, it is assumed that the dio#al spreading function is independent of frequency. How-
ever, if someone need to simulate wave time series basedextidnal wave spectrum with frequency dependent
spreading function such as a directional spectra measyradboy, the procedure presented in sec.2.3.1 is invalid.
Especially, when both wave energy from swell system and lotad sea are significant, the assumption that the
directional spreading function is independent of freqyascinreasonable because the mean wave direction and the
degree of directional spreading of two ocean systems maighgisantly different; generally, a spreading parameter
scorresponding to swell sea is larger than a spreading pasacm@responding to wind sea.



3 Second-order directional wave theory

The second-order directional wave theory proposed by Shand Dean [1] is an extension of the theory developed
by Longuet-Higgins [3] for water of infinite depth to applywater of arbitrary depth. The nonlinear boundary
value problem is solved to the second order by a perturbappnoach accounting for contributions from linear
components from arbitrary frequencies and directions. SHw@nd-order wave system is one that is forced by the
linear system and all information on second-order ampdituahd phases are related to the characteristics of the
first-order spectrum.

3.1 Boundary value problem formulations

If the effects of viscosity and turbulence can be regardesiraad|, incompressible flows can be described well by a
velocity potential. In other words, the velocity comporgntv, andw can be defined in terms of the gradients of the
velocity potentiakp in the three Cartesian directionsyy, andz.

_ (99 99 99
(uv,w) = (ax’ 3y’ (92) (3.1)

The mass conservation equation for an incompressible Buid i

Ju odv oJw
& + E/ + E = (32)
which can be combined with Eq. 3.1 to yield
2 2 2
o 09,99 0% _, (3.3)

o ey T ez
where,—h<z<nand—o <xy<o

Sharma and Dean proposed a second-order velocity potamtlon which satisfies the appropriate boundary
conditions for the problem.

3.1.1 Bottom Boundary Condition(BBC)

At the bottom boundary, the velocity normal to the boundargqual to zero. For this case of a horizontal boundary
at depthh,
99

E z=-h=0 (3.4)
3.1.2 Kinematics Free Surface Boundary Condition(KFSBC)

A water particle on the free surface remains on the free seidiad the vertical velocity at the free surface is equal to
the total rate of change of water elevation.

0 op o op o 0
on _ 0pan  opon _Jdg

= 3.5
ot oJxodx odyody 0z (3-5)

wherez=n



3.1.3 Dynamic Free Surface Boundary Conditions(DFSBC)

The pressure follows from Bernoulli’'s equation and we can write as folkw

p Jo 1 _
p+gz+ at +2qu Op=—Q(t) (3.6)

where,Q(t) is defined as an arbitrary function of time. Here, insteadholliding the time dependence@fin the
velocity potentialkp, let Q be a constant. At the free surfare- n, the pressure is equal to the atmospheric pressure,
Patm @and if we choos€ = — pam/p in EQ.3.6 we can rewrite the equation as [9]

Jdp 1
“Oo-Op=0 3.7
= on+ -+ 5000 (3.7)
3.1.4 Combined Free Surface Boundary Condition(CFSBC)

This is an alternative form of Eqs.3.5 and 3.7 above in wHighgliminating the unknown free surface elevatipn
involves onlyg and its derivatives.

1
— 5z~ 95, — (5500 0)0¢ =0 (3.8)

wherez=n

3.2 Solution of the Boundary Value Problem

The perturbation approach is adopted for solution of thendaty value problem formulated in the previous section.
This approach assumes that all variables can be expandezbasergent power series of a small parameter, such as
wave steepness. Also, it is assumed that the combined frizzsioundary condition(CFSBC) can be expanded in
a convergent Maclaurin series about the mean water evd) with a small parameter.

The velocity potentialp and sea surface elevatignmay be represented in the following manner with a pertuobati
parameter, wave steepness

P(xy:zt) = oV (x Y,z + 0P (xy,2t) + ... (3.9)
N6yt =P o0y +n@ eyt + ... (3.10)
where,n) andgl) is proportional tae' or O(&'). By substituting the perturbation expansionsdaandn into

Laplace equation Eq.3.3 and the bottom boundary condittp8.E, we can find two separated boundary conditions
as follows:

DZ(p(D =0; Dz(p(2> =0 (3.11)
oW 0@
—;02 lz=—h=0; —;02 lz=h=0 (3.12)

Substituting the perturbation expansions into the dyndra& surface boundary condition(DFSBC) in Eq.3.7 and the
combined free surface boundary condition(CFSBC)in Eg8eBcan separate terms of same ord&x&{, O(£?),

0(£3), ...), just keep terms dd(&) andO(£?), and ignore terms of third or higher ord@(e?), O(%), ...); for
example;(V @ andn@ ¢ are the term 00(£3) and are ignored. From two boundary conditions, DFSBC and
CFSBC, we obtain four additional equations as follows:



aZ(p(l) aq)(l)

g =0 (3.13)
%qfwag;fz—%\m@f— “)% [%wag;ﬂ (3.14)
() _ _é"g’il) (3.15)

n@ = —é <agi2> + %mqo‘l)lz) - én(” 0;;;:) (3.16)

where,z=0

3.2.1 First-Order Solution

First, we can select a first-order velocity potentigth) of the following form

PV (X,zt) = (1) %E costilka|(h+2)]

= Sin(ant — Ky - X+ &, 3.17
e th cosH(|kn|h) ( ) ( )

N .
(1) (g _R . g cosH|kn|£h+z)] ot iK% 318
= ¢ (X zt) e n§:1l_ —cosl‘(|kn|h) exp(iont — ikn - X) ( )

which satisfies Eq.3.11, 3.12, and 3.13. By substitutin@Hdq.into Eq.3.15, we obtain the first-order components of
the surface wave elevation(?

N
N (Rt) = Y ancog et —kn- X+ &n) (3.19)
n=1
N —
=nWxt) = Relenexp(iwht— ikn - X) (3.20)
n=1

where An = anexpien) ; X= (x,y) is a point on the horizontady plane;w, is the angular l‘requenciz.;1 is the wave
number which is related to the frequenay, through the linear dispersion relatian? = g|ka|tanh(|ky|h) (Whereh
is the water depth)\l is the total number of frequencies considered. Algaare the component spectral amplitudes,

which are calculated as follows: 5

E [%] — S(en)Aw (3.21)

where E [o] is the expected value ef



3.2.2 Second-Order Solution

Second-order waves are obtained as a result of the sum dackdife interactions between pairs of frequencies and
the phases of the second-order contributions are detedrbinthe sum and difference interactions of the phases of
the first-order component phases, which are random. Thexdemaler velocity potential which satisfies Eq.3.11,
3.12, and 3.14 is given as follows:

N N

PRzt = (=13 S anam: Bnim-sin(wmn)t — (kntkm) -+ (enieno) (3.22)
n=1m=1
= ¢@ (X 2t) = Re[% % iAnAm- B - exp(i(o.hi )t — i (K Kin) z)] (3.23)
n=1m=1

By substituting for the first-order potenti@l?, the first-order surface elevatiopi?, and the second-order potential
9@ in Eq.3.16, we obtain the second-order correction to theslirsea surface elevation as follows:

N N
NP =3 Y anam: Lnim'COS((ﬂhﬂ:wm)t — (kntkm) -+ (enieno) (3.24)
n=1m=1
= n@xt) = Re[% %AnAm-Lﬁm-exp(iwmn)t—i(mk}q) -z)] (3.25)
n=1m=1

The transfer function derived by Sharma and Dégp,andB3,,, are given by:

1 [ DE — (|Knl[Kn 6h— 6
Lim(Coh, @in, Bn, Bn) = 7 | = (|k”||km|coR%:n ) FRR) L (Ry-+ R (3.26)
+ _¢* lcoshkiy(h+2)] D,
Bam(Z tn, Wm, 6n, 6m) = nom 3 coshkin(h)]  Gn (3.27)
where, . B
Ry = |kn|tanh(|ka|h) (3.28)

ot — (VR VRu)[VRm(kn ~ R?) & yRa(kn” ~ Re)]} | [2(v/Ra % v/Rin) ] [[Knl [ ©O B — )  RoRm)

" [(VRn VRm)” — Kimtanttiint)] [(vVRa vRm)® — Kimtant(kim)] 029
In the abovek, andk;,, are given as follows :
+ 2 2 2 6, — 6m
Kim = /K% + Ke? + 2kkn COS( 6 — ) a0

K= /o + Ken? — 2kokin COS( 6 — )

For infinite depth, the equations proposed by Sharma and ¢aeduces to the equations derived by Longuet-
Higgins et al. [3] for deep water. Also, féy = ky, andN = 1, the formulas for velocity potential and surface eleva-
tion reduce to the familiar Stokes second-order equatidhs [
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Note to self:

[B] = 1/time
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[D] = 1/length^2


3.3 \Validity of the Second-order Wave theory

While the second-order irregular wave model is a more ateuegpresentation of irregular seas in shallow waters
compared to the linear irregular wave model, it obviouslgsinot model the complete nonlinear character of waves,
and is not valid for all cases. The physical parameter thi@rdenes the range of validity is the wave steepness.
When the wave steepness exceeds a certain value, the sei@®rdnodel is no longer valid, and a higher-order
model is required. In fact, when waves become too steep ddwepreak and no model based on solution of Laplaces
equation (in terms of velocity potential) is valid.

10



4 Second-Order Wave Kinematics

It is assumed that the considered fluid is incompressiblésdid, and irrotational. Specially, the velocity fields of
irrotationl fluid can be expressed as follows:

i=0¢ (4.1)

00V 30D g
u<1>=<u£”,u§”,ué”>=ﬂ<ﬂ(”:( oy o (4-2)

2 2 2
g2 —( 2 (2 (2)) — 0@ = (04)( ) 9p? g >) 4.3)

Uyx 7Uy ,Uz aX ) ay 9 az

The acceleration of a water particle can be evaluated by #ienmal or substantial derivative of velocity vectar,

D au
~~ Tern?
Ternl

where, Terml andTern® are called the local acceleration at a fixed point and theeaxdive acceleration, respec-
tively. However, we are only interested in the acceleratidixed point, which is evaluated as follows:

® [ od® gud gu
U _ (a1 gD gy 90U _ [0uC duy” O
ﬁ (aX ,ay 7a2 ) (9t ( 0t 9 (9t ) (9t (45)
40 — (o222 o) = 297 _ o ou? oul” “s)
X &y Az ot ot ) ot 5 It .

To obtain the first- and second-order pressure, let sutesttie perturbation expansions of velocity potential i@ t
Bernoulli’'s equation in Eq.3.6 and separate terms of sameror

7} 1
g+gz+a((p(”+(p(2>+...)+§D(qo(1)+qo<2)+...)~D((p(1>+qo(2)+...):—Q (4.7)
p oY 09 1 gy o 3
b= 9z—Q+ ot + ot +2D<p O¢'Y | +0(e%) + ... (4.8)
~—_———
O(e) O(e2)

Therefore, the first- and second-order dynamic presq;lé%and pff) are obtained as follows [10] [11]:

1 a(p(l>
Py’ =P ot

(4.9)

11


jjonkman
Sticky Note
Good point.  This is what I was trying to explain on Monday.  
While the Eulerian frame only uses pu/pt, Rainey's equation (as a substitute for Morison's) includes the convective acceleration of the Lagrangian frame.  Perhaps we should consider adding these terms as future work, by considering the quadratic interaction of the 1st-order velocity terms through the convective acceleration.


@_ 199?10 ool |99? 1.
Pa” = p[at TR 00T =—p | =5 | e 3U
Terml Tern

|

(4.10)

where, Terml andTern® are called the second-order potential term and quadrdéicaction term, respectively.

4.1 Wave Surface Elevation

n Re[%%exp( ikn - X exp(iwnt)]
n=1
2 N N
=R
n eLZm; - €XP(—i (kn == k) - %) €xp(i it )1

where,
g5 =gt &m and Wi, = wh+ Wy
Krjltm = I-njtm

Anm="AcAm and A =AnAy,

4.2 Wave Particle Velocity
4.2.1 First-Order

costilkn|(h+2)]

N
oY _ costi|kn|(h+2)] s _
(Xzt) = lz Sinn ko[ cosohexp(—ikn X’)exp(m;nt)]

N B
Aqcy, 2 lknl(h +2)]

(1) _
Wz =Re nzl sinh(|kn|h)

N inh{|k;
o - ' sinhijkn|(h +2)]
u (X,Z,t)—Re[(l) 2 et )

4.2.2 Second-Order

N . i —
U (R zt) =Re| T S AmUnm: expl—i(Ky £ ki) - X)-
L m=

N N )
W Rzt =Re| T S AmyUnmn exp(—i(kn k) -
m=

12

explicrid)

%) exp(ichnt)

sinBnexp(—iky - X) exp(iant)

exp(—iky - X) exp(iaqqt)]

(4.11)

(4.12)

(4.13)
(4.14)
(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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U should not have an overdot in the velocity equations.


( )th

=Re z zAﬁmzu -exp(—i(kn = km) - X)

'exqiwnimt)

n=1m=1

where,

WUk =B - (|kn| cOSBh = |Km| COSBOm)

+
yUnm

+
2Un

4.3 Wave Particle Acceleration
4.3.1 First-Order

= By (|| Sin6h = [Ken| SiN6hn)

m— (') : B%m' krfm' tanr{kﬁm(h‘k Z)]

o N pcostilk|(h+2) I
(X,zt) = [ Zl Sinh ko[ cosBhexp(—iky - X) expliant)

m(th) Re (|)~n§1An ZWsin%exp{i@-i)expﬁ%t)]
( )(X zt) ReL%lAn -1 wZWexq—i%-i) exp(iwnt)]

4.3.2 Second-Order

[N N
a&Zi)(X,z,t) =Re Z Z

=1m=1

=}

AP 20) = Re| S 3 Aty Uniy exii(Ky 4 Kn) 1) expiicaiyt)

=1m=1

=}

[N N
a&zﬂ(xz,t) =Re z z

[n=1m=1

where,

s U exp(—i(Kn 4 ki) - X)- explicgt)

t U exp(—i(kn £ km) - X)

'exqio‘ﬁmt)

XUr?Em: (') 'XUrftm' O%im
yunim: (') 'yunim' (’-ﬁm
ZUnim: (')Zunim' Oq"lim
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(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)



4.4 Dynamic Pressure
4.4.1 First-Order

N -
pV(%,zt) =Re > An Wexp(fi?n-i) exp(iant) (4.34)

=1 cost{|kn|h)

4.4.2 Second-Order (only second-order potential term)

N N o
PP (R zt) =Rel S S AP expl—i (ko = ki) - X) - exp(iwht) (4.35)
n=1m=1

Prjntm =Pw- BnjEm' wnim (4.36)

4.5 Properties of Quadratic Transfer Function
45.1 Symmetricity of QTF

Similar expressions of the quadratic transfer functionfdrise in describing loads and responses of floating
structure; in this case, the QTF are evaluated numericaliy Software tools for wave diffraction and radiation
analysis such as WAMIT or AQWA. The QTFE#}) used for evaluating second-order forces of a floating tirec
always have the following symmetry relations:

F2* (wh, @) = F2 (. ah)  and  F?~ (an, @m) = F2 (@m, wn)* (4.37)

Symmetry relations in Eq.4.37 are also applicable to QTFsdoond-order kinematics and this symmetricity prop-
erty significantly reduce the computational effort by eivadpto only take the lower- or upper-triangular part when
someone numerically simulate wave kinematic.

1 1

o (radfs) 00 , (rad/s) ®_(rad/s) 00  (rad/s)
(@) [Kam (b) Kl

Figure 1. Transfer function for n%* (w > 0): unidirectional wave(6, = 6m = 0)
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Was the second-order pressure derived from the quadratic interaction of first-order velocities (Term2) ever derived?


1 1 1 1

o (radfs) 00 , (rad/s) ®_(rad/s) 00  (rad/s)
(@) [Ban (b) |Brml

Figure 2. Transfer function for ¢?* (w > 0) at MSL(h = 20m): unidirectional wave(6, = 6m = 0)

o (radfs) 00 , (rad/s) ®_(rad/s) 00  (rad/s)

@) xnml (b) [xYnm

Figure 3. Transfer function for u2* (w > 0) at MSL(h = 20m): unidirectional wave(6, = 6y = 0)

4.5.2 Singularity of QTF

Formulations for the first- and second-order wave kinersamwn in previous sections are determined from the so-
lution of a boundary value problem(see Eq.3.3 - 3.8). Wheimyement the formulations to numerically simulate
wave kinematics, these formulations have several rastngtwhich stem from physically correct or weakly-correct
assumptions considered during solving the boundary valoiglgm. One of the restriction is the singularity of the
first- and second-order wave kinematic transfer functidie singularity problem is also shown in QTFs proposed
by other researchers.(Longuet-Higgins [3]; Marthinsesh Afinterstein [12]; Nwogu [13])

QTF proposed by Longuet-Higgins[3]

(4.38)
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wm(rad/s) 0 0 wn(rad/s) wm(radls) 00 wn(rad/s)
@) |2Ynml (b) |Unml

Figure 4. Transfer function for u%i (w > 0) at MSL(h = 20m): unidirectional wave(6, = 6m = 0)

1 1

o, (rad/s) 00 w, (rad/s) w,_(rad/s) 00 o, (rad/s)
(@) Uil (b) [xUnml

Figure 5. Transfer function for aﬁi(w > 0) at MSL(h = 20m): unidirectional wave(6, = 6m = 0)

QTF used by Marthinsen and Winterstein [12]

&lknllkm| _ 1 2 g2 nlkn[*%wm[kn 2
B —(1-54)) ? G — 3(0F + WE £ ahoom) + & G antn (4.39)
nm— - . o _ - .
Ehn - (an o) — gl R tan (K = K
where,d_i j = 1 if n=m, zero otherwise and is introduced to avoid the singularfit$:{,

QTF proposed by Nwogu [13]

wha(Kimh)? cog(6n — 6m) [1 - (a +1/3) (kih)?]
AR K
Whinl1 — @ (kih)?] [wnkish([Ka|h == K[ COS B — Bm)) + coksh([Kn|NCO 6 — Bm) =k [Kin] )]
AR K

+
Knm—

+

(4.40)
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1 1 1 1

o (radfs) 00 , (rad/s) ®_(rad/s) 00  (rad/s)
(@) [ (b) |[Jnml

Figure 6. Transfer function for a2* (w > 0) at MSL(h = 20m): unidirectional wave(6, = 6y = 0)

1 1

_(rad/s) 00 o (rad/s) w,_ (rad/s) 0 0 o (rad/s)
(@) [P (b) |Pom

Figure 7. Transfer function for p2* (w > 0) at MSL(h = 20m): unidirectional wave(6, = 6m = 0)

A = (@hm) [L— 0t (Kanh)?] = 9(kg) *hL — (@ +1/3) (k) ] (4.41)
ko= [kal[1— (@ +1/3) (Kol )? (4.42)
where,a = (z4/h)?/2 + (z4/h) andz, =~ —0.53h from shallow water depths up to the deep water depth limit.

Singularity at w=10

Whenw in Eq.3.17 approaches zero, the denominator of the equapiproaches zero. Although the numerator
also approaches zero, we may get an unwanted non-numealual{so-calledNaN), and a special treatment may
be required during numerical simulation of the kinematiepehding on what software tools are used. To avoid
discontinuity or singularity problem at zero frequencynsmne can simply set the kinematics equal to zero.

QTFs of the second-order wave elevation and velocity piteht:, andB:, also have similar singularity issue at

zero frequency. As shown in Eq.3.26, the denominator of teetérm inL , is \/RaRn = \/|Izn|tanr(|lzn|h)\/|k}|tanr(|k}|h),
which approaches zero when eithayor wy, goes to zero.
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One of the numerators &, in Eq.3.27 isD7.,,in EQ.3.29. The numerators of both first and second terms ap-
proaches zero when eithex, or wy goes to zero. In this case, there is no need for any specairtest during a
numerical simulation because the denominatcBﬁf’Jm is not zero unlesexy = wy = 0.

Based on the existence of singularity in the first- and seaodér transfer functions, we presume that the formula-
tions presented in sec.3.2 do not evaluate the first- anchdemaer wave kinematic whemn, = 0 or wy, = 0. This
presumption is physically understandable because we asthanthe a zero frequency regular wave does not have
any wave energy and the zero-energy wave component doeratiedo interact with any other wave components.
Please refer to Fig.8 and 9 to check the singularity issue-at0.

1

u)m(rad/s) 0 0 mn(rad/s) wm(rad/s) 0 0 u)n(rad/s)
(@) [Knm (b) [Knm|

Figure 8. Transfer function K includingw = 0

1 1 1

wm(rad/s) 00 wn(rad/s) wm(rad/s) 0 0 wn(rad/s)
(@) [Bam (b) [Bam|

Figure 9. Transfer function B includingw = 0

Singularity at diagonal components of L, and B,

Another singularity considered during numerical simwlatis the discontinuity in diagonal componentgf,, and
By Whenw, = wm, the denominator terms @, equal to zero, which makes,,, andB,,,,, singular along the
diagonal components. Physically, the interaction betvieenvave components propagating to opposite direction
with same magnitude results in total energy loss. It can pé&a@med through Fig.10, which shows how to interact

18



two wave components. As shown in Fig.10, two free wave coreptﬁa andknm generates new bounded wave
componentg, + ky, andk, — kym by summation interaction and difference interaction, eesipely.

Therefore, unlike difference interaction QTFs for secortkowave force, all diagonal componentd.gf, andB,,,
should be set to zero, which means total energy loss by theaiction between two wave components with same
magnitude and difference propagation direction- kn. This is apparent for the QTF of velocity potentiB,,,
because the sign of upper triangular parBjf, is opposite to the lower triangular part.

y

Vv

(a) Sum interaction (b) Difference interaction

Figure 10. The sum and difference interaction of the wavenumber vectors
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@ 5 Numerical Simulation of Second-Order Wave Kinematics

In this chapter, the equations and algorithms used to neaiBrievaluating the second order wave kinematics based
on the linear or first order wave properties. The forms of tipga¢ions presented here are what is used in the Wave2
module within HydroDyn. Before presenting the equationsfinst discuss the validity issue of the second order
wave theory briefly introduced in sec.3.3.

5.1 Limitation of Second-Order Wave Theory

As shown in sec.3.2, the solutions of the second-order barynalue problem are derived based on a perturbation
approach, which uses a wave steepnesg, 1 as an expansion parameter. For a regular wave component, De
and Dalrymple defined = ka/2, wherek anda are wavenumber and wave amplitude. According to Dean and
Dalrymple, the second-order wave theory is valid if twoemid are fulfilled as follows:

e Convergence: First, the ratio of the second-order term to the first ordemtim Eq.3.9 must be much smaller

than 1.

gz(p(2> B ka(p(2>
W = m <1 (5.1)

3 kacosh2kh)

~ Booshkh) sin(kh) © * (5.2)

e No bump in thetrough: Second, the physical properties of the wave profile reghiethere is no bump in
the trough. This is indicated by a negative second derigatfithe wave trough, which lead to the criterion

sink?(kh)
coshkh)[2+ cosh{2kh)]

ka < (5.3)

In addition to the above two criteria, the breaking critarfor the wave steepness must be fulfilled. One of the
breaking wave critera in arbitrary water depth is given tg/thiche breaking criterion

H 2a
= ka < 0.142rtanhkh) (5.5)

Fig.11 illustrates the different criteria kb as a function okh. Except wherkh — 0, the convergence criteria is
satisfied when the criterion for no bump in the trough and waeaking criterion are satisfied. Whikh > 0.62,
the maximum wave steepness is restricted by the breaking aréerion.

In a regular wave case, the validity of second-order waverthean be simply controlled by limiting the consid-
ered maximum wavenumber to satisfy the three criteria(sg®.E 5.3, and 5.5). However, because these criteria
were derived for a regular wave case, it may or may not be palgicorrect to directly expand the criteria to the
irregular wave case. The following three criteria can baluseevaluate the maximum wave frequency for the valid
application of the second-order wave theory.

e Hu and Zhao [14]: Based on results from numerical simulations, Hu and Zhagestgd that the second-
order wave model presented here is valid as loniggk; is smaller than approximately 0.08, whelg,is the
significant wave height anld, is the wavelength corresponding to the zero-crossing eayw, = /V2/ Yo
andy; is given by

Vo= /w”S(w)dw (5.6)
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Again, as we discussed, I suggest leaving the cut-off frequencies as user-defined for now.  There are other implications e.g. for Morison's equation that impose other limits.


shallow Intermediate depth deep
]
I
05} 1
I
I
0.4r¢ I ,
I
© I
$ 0.3 I .
]
0.2 v 1
=== Convergence
0.1r === NO bump 1
/ = Breaking wave
0 .4.’4

/10 kh s

Figure 11. Different criteria for kaas a function of kd

e Stansberg [15]: Stansberg proposed a useful criterion to establish theebighequency, for which the second-

order wave theory may be considered valid, as follows:
2 (5.7)

Keut = E(amax[1+ 1/2(kpE(amax))]

wherekg is related to the limiting (cut-off) frequencsa..t, through the linear dispersion relation ahis

a wavenumber corresponding to the spectral peak peFindE (amax) is the expected value of the extreme
wave amplitude of a gaussian wave record, which follows &gl distribution. The denominator in Eq.5.7 is
the simplified second-order correction for a non-gaussiavevfield. According to the extreme value theory,

E(amax) is given by
Yem (5.8)

E(amax) = %[ 2In(N;) + 2

(5.9)

_ Tmax

N, — —mex
z TZ

where,yam = 0.577... is the Euler-Meschenori constai; is the number of zero-upcrossing wave cycles and

tmaxis the length of simulation isec
e DNV-RP-C205[16]: DNV-RP-C205 guideline provides a simpler criterion for tplication of second-order

wave theory as follows:
2
Weut = H—g (5.10)
S

In irregular wave case, the validity of second order wavehés significantly affected by the spectral or statistical
properties of the considered irregular wave such as the wae& period(y), significant wave heighi(s), and

the length of simulationgay depending on the considered criteria. During a numerioalkation of the second-
order wave kinematic, therefore, the maximum wave frequeniitrarily assigned without considering the spectral
properties of the irregular wave may result in the genenatigphysically-incorrect second-order wave kinematics.
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5.2 Sampling Theorem and additional requirement of cut-off frequency, weut

In digital simulation of wave surface elevation and kineicgtwe replace continuous timgby discrete time array,
tp = pAt, whereAt = tmax/N, such thaipp=1,2,...,N. By virtue of the periodicity of Fourier series, we have

_2n

Aw (5.11)

"~ tmax
The Nyquist sampling theorem provides a prescription ferrtbminal sampling interval required to avoid aliasing.
It may be stated simply as follows:

e The sampling frequencyy = 211/At should be at least twice the highest frequency containdueisignal.

Or in mathematical term,

Ws > 20yt (5.12)
If weut = MAw, then we must satisfy
21 2 2
= —=_" _|>]2 =MAwW=M— 5.13
At tmax/N] - [ et @ tmax ( )
=N>2M (5.14)

In the numerical simulation of second-order wave kinensatite largest frequency of wave components gener-
ated by the second-order wave-wave interactioM&@, which is associated with the sum-frequency interaction.
Therefore, to satisfy the sampling theorem for second+omd@e simulation, we must ensure that

N > 4M (5.15)

This simply means that a cut-off frequenay,;;: evaluated by a criterion presented in sec.5.1 must satisfy

tmax Weut Weut
N=—-""|>|4dM =4 =4 5.16
[ JA\s } - { Aw 27T/tmax ( )
= o < —& (5.17)

- 2Mt

5.3 Numerical Simulation using Inverse Fast Fourier Transform(IFFT)

As shown in Eq.4.11 - Eq.4.36, the second-order wave kinemedn be obtained using the double Fourier trans-
form. Although computation efficiency is improved by usifidrT, the formulations of the second-order wave
kinematics are still time consuming. When the wave spectsuivided into N components, the integration should
be repeateti? times, if direct integration method is applied. Fortungtb collecting same frequency terms first,
it is possible to reduce the calculation times td-2 1 for sum frequency contributions, ahld— 1 for difference
frequency terms.

Figure 12 and 13 shows which second-order wave frequen@niergted by sum and difference interaction between
wh andwn. In the figurew; = Aw, w, = 2Aw, - - -, wny = NAw. If same frequency terms, i.e. the diagonal going
from the lower left corner to the upper right corner in sumginency matrix and the diagonal going from upper left
corner to the lower right corner in difference-frequencytimaare collected, the double summationNk N terms

can be replaced with a single summation bf-2 1 terms for sum-frequency componenbg{ = u*Aw; u* =
{2,3,...,2N}) andN — 1 terms for difference-frequency componenig( = p~Aw; pu~ ={1,2,..,N—1})
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Again, I didn't fully review this section, but the same simplifications taken for the 2nd-order Hydro can be taken here (neglecting the mean-drift term).


w q Wz W3 W,y oo WpyN-_1 ON

N
1| 200 | 300 | 480 | 500 NAw [V +1)
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\\
W2 3Aw | M| 5Aw
\,
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\\
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\,
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W 4| 5Aw AN
AN @'& w
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. @ ‘\
* N,
\\\
\,
\\
@ N-1| NAw AN ()
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\\
w N (N +1) 2N -1) ZNA(IJ
Aw Aw Y v
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Figure 12. Second-order wave frequency matrix: Sum-frequency interaction
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Figure 13. Second-order wave frequency matrix: difference-frequency interaction
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5.3.1 Sum-Frequency Interaction

To simplify the computation of the sum-frequency wave kiadios, the matrix should be split into three regions:
e Regionl-n=m w,;+ ={2,4,6,....,2N} x Aw
e Region2 -n#mand 3<n+m<N+ 1wy ={3,4,5,...,N+1} x Aw
e Region3-n#mandN+2<n+m<2N—1:w,+ ={N+2,4,5,... 2N~ 1} x Aw

Using the symmetricity property of QTFs introduced in sée ¥, we can obtain the following equation for Fourier
coefficient of sum-frequency interaction terkf, :

e Regionl:

Hy = AAXT (ax, ax) wherep™ = 2k k= {1,2,...,N}
e Region2:

Hyr = 22|L811+71)/2JA|AH+7IX+(“4 Wy -1)
e Region3:

Hye =25 02 A AL X (), @)

where| e | represents the floor function aXd™ in above equations is equivalent to the sum-frequency parciext
in EQ.4.19, 4.20, 4.21, 4.28, 4.29, 4.30, and 4.35). Aftaieating Fourier coefficiertt,,, we can get a time series
of the second-order wave kinematit (X,zt) by applying one-dimensional IFFT procedure .

YH(X,zt) =IFFT [Hy+] (5.18)

5.3.2 Difference-Frequency Interaction

Unlike the sum-frequency interaction case, Fourier caefficof difference-frequency interaction terhh,- can be
evaluated a relatively simple equation without splittihg tnatrix as follows:

N—u~
Hu* =2 IZ A|+u*A|*x7(f4+;ram) (5.19)
=1

where,u~ ={1,2,...,N— 1}, andX ™ in Eq.5.19 is equivalent to the difference-frequency paredtextin Eq.4.19,
4.20, 4.21, 4.28, 4.29, 4.30, and 4.35). By applying oneetiisional IFFT procedure, a time series of the second-
order wave kinematic by difference wave-wave interactosimply given

Y~ (X%,zt) = IFFT [H, | (5.20)

24



Bibliography
[1] N. Sharma and R. Dean. Second-order directional seaassutiated wave forcesSociety of Petroleum
Engineers Journak:129-140, 1981.
[2] G. G. Stokes. On the theory of oscillatory wav@sans.Camb. Phil. Soc8:441-455, 1847.

[3] M.S. Longuet-Higgins, D.E. Cartwright, and N.D. Smitbservations of the directional spectrum of sea
waves using the motions of a floating buoy. Geean Wave Spectra, Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Scient@83.

[4] G.Z. Forristall. Kinematics of directionally spread vess. InProceeding on Directional Wave Spectra Applica-
tions, American Society of Civil Engineegfi®81.

[5] K.F. Lambrakos. Marine pipeline dynamic response toegivom directional wave spectr@cean Engineer-
ing, 9:385-405, 1982.

[6] J.A. Pinkster. Numerical modelling of directional seds Symposium on Description and Modelling of
Directional Seas, Technical University of Denmark, Copzagén 1984.

[7] E.R. Jeffreys. Directional seas should be ergodaurnal of Applied Ocean Reseay¢h186-191, 1987.

[8] M.D. Miles and E.R. Funke. A comparison of methods fortbysis of directional seaslournal of Offshore
Mechanics and Arctic Engineering11:43-48, 1989.

[9] O.M. Faltinsen.Sea Loads On Ships and Offshore Structut@smbridge University Press, 1990.

[10] P.D. SclavounosOcean Wave Interaction with Ships and Offshore Energy Bysfiecture note]. Retrieved
from http://bazzim.mit.edu/oeit/OcwWeb/MechanicatjiBaering/2-24Spring-2002/LectureNotes/index.htm/
Massachusetts Institute of Technology, 2002.

[11] C.-H. Lee. Wamit theory manual. Technical Report MITpRg 95-2, Department of Ocean Engineering,
Massachusetts Institute of Technology, Cambridge, MA5199

[12] T. Marthinsen and S.R. Winterstein. On the skewnesamdom surface wave. Broceeding of the second
international offshore and polar engineering conferenc@92.

[13] O. Nwogu. Nonlinear evolution of directional wave spgradn shallow water. liProceeding of Costal Engi-
neering 1994.

[14] S-L.J. Hu and D. Zhao. Non-gaussian properties of seemder random wavesJournal of Engineering
Mechanics119:44-364, 1993.

[15] C.T. Stansberg. Non-gaussian extremes in numerigalherated second-order random waves on deep water. In
Proceeding of the Eighth international offshore and polagmeering conferencéd 998.

[16] Det Norske Veritas Recommended practice - DNV-RP-C205 - Environmental condiind environmental
loads DNV, 2010.

25



	Overview
	Synthesis of Directional Waves
	Double Summation Method
	Single Summation Method
	Equal Energy Method
	Frequency Independent spreading function, D() 
	Frequency dependent spreading function, D(, )


	Second-order directional wave theory
	Boundary value problem formulations
	Bottom Boundary Condition(BBC)
	Kinematics Free Surface Boundary Condition(KFSBC)
	Dynamic Free Surface Boundary Conditions(DFSBC)
	Combined Free Surface Boundary Condition(CFSBC)

	Solution of the Boundary Value Problem
	First-Order Solution
	Second-Order Solution

	Validity of the Second-order Wave theory

	Second-Order Wave Kinematics
	Wave Surface Elevation
	Wave Particle Velocity
	First-Order
	Second-Order

	Wave Particle Acceleration
	First-Order
	Second-Order

	Dynamic Pressure
	First-Order
	Second-Order (only second-order potential term)

	Properties of Quadratic Transfer Function
	Symmetricity of QTF
	Singularity of QTF


	Numerical Simulation of Second-Order Wave Kinematics
	Limitation of Second-Order Wave Theory
	Sampling Theorem and additional requirement of cut-off frequency, cut
	Numerical Simulation using Inverse Fast Fourier Transform(IFFT)
	Sum-Frequency Interaction
	Difference-Frequency Interaction


	Bibliography



