
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Code Vectors: Understanding Programs Through
Embedded Abstracted Symbolic Traces
Jordan Henkel

Univ. of Wisconsin–Madison, USA
jjhenkel@cs.wisc.edu

Shuvendu Lahiri
Microsoft Research, USA

Shuvendu.Lahiri@microsoft.com

Ben Liblit
Univ. of Wisconsin–Madison, USA

liblit@cs.wisc.edu

Thomas Reps
Univ. of Wisconsin–Madison and GrammaTech, Inc., USA

reps@cs.wisc.edu

ABSTRACT
With the rise of machine learning, there is a great deal of interest in
treating programs as data to be fed to learning algorithms. However,
programs do not start off in a form that is immediately amenable
to most off-the-shelf learning techniques. Instead, it is necessary to
transform the program to a suitable representation before a learning
technique can be applied.

In this paper, we use abstractions of traces obtained from sym-
bolic execution of a program as a representation for learning word
embeddings. We trained a variety of word embeddings under hun-
dreds of parameterizations, and evaluated each learned embedding
on a suite of different tasks. In our evaluation, we obtain 93% top-1
accuracy on a benchmark consisting of over 19,000 API-usage analo-
gies extracted from the Linux kernel. In addition, we show that
embeddings learned from (mainly) semantic abstractions provide
nearly triple the accuracy of those learned from (mainly) syntactic
abstractions.

ACM Reference Format:
Jordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps. 2018. Code
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bolic Traces. In Proceedings of The 26th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE 2018). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Computer science has a long history of considering programs as
data objects [7, 10]. With the rise of machine learning, there has
been renewed interest in treating programs as data to be fed to
learning algorithms [2]. However, programs have special charac-
teristics, including several layers of structure, such as a program’s
context-free syntactic structure, non-context-free name and type
constraints, and the program’s semantics. Consequently, programs
do not start off in a form that is immediately amenable to most
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off-the-shelf learning techniques. Instead, it is necessary to trans-
form the program to a suitable representation before a learning
technique can be applied.

This paper contributes to the study of such representations in the
context of word embeddings. Word embeddings are a well-studied
method for converting a corpus of natural-language text to vector
representations of words embedded into a low-dimensional space.
These techniques have been applied successfully to programs be-
fore [11, 28, 33], but different encodings of programs into word
sequences are possible, and some encodings may be more appropri-
ate than others as the input to a word-vector learner.

The high-level goals of our work can be stated as follows:

Devise a parametric encoding of programs into word sequences
that (i) can be tuned to capture different representation choices
on the spectrum from (mainly) syntactic to (mainly) semantic,
(ii) is amenable to word-vector-learning techniques, and (iii)
can be obtained from programs efficiently.

We also wish to understand the advantages and disadvantages of
our encoding method. §5–§8 summarize the experiments that we
performed to provide insight on high-level goal (ii).

We satisfy high-level goals (i) and (iii) by basing the encoding
on a lightweight form of intraprocedural symbolic execution.

• We base our technique on symbolic execution due to the
gap between syntax (e.g., tokens or abstract syntax trees
(ASTs)) and the semantics of a procedure in a program. In
particular, token-based techniques impose a heavy burden on
the embedding learner. For instance, it is difficult to encode
the difference between constructions such as a == b and
!(a != b) via a learned, low-dimensional embedding [4].

• Our method is intraprocedural so that different procedures
can be processed in parallel.

• Our method is parametric in the sense that we introduce a
level of mapping from symbolic-execution traces to the word
sequences that are input to the word-vector learner. (We call
these abstraction mappings or abstractions, although strictly
speaking they are not abstractions in the sense of abstract
interpretation [6].) Different abstraction mappings can be
used to extract different word sequences that are in different
positions on the spectrum of (mainly) syntactic to (mainly)
semantic.

1
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We have developed a highly parallelizable toolchain that is capable
of producing a parametric encoding of programs to word sequences.
For instance, we can process 311,670 procedures in the Linux kernel1
in 4 hours,2 using a 64-core workstation (4 CPUs each clocked at
2.3 GHz) running CentOS 7.4 with 252 GB of RAM.

After we present our infrastructure for generating parametric
encodings of programs as word sequences (§2), there are a number
of natural research questions that we consider.

First, we explore the utility of embeddings learned from our
toolchain:

Research Question 1: Are vectors learned from abstracted
symbolic traces encoding useful information?

Judging utility is a difficult endeavor. Natural-language embed-
dings have the advantage of being compatible with several canon-
ical benchmarks for word-similarity prediction or analogy solv-
ing [8, 13, 20, 22, 36, 37, 40]. In the domain of program understand-
ing, no such canonical benchmarks exist. Therefore, we designed a
suite of over nineteen thousand code analogies to aid in the evalua-
tion of our learned vectors.

Next, we examine the impact of different parameterizations of
our toolchain by performing an ablation study. The purpose of this
study is to answer the following question:

ResearchQuestion 2: Which abstractions produce the best
program encodings for word-vector learning?

There are several examples of learning from syntactic artifacts,
such as ASTs or tokens. The success of such techniques raises the
question of whether adding a symbolic-execution engine to the
toolchain improves the quality of our learned representations.

ResearchQuestion 3: Do abstracted symbolic traces at the
semantic end of the spectrum provide more utility as the input
to a word-vector-learning technique compared to ones at the
syntactic end of the spectrum?

Because our suite of analogies is only a proxy for utility in more
complex downstream tasks that use learned embeddings, we pose
one more question:

Research Question 4: Can we use pre-trained word-vector
embeddings on a downstream task?

The contributions of our work can be summarized as follows:
We created a toolchain for taking a program or corpus of

programs and producing intraprocedural symbolic traces. The
toolchain is based on Docker containers, is parametric, and oper-
ates in a massively parallel manner. Our symbolic-execution engine
prioritizes the amount of data generated over the precision of the
analysis: in particular, no feasibility checking is performed, and no
memory model is used during symbolic execution.
1Specifically, we used a pre-release of Linux 4.3 corresponding to com-
mit fd7cd061adcf5f7503515ba52b6a724642a839c8 in the GitHub Linux kernel
repository.
2During trace generation, we exclude only vhash_update , from crypto/vmac.c,
due to its size.

int example () {

buf = alloc (12);

if (buf != 0) {

bar(buf);

free(buf);

return 0;

} else {

return -ENOMEM;

}

}

Figure 1: An example procedure

We generated several datasets of abstracted symbolic traces
from the Linux kernel. These datasets feature different parame-
terizations (abstractions), and are stored in a format suitable for
off-the-shelf word-vector learners.

Wecreated a benchmark suite of over 19,000 API-usage analo-
gies.

We report on several experiments using these datasets:
• In §5, we achieve 93% top-1 accuracy on a suite of over 19,000
analogies.

• In §6, we perform an ablation study to assess the effects of
different abstractions on the learned vectors.

• In §7, we demonstrate how vectors learned from (mainly)
semantic abstractions can provide nearly triple the accuracy
of vectors learned from (mainly) syntactic abstractions.

• In §8, we learn a model of a specific program behavior (which
error a trace is likely to return), and apply the model in a
case study to confirm actual bugs found via traditional static
analysis.

Our toolchain, pre-trained word embeddings, and code-analogy
suite will be made available to the research community. (They
cannot be submitted as supplementary material due to their size.)

Organization. The remainder of the paper is organized as follows:
§2 provides an overview of our toolchain and applications. §3 details
the parametric aspect of our toolchain and the abstractions we
use throughout the remainder of the paper. §4 briefly describes
word-vector learning. §5–§8 address our four research questions.
§9 considers threats to the validity of our approach. §10 discusses
related work. §11 concludes.

2 OVERVIEW
Our toolchain consists of three phases: transformation, abstraction,
and learning. As input, the toolchain expects a corpus of buildable
C projects, a description of abstractions to use, and a word-vector
learner. As output, the toolchain produces an embedding of abstract
tokens to double-precision vectors with a fixed, user-supplied, di-
mension. We illustrate this process as applied to the example in
Fig. 1.
Phase I: Transformation. The first phase of the toolchain enu-
merates all paths in each source procedure. We begin by unrolling
(and truncating) each loop so that its body is executed zero or one
time, thereby making each procedure loop-free at the cost of dis-
carding many feasible traces. We then apply an intraprocedural

2
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call alloc (12);

assume alloc (12) != 0;

call bar(alloc (12));

call free(alloc (12));

return 0;

(a) Trace 1

call alloc (12);

assume alloc (12) == 0;

return -ENOMEM;

(b) Trace 2

Figure 2: Traces from the symbolic execution of the proce-
dure in Fig. 1

Called(alloc)

RetNeq(alloc , 0)

Called(bar)

Called(free)

(a) Abstracted Trace 1

Called(alloc)

RetEq(alloc , 0)

RetError(ENOMEM)

(b) Abstracted Trace 2

Figure 3: Result of abstracting the two traces in Fig. 2b

symbolic executor to each procedure. Fig. 2 shows the results of
this process as applied to the example code in Fig. 1.

Phase II: Abstraction. Given a user-defined set of abstractions,
the second phase of our toolchain leverages the information gleaned
from symbolic execution to generate abstracted traces. One key
advantage of performing some kind of abstraction is a drastic re-
duction in the number of possible tokens that appear in the traces.
Consider the transformed trace in Fig. 2b. If we want to understand
the relationship between allocators and certain error codes, then
we might abstract procedure calls as parameterized tokens of the
form Called(callee); comparisons of returned values to constants
as parameterized RetEq(callee, value) tokens; and returned error
codes as parameterized RetError(code) tokens. Fig. 3 shows the
result of applying these abstractions to the traces from Fig. 2.

Phase III: Learning. Our abstracted representation discards ir-
relevant details, flattens control flows into sequential traces, and
exposes key properties in the form of parameterized tokens that
capture domain information such as Linux error codes. These qual-
ities make abstracted traces suitable for use with a word-vector
learner. Word-vector learners place words that appear in similar
contexts close together in an embedding space. When applied to
natural language, learned embeddings can answer questions such
as “king is to queen as man is to what?” (Answer: woman.) Our
goal is to learn embeddings that can answer questions such as:

• If a lock acquired by calling spin_lock is released by call-
ing spin_unlock, then how should I release a lock acquired
by calling mutex_lock_nested? That is, Called(spin_lock) is
to Called(spin_unlock) as Called(mutex_lock_nested) is to
what? (Answer: Called(mutex_unlock).)

• Which error code is most commonly used to report allocation
failures? That is, which RetError(code) is most related to
RetEq(alloc, 0)? (Answer: RetError(ENOMEM).)

• Which procedures and checks are most related to alloc?
(Answers: Called(free), RetNeq(alloc, 0), etc.)

The remainder of the paper describes a framework of abstrac-
tions and a methodology of learning embeddings that can effec-
tively solve these problems. Along the way, we detail the challenges
that arise in applying word embeddings to abstract path-sensitive
artifacts.

3 ABSTRACTIONS
One difference between learning from programs and learning from
natural language is the size of the vocabulary in each domain. In
natural language, vocabulary size is bounded (e.g., by the words
in a dictionary, ignoring issues like misspellings). In programs, the
vocabulary is essentially unlimited: due to identifier names, there
are a huge number of distinct words that can occur in a program.
To address the issue of vocabulary size, we perform an abstraction
operation on symbolic traces, so that we work with abstracted
symbolic traces when learning word vectors from programs.

3.1 Abstracted Symbolic Traces
We now introduce the set of abstractions that we use to cre-
ate abstracted symbolic traces. Selected abstractions appear in
the conclusions of the deduction rules shown in Fig. 4. The ab-
stractions fall into a few simple categories. The Called(callee) and
AccessPathStore(path) abstractions can be thought of as “events”
that occur during a trace. Abstractions like RetEq(callee, value) and
Error serve to encode the “status” of the current trace: they pro-
vide contextual information that can modify the meaning of an
“event” observed later in the trace. Near the end of the trace, the
RetError(code), RetConst(value), and PropRet(callee) abstractions
provide information about the result returned at the end of the
trace. Taken together, these different pieces of information abstract
the trace; however, the abstracted trace is still a relatively rich digest
of the trace’s behavior.

With the abstractions described above, we found that the learned
vectors were sub-optimal. Our investigation revealed that some of
the properties we hoped would be learned required leveraging
contextual information that was outside the “window” that a word-
vector learner was capable of observing. For example, to understand
the relationship between a pair of functions like lock and unlock, a
word-vector learner must be able to cope with an arbitrary number
of words occurring between the functions of interest. Such distances
are a problem, because lengthening the history given to a word-
vector learner also increases the computational resources necessary
to learn good vectors.

Due to the impracticality of increasing the context given to a
word-vector learner, we introduced two additional abstractions:
ParamTo and ParamShare. These abstractions encode the flow of data
in the trace to make relevant contextual information available with-
out the need for arbitrarily large contexts. As shown in §6, the
abstractions that encode semantic information, such as dataflow
facts, end up adding the most utility to our corpus of abstracted
traces. This observation is in line with the results of Allamanis
et al. [3], who found that dataflow edges positively impact the
performance of a learned model on downstream tasks.

We augment the abstractions shown in Fig. 4, with the following
additional abstractions, which are similar to the ones discussed
above:

3
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call foo()

Called(foo)

call bar(foo())

ParamTo(bar, foo)

call foo(obj)
call bar(obj)

ParamShare(bar, foo)

assume foo() == 0

RetEq(foo, 0)

obj->foo.bar = baz

AccessPathStore(->foo.bar)

return -C ∧ C ∈ ERR_CODES

RetError(ERR_CODES[C]), Error
return C ∧ C < ERR_CODES

RetConst(C)

return foo()

PropRet(foo)

PropRet(PTR_ERR)

Error

Figure 4: Example derivations for selected abstractions

// 1,2 FunctionStart

lock(&obj ->lock); // 1,2 Call(lock)

foo = alloc (12); // 1,2 Call(alloc)

if (foo != 0) { // 1 RetNeq(alloc , 0)

obj ->baz = // 1 AccessPathStore(->baz)

bar(foo); // 1 ParamTo(bar , alloc)

// 1 Call(bar)

} else { // 2 RetEq(alloc , 0)

unlock( // 2 ParamShare(unlock , lock)

&obj ->lock); // 2 Call(unlock)

return -ENOMEM; // 2 RetError(ENOMEM)

// 2 Error

} // 2 FunctionEnd

unlock( // 1 ParamShare(unlock , lock)

&obj ->lock); // 1 Call(unlock)

return 0; // 1 RetConst (0)

// 1 FunctionEnd

Figure 5: Sample procedure with generated abstractions
shown as comments

• RetNeq(callee, value), RetLessThan(callee, value), . . . : vari-
ants of the RetEq(callee, value) abstraction shown in Fig. 4.

• FunctionStart and FunctionEnd: abstractions introduced at
the beginning and end of each abstracted trace.

• AccessPathSensitive(path): similar to AccessPathStore; en-
codes any complex field and array accesses that occur in
assume statements.

3.2 Encoding Abstractions as Words
We now turn to how the encoding of these abstractions as words
and sentences (to form our trace corpus) can impact the utility
of learned vectors. To aid the reader’s understanding, we use a
sample procedure and describe an end-to-end application of our
abstractions and encodings.

Fig. 5 shows a sample procedure along with its corresponding
abstractions. The number(s) before each abstraction signify which
of the two paths through the procedure the abstraction belongs to.
To encode these abstractions as words, we need to make careful
choices as to what pieces of information are worthy of being repre-
sented as words, and how this delineation affects the questions we
can answer using the learned vectors.

For instance, consider the RetNeq(alloc, 0) abstraction. There
are several simple ways to encode this information as a sequence
of words:

(1) RetNeq(alloc, 0) =⇒ alloc , $NEQ , 0

match abstraction with

| Called (x) -> x

| ParamTo (_,x) -> x

| ParamShare (_,x) -> x

| RetEq (x,c) -> x ^ "_$EQ_" ^ c

| RetNeq (x,c) -> x ^ "_$NEQ_" ^ c

(* ... *)

| PropRet (x) -> "$RET_" ^ x

| RetConst (c) -> "$RET_" ^ c

| RetError (e) -> "$RET_" ^ ERR_CODES[e]

| FunctionStart -> "$START"

| FunctionEnd -> "$END"

| Error -> "$ERR"

| AccessPathStore (p) -> "!" ^ p

| AccessPathSensitive (p) -> "?" ^ p

Figure 6: Encoding of abstractions

(2) RetNeq(alloc, 0) =⇒ alloc , $NEQ_0

(3) RetNeq(alloc, 0) =⇒ alloc_$NEQ , 0

(4) RetNeq(alloc, 0) =⇒ alloc_$NEQ_0

Each of these four encodings comes with a different trade-off.
The first encoding splits the abstraction into several fine-grained
words, which, in turn, reduces the size of the overall vocabulary.
This approach may benefit the learned vectors because smaller
vocabularies can be easier to work with. On the other hand, splitting
the information encoded in this abstraction into several words
makes some questions more difficult to ask. For example, it is much
easier to ask what is most related to alloc being not equal to zero
when we have just a single word, alloc_$NEQ_0 , to capture such
a scenario.

In our implementation, we use the fourth option. It proved diffi-
cult to ask interesting questions when the abstractions were broken
down into fine-grained words. This decision did come with the cost
of a larger vocabulary.3 Encodings for the rest of our abstractions
are shown in Fig. 6. The sentences generated by applying these
encodings to Fig. 5 are shown in Fig. 7.

4 WORD2VEC
Word2Vec is a popular method for taking words and embedding
them into a low-dimensional vector space [22]. Instead of using a

3We mitigate the increase in vocabulary size from constructions like alloc_$NEQ_0

by restricting the constants we look for. Our final implementation only looks for
comparisons to constants in the set {−2, −1, 0, 1, 2, 3, 4, 8, 16, 32, 64}.

4
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$START lock alloc alloc_$NEQ_0 !->baz

alloc bar lock unlock $RET_0 $END

(a) Trace 1

$START lock alloc alloc_$EQ_0 lock

unlock $ERR $RET_ENOMEM $END

(b) Trace 2

Figure 7: Traces for Fig. 5 generated by the encoding from
Fig. 6

one-hot encoding—where each element of a vector is associated
with exactly one word—word2vec learns a denser representation
that captures meaningful syntactic and semantic regularities, and
encodes them in the cosine distance between words.

For our experiments, we used GloVe [31] due to its favorable per-
formance characteristics. GloVe works by leveraging the intuition
that word-word co-occurrence probabilities encode some form of
meaning. A classic example is the relationship between the word
pair “ice” and “steam” and the word pair “solid” and “gas.” Gas and
steam occur in the same sentence relatively frequently, compared
to the frequency with which the words gas and ice occur in the
same sentence. Consequently, the following ratio is significantly
less than 1:

Pr(gas | ice)
Pr(gas | steam)

If, instead, we look at the frequency of sentences with both solid
and ice compared to the frequency of sentences with both solid and
steam, we find the opposite. The ratio

Pr(solid | ice)
Pr(solid | steam)

is much greater than 1. This signal is encoded into a large co-
occurrence matrix. GloVe then attempts to learn word vectors for
which the dot-product of two vectors is close to the logarithm of
their probability of co-occurrence.

5 RQ1: ARE LEARNED VECTORS USEFUL?
Research Question 1 asked whether vectors learned from abstracted
symbolic traces encode useful information. We assess utility via
three experiments over word vectors. Each of the following subsec-
tions describes and interprets one experiment in detail.

5.1 Experiment 1: Code Analogies
An interesting aspect of word vectors is their ability to express
relationships between analogous words using simple math and
cosine distance. Encoding analogies is an intriguing byproduct of a
“good” embedding and, as such, analogies have become a common
proxy for the overall quality of learned word vectors.

No standard test suite for code analogies exists, so we cre-
ated such a test suite using a combination of manual in-
spection and automated search. The test suite consists of
twenty different categories, each of which has some number
of function pairs that have been determined to be analogous.
For example, consider mutex_lock_nested/mutex_unlock and

spin_lock/spin_unlock ; these are two pairs from the “lock /
unlock” category given in Tab. 1. We can construct an analogy by
taking these two pairs and concatenating them to form the analogy
“ mutex_lock_nested is to mutex_unlock as spin_lock is to
spin_unlock .” By identifying high-level patterns of behavior, and
finding several pairs of functions that express this behavior, we
created a suite that contains 19,042 code analogies.

Tab. 1 lists our categories and the counts of available pairs, along
with a representative pair from each category. Tab. 1 also provides
accuracy metrics generated using the vectors learned from what we
will refer to as the “baseline configuration,”4 which abstracts sym-
bolic traces using all of the abstractions described in in §3. We used
a grid-search over hundreds of parameterizations to pick hyper-
parameters for our word-vector learner. For the results described
in this section, we used vectors of dimension 300, a symmetric
window size of 50, and a vocabulary-minimum threshold of 1,000
to ensure that the word-vector learner only learns embeddings for
words that occur a reasonable number of times in the corpus of
traces. We trained for 2,000 iterations to give GloVe ample time to
find good vectors.

In each category, we assume that any two pairs of functions are
sufficiently similar to be made into an analogy. More precisely, we
form a test by selecting two distinct pairs of functions (A,B) and
(C,D) from the same category, and creating the triple (A,B,C) to
give to an analogy solver that is equipped with our learned vectors.
The analogy solver returns a vector D ′, and we consider the test
passed if D ′ = D and failed otherwise. Levy and Goldberg [18]
present the following objective to use when solving analogies with
word-vectors:

D ′ = argmax
d ∈V \{A,B,C}

cos(d,B ) − cos(d,A ) + cos(d,C )

Results. The “Accuracy” column of Tab. 1 shows that overall ac-
curacy on the analogy suite is excellent. Our embeddings achieve
greater than 90% top-1 accuracy on thirteen out of the twenty cate-
gories. The learned vectors do the worst on the “Ret Check / Call”
category where the top-1 accuracy is only 60%. This category is
meant to relate the checking of the return value of a call with the call
itself. However, we often find that one function allocates memory,
while a different function checks for allocation success or failure.
For example, a wrapper function may allocate complex objects,
but leave callers to check that the allocation succeeds. Because our
vectors are derived from intraprocedural traces, it is sensible that
accuracy suffers for interprocedural behaviors.

By contrast, our vectors perform extraordinarily well on the “Ret
Error / Prop” category (100% top-1). This category represents cases
where an outer function (i) performs an inner call, (ii) detects that
it has received an error result, and (iii) returns (“propagates”) that
error result as the outer function’s own return value. Unlike for the
“Ret Check / Call” category, the nature of the “Ret Error / Prop” cate-
gory ensures that both the check and the return propagation can be
observed in intraprocedural traces, without losing any information.
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Table 1: Analogy Suite Details

Type Category Representative Pair # of Pairs Passing Tests Total Tests Accuracy

Calls 16 / 32 store16/store32 18 246 306 80.39%
Calls Add / Remove ntb_list_add/ntb_list_rm 9 72 72 100.0%
Calls Create / Destroy device_create/device_destroy 19 302 342 88.30%
Calls Enable / Disable nv_enable_irq/nv_disable_irq 62 3,577 3,782 94.58%
Calls Enter / Exit otp_enter/otp_exit 12 122 132 92.42%
Calls In / Out add_in_dtd/add_out_dtd 5 20 20 100.0%
Calls Inc / Dec cifs_in_send_inc/cifs_in_send_dec 10 88 90 97.78%
Calls Input / Output ivtv_get_input/ivtv_get_output 5 20 20 100.0%
Calls Join / Leave handle_join_req/handle_leave_req 4 8 12 66.67%
Calls Lock / Unlock mutex_lock_nested/mutex_unlock 53 2,504 2,756 90.86%
Calls On / Off b43_led_turn_on/b43_led_turn_off 19 303 342 88.60%
Calls Read / Write memory_read/memory_write 64 3,950 4,032 97.97%
Calls Set / Get set_arg/get_arg 22 404 462 87.45%
Calls Start / Stop nv_start_tx/nv_stop_tx 31 838 930 90.11%
Calls Up / Down ixgbevf_up/ixgbevf_down 24 495 552 89.67%
Complex Ret Check / Call kzalloc_$NEQ_0/kzalloc 21 252 420 60.00%
Complex Ret Error / Prop write_bbt_$LT_0/$RET_write_bbt 25 600 600 100.0%
Fields Check / Check ?->dmaops/?->dmaops->altera_dtype 50 2,424 2,450 98.94%
Fields Next / Prev !.task_list.next/!.task_list.prev 16 240 240 100.0%
Fields Test / Set ?->at_current/!->at_current 39 1,425 1,482 96.15%

Totals: 508 17,890 19,042 93.95%

ret = new(/*...*/, &priv ->bo);

if (!ret) {

ret = pin(priv ->bo, /*...*/);

if (!ret) {

ret = map(priv ->bo);

if (ret)

unpin(priv ->bo);

}

if (ret)

ref(NULL , &priv ->bo);

}

Figure 8: Excerpt from nv17_fence.c; names have been
shortened to conserve space.

5.2 Experiment 2: Simple Similarity
One of the most basic word-vector tasks is to ask for the k nearest
vectors to some chosen vector (using cosine distance). We expect
the results of such a query to return a list of relevant words from our
vocabulary. Our similarity experiments were based on two types
of queries: (i) given a word, find the closest word, and (ii) given a
word, find the five closest words.

4The baseline configuration is described in more detail in §6, where it is also called
configuration (1).

Similar pairs. We identified the single most similar word to each
word in our vocabulary V. Manual inspection reveals several in-
triguing word pairs:

• sin_mul and cos_mul

• dec_stream_header and dec_stream_footer

• rx_b_frame and tx_b_frame

• nouveau_bo_new_$EQ_0 and nouveau_bo_map 5

The last pair is of particular interest, because it expresses a com-
plex pattern of behavior that would be impossible to encode without
some abstraction of the path condition. The last pair suggests that
there is a strong relationship between the function new return-
ing 0 (which signals a successful call) and then the subsequent
performance of some kind of map operation with the map call. To
gain a deeper understanding of what the vectors are encoding, we
searched for instances of this behavior in the original source code.
We found several instances of the pattern shown in Fig. 8.

The code in Fig. 8 raise a new question: why isn’t pin more
closely related to new_$EQ_0 ? We performed additional similarity
queries to gain a deeper understanding of how the learned vectors
have encoded the relationship between new , pin , and map .

5In the following text, and in Fig. 8, we remove the nouveau_bo_ prefix to conserve
space.
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First, we checked to see how similar pin is to new_$EQ_0 . We
found that pin is the fourth-most related word to new_$EQ_0 ,
which suggests that a relationship does exist, but that the relation-
ship between new_$EQ_0 and pin is not as strong as the one
between new_$EQ_0 and map . Looking back at the code snippet
(and remembering that several more instances of the same pattern
can be found in separate files), we are left with the fact that pin

directly follows from the successful new . Therefore, intuition dic-
tates that pin should be more strongly related to new than map .
The disagreement between our intuition and the results of our
word-vector queries motivated us to investigate further.

By turning to the traces for an answer, we uncovered a more
complete picture. In 3,194 traces, new co-occurs with pin . In
3,145 traces, new co-occurs with map . If we look at traces that
do not contain a call to new , there are 11, 354 traces that have
no call to new , but still have a call to pin . In contrast, only 352
traces have no call to new , but still have a call to map . Finally,
we have a definitive answer to the encoding learned by the vectors:
it is indeed the case that new and map are more related in our
corpus of traces, because almost every time a call to map is made,
a corresponding call to new precedes it. Our intuition fooled us,
because the snippets of source code only revealed a partial picture.

Top-5 similar words and the challenge of prefix dominance.
Another similarity-based test is to take a word and find the top-k
closest words in the learned embedding space. Ideally, we’d see
words that make intuitive sense. For the purpose of evaluation, we
picked two words: affs_bread , a function in the AFS file system
that reads a block, and kzalloc , a memory allocator. For each
target word, we evaluated the top-5 most similar words for rele-
vance. In the process, we also uncovered an interesting challenge
when learning over path-sensitive artifacts, which we call prefix
dominance.

Our corpus of symbolic traces can be thought of as a corpus of
execution trees. In fact, in the implementation of our trace gen-
erator, the traces only exist at the very last moment. Instead of
storing traces, we store a tree that encodes, without unnecessary
duplication, the information gained from symbolically executing
a procedure. If we think about the dataset of traces as a dataset
of trees (each of which holds many traces that share common pre-
fixes), we begin to see that learning word vectors from traces is an
approximation of learning directly from the execution trees.

The approximation of trees by traces works, in the sense that
we can use the traces to learn meaningful vectors, but the approxi-
mation is vulnerable to learning rare behaviors that exist at the be-
ginning of a procedure whose trace-tree has many nested branches.
These rare behaviors occur only once in the original procedure text
and corresponding execution tree, but are replicated many times in
the traces. In a procedure with significant branching complexity,
a single occurrence of rare behavior can easily overwhelm any
arbitrary number of occurrences of expected behavior.

In Tab. 2, we see two words, affs_bread and kzalloc ,
and the five most similar words to each of them. Word similar-
ity has captured many expected relationships. For example, the

Table 2: Top-5 closest words to affs_bread and kzalloc

affs_bread kzalloc

affs_bread_$NEQ_0 kzalloc_$NEQ_0

affs_checksum_block kfree

AFFS_SB _volume

affs_free_block snd_emu10k1_audigy_write_op

affs_brelse ?->output_amp

fact that kzalloc is most commonly checked to be non-null
( kzalloc_$NEQ_0 ) and then also kfree d is what we would ex-
pect, given the definition of an allocator. Similarly, we can see that
affs_bread is also checked to be non-null, checksummed, freed,
released, etc. However, in addition to these expected relationships,
the last three entries for kzalloc seem out of place. These un-
expected entries are present in the top-5 answer because of prefix
dominance.

We searched our traces for places where kzalloc and the
three unexpected entries in the table co-occur. We found one func-
tion with 5,000 paths (5,000 being our “budget” for the number
of traces we are willing to generate via symbolic execution for
a single procedure), of which 4,999 have several instances of the
pattern kzalloc followed by snd_emu10k1_audigy_write_op .
This one function, with its multitude of paths, overwhelms our
dataset, and causes the word vectors to learn a spurious relationship.
Prefix dominance also explains the strong associations between
kzalloc and _volume and ?->output_amp .
On the other hand, affs_bread is relatively unaffected by pre-

fix dominance. Examining our traces for the affs file system
that contains this function, we found that no procedures had an
overwhelming number of paths. Therefore, we never see an over-
whelming number of affs_bread usage patterns that are rare at
the source level but common in our set of traces.

5.3 Experiment 3: Queries Via Word-Vector
Averaging

Word vectors have the surprising and useful ability to encode mean-
ing when averaged [16, 17]. We devised a test to see if our learned
vectors are able to leverage this ability to capture a relationship
between allocation failure and returning -ENOMEM .

To understand whether our word vectors are capable of answer-
ing such a high-level question, we evaluated their performance on
increasingly targeted queries (represented by averaged vectors).
Each query was restricted to search only for words in the subspace
of the embedding space that contains kernel error-codes. (Narrow-
ing to the subspace of error codes ensures that we are only looking
at relevant words, and not at the whole vocabulary.)

Results.We identified twenty different functions that act as allo-
cators in the Linux kernel.

First, for each such allocator, we took its word vector A, and
queried for the closest vector to A (in the subspace of error codes).
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This method found the correct error code only twice out of twenty
tests (i.e., 10% accuracy).

Second, we asked for the vector closest to an average vector
that combined the vector for the allocator A of interest and the
vector

−−−−→
$ERR for a generic error:6 (A +−−−−→$ERR)/2. This query found

the correct ENOMEM code fourteen times out of twenty (i.e., 70%
accuracy).

Third, instead of averaging the allocator’s A vector with
−−−−→
$ERR,

we tried averaging A with the vector for the special $END token
that signals the end of a trace. Seeking the error code closest to
(A +−−−−→$END)/2 found the correct result for sixteen of twenty test
cases (i.e., 80% accuracy). The fact that this method outperforms
our previous query reveals that the call to an allocator being near
the end of a trace is an even stronger signal than the $ERR token.

Finally, we mixed the meaning of the allocator, the er-
ror token, and the end-of-trace token by averaging all three:
(A +−−−−→$ERR+

−−−−→
$END)/3. The error code whose vector is closest to

this query is the correct ENOMEM code for eighteen of the twenty
tests (i.e., 90% accuracy). The steadily increasing performance indi-
cates that targeted queries encoded as average word vectors can
indeed be semantically meaningful.

The effectiveness of these queries, and the results from §5.1
and §5.2, support a positive answer to Research Question 1: learned
vectors do encode useful information about program behaviors.

6 RQ2: ABLATION STUDY
In this section, we present the results of an ablation study to isolate
the effects that different sets of abstractions have on the utility of
the learned vectors. We used the benchmark suite of 19,042 code-
analogies from §5 to evaluate eight different configurations. We
scored each configuration according to the number of analogies
correctly encoded by theword vectors learned for that configuration
(i.e., we report top-1 results).

In addition to the baseline configuration from §5.1, we parti-
tioned the abstractions into six classes7 and generated six new
embeddings, each with one of the six abstraction classes excluded.
We also used one more configuration in which stop words were
included. In natural language processing, stop words are words that
are filtered out of a processing toolchain. Sometimes these are the
most common words in a language, but any group of words can be
designated as stop words for a given application. In our context,
stop words are function names that occur often, but add little value
to the trace. Examples are __builtin_expect and automatically
generated __compiletime_assert s.

We evaluated the following eight configurations:
(1) baseline: all abstractions from §3;
(2) baseline without ParamTo and ParamShare;
(3) baseline without RetEq, RetNeq, etc.;
(4) baseline without AccessPathStore and AccessPathSensitive;
(5) baseline without PropRet, RetError, and RetConst;

6The $ERR word is added to any trace that returns either (i) the result of an ERR_PTR

call, or (ii) a constant less than zero that is also a known error code. Consequently, a
vector

−−−→
$ERR is learned for the word $ERR .

7Except for Called, which was used in all configurations.
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Figure 9: Ablation study: top-1 analogy results for eight con-
figurations (baseline (1) with up to one individual abstrac-
tion class removed). The vocabulary minimum was 0, and
the number of training iterations was 1,000.

(6) baseline without Error;
(7) baseline without FunctionStart and FunctionEnd; and
(8) baseline with stop words included.
Fig. 9 compares the accuracy of for these eight configurations.

Blue bars indicate the number of tests in the analogy suite that
passed; red indicates tests that failed; and brown indicates out-
of-vocabulary (OOV) tests. Configuration (4) had the most out-
of-vocabulary tests; in this configuration, we do not have words
like !->next and !->prev , which leaves several portions of
the analogy suite essentially unanswerable. Thus, we count out-of-
vocabulary tests as failed tests.

To create a fair playing field for evaluating all eight configu-
rations, we chose a single setting for the hyper-parameters that
were used when learning word vectors. We reduced the threshold
for how often a word must occur before it is added to the vocab-
ulary from 1,000 to 0. The latter parameter, which we refer to as
the vocabulary minimum, significantly impacts performance by
forcing the word-vector learner to deal with thousands of rarely-
seen words. To understand why we must set the vocabulary min-
imum to zero, effectively disabling it, consider the following ex-
ample trace: Called(foo), ParamShare(foo, bar), Called(bar). In
configuration (2), where we ignore ParamShare, we would encode
this trace as the sentence foo bar . In configuration (1), this same
trace is encoded as foo foo bar . The fact that some abstractions
can influence the frequency with which a word occurs in a trace cor-
pus makes any word-frequency-based filtering counterproductive
to our goal of performing a fair comparison.

We also lowered the number of training iterations from 2,000 to
1,000 to reduce the resources required to run eight separate config-
urations of our toolchain. (These changes are what is responsible
for the change in the top-1 accuracy of the baseline configuration
from 93.9% in Tab. 1 to 85.8% in Fig. 9.)

In Fig. 9, one clearly sees that configuration (2) (the one without
any dataflow-based abstractions) suffers the worst performance
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degradation. Configuration (4), which omits access-path-based ab-
stractions, has the second-worst performance hit. These results in-
dicate that dataflow information is critical to the quality of learned
vectors. This conclusion further confirms findings by Allamanis
et al. [3] regarding the importance of dataflow information when
learning from programs.

Fig. 9 also reveals that removing “state” abstractions (RetEq,
RetNeq, etc. and Error) has little effect on quality. However, these
abstractions still add useful terms to our vocabulary, and thereby
enlarge the set of potentially answerable questions. Without these
abstractions, some of the questions in §5 would be unanswerable.

These results support the following answer to Research Ques-
tion 2: dataflow-based abstractions provide the greatest benefit to
word-vector learning. These abstractions, coupled with access-path-
based abstractions, provide sufficient context to let a word-vector
learner create useful embeddings. Adding abstractions based on
path conditions (or other higher-level concepts like Error) adds
flexibility without worsening the quality of the learned vectors.
Therefore, we recommend including these abstractions, as well.

7 RQ3: SYNTACTIC VERSUS SEMANTIC
Now that we have seen the utility of the generated corpus for word-
vector learning (§5) and the interplay between the abstractions we
use (§6), we compare our recommended configuration (1) from §6
with a simpler syntactic-based approach.

We explored several options for a syntactic-based approach
against which to compare. In trying to make a fair comparison, one
difficulty that arises is the amount of data our toolchain produces to
use for the semantics-based approach. If we were to compare con-
figuration (1) against an approach based on ASTs or tokens, there
would be a large disparity between the paucity of data available
to the AST/token-based approach compared to the abundance of
data available to the word-vector learner: an AST- or token-based
approach would only have one data point per procedure, whereas
the path-sensitive artifacts gathered using configuration (1) provide
the word-vector learner with hundreds, if not thousands, of data
points per procedure.

To control for this effect and avoid such a disparity, we instead
compared configuration (1) against a configuration of our toolchain
that uses only “syntactic” abstractions—i.e., abstractions that can be
applied without any information obtained from symbolic execution.
Thus, the syntactic abstractions are:

• FunctionStart and FunctionEnd,
• AccessPathStore(path), and
• Called(callee).

The rest of our abstractions use deeper semantic information,
such as constant propagation, dataflow information, or the path-
condition for a given trace.

Using only the syntactic abstractions, we generated a corpus of
traces, and then learned word vectors from the corpus. We com-
pared the newly learned word vectors to the ones obtained with
configuration (1). Fig. 10 clearly shows that semantic abstractions
are crucial to giving the context necessary for successful learning.
Even if we assess performance using only the analogies that are
in-vocabulary for the syntactic-based approach, we find that the
syntactic-based approach achieves only about 44% accuracy, which

0% 20% 40% 60% 80% 100%

Semantic

Syntactic

85.8%

31.4%

Passed Failed OOV

Figure 10: Top-1 analogy results for syntactic versus seman-
tic abstractions. (The vocabulary minimum was 0, and the
number of training iterations was 1,000.)

is about half the accuracy of vectors learned from (mainly) semantic
abstractions.

These results support an affirmative answer to Research Ques-
tion 3: abstracted traces that make use of semantic information
obtained via symbolic execution provide more utility as the in-
put to a word-vector learner than abstracted traces that use only
syntactic information.

8 RQ4: USE IN DOWNSTREAM TASKS
Research Question 4 asks if we can utilize our pre-trained word-
vector embeddings on some downstream task. To address this ques-
tion, we gathered a dataset of failing traces (traces in which the
$ERR token occurs). We then constructed a dataset suitable for
supervised learning as follows: we took each trace from configura-
tion (2)8 and removed the last three abstract tokens, namely, $ERR ,
$RET_E* , and $END ;9 we used the $RET_E* token as the label
for the trimmed trace.

This dataset is a good starting point, but feeding it to a machine-
learning technique that accepts fixed-length inputs requires further
processing. To preprocess the data, we kept only the last 100 tokens
in each trace.We then took the trimmed traces, and used our learned
word-vector embedding to transform each sequence of words into
a sequence of vectors (of dimension 300). If, originally, a trace had
fewer than 100 tokens, we padded the trace with the zero vector.
We paired each of the trimmed and encoded traces with its label
(which we derived earlier). Lastly, we one-hot encoded the label to
complete the preprocessing of the dataset.

Using the preprocessed dataset, we trained a model to predict the
error code that each trace should return. After training a recurrent
neural network with long short-term memory (LSTM) [15] on this
dataset, for 10 epochs, it achieved 93.6% accuracy on the test set.

To gain insight into the learned model, we selected two specific
traces from the BFS file system that had been patched to fix incorrect
error codes discovered by the JUXTA tool [23]. The first trace we
examined originally returned the ENOSPC error code instead of
the correct ENOMEM code; our learned model predicts the following
three error codes given this trace as input:

• ENOMEM with 99.87% confidence

8The dataflow abstractions present in (1) were created to aid word-vector learners; for
this experiment, we use configuration (2) to exclude those abstractions.
9We exclude traces that yielded the $ERR token due to the presence of

$RET_PTR_ERR . We restrict ourselves to traces that return one of the 50-most-
common error codes. This restriction ensures we have ample training and testing
data for each category.

9
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• ENODEV with 0.05% confidence
• EINVAL with 0.04% confidence

For this same trace, our model gives the (original) incorrect code,
ENOSPC , a < 0.01% confidence score.
We applied this same technique to the second patched trace,

which originally returned ENOSPC , and was patched to return
EIO . On this trace, our model predicts:

• EINVAL with 61.82% confidence
• EIO with 18.90% confidence
• ESHUTDOWN with 7.20% confidence

For this trace, our model predicts the correct (fixed) error as the
second most likely result. To understand why, we queried our trace
corpus for traces that failed in a similar way. There were 3,813 sim-
ilar failing traces; 68% of those traces failed with the code EINVAL

and 18% failed with the code EIO . These results suggest that our
model has learned to encode the distribution of our dataset in its
responses. If we query for the probability of the incorrect code, we
again find that the learned model considers it extremely unlikely
(< 0.01%).

The ability of the learned model to predict and confirm fixes
applied to previously buggy code is a strong indicator that models
learned in this manner could be leveraged for tasks like detecting
error-code misuse. One especially nice attribute of a model such as
the one we have described is the transparency of its predictions: a
tool using a model like this as the backend could present developers
with suggested fixes, each with an associated confidence score.

These results support an affirmative answer to Research Ques-
tion 4: pre-trained word-vector embeddings are able to support
downstream tasks and provide a natural encoding of abstracted
traces into the sequences of vectors that learning models like the
LSTM expect.

Learning Directly From Abstracted Traces. To understand the
utility of not just our learned vectors, but also our corpus of ab-
stracted traces from configuration (2), we trained a simpler bag-
of-words-style model on our dataset of traces that end in an error.
To evaluate the utility of our corpus directly, we did not encode
words using a learned embedding for this trial. This model achieved
nearly the same accuracy on the task of predicting error codes,
which suggests that our corpus of abstracted traces is valuable in a
wider context; the utility of abstracted traces as inputs to learning
suggests that path-sensitive data, with some level of abstraction, is
a fruitful encoding of programs.

9 THREATS TO VALIDITY
There are several threats to the validity of our work.

We leverage a fast, but imprecise, symbolic-execution engine. It
is possible that information gained from the detection of infeasible
paths and the use of a memory model would improve the quality
of our learned vectors. In addition, it is likely that a corpus of
interprocedural traces would impact our learned vectors.

We chose to focus our attention on the Linux kernel. It is pos-
sible that learning good word-embeddings using artifacts derived

from the Linux kernel does not translate to learning good word-
embeddings for programs in general. To mitigate this risk, we maxi-
mized the amount of diversity in the ingested procedures by ingest-
ing the Linux kernel with all modular and optional code included.

Our analogies benchmark and the tests based on word-vector
averaging are only proxies for meaning, and, as such, only serve as
an indirect indicator of the quality of the learned word vectors. In
addition, we created these benchmarks ourselves, and thus there
is a risk that we introduced bias into our experiments. Unfortu-
nately, we do not have benchmarks as extensive as those created
throughout the years in the NLP community. Similar to Mikolov
et al. [21], we hope that our introduction of a suitable benchmark
will facilitate comparisons between different learned embeddings
in the future.

10 RELATEDWORK
Recently, several techniques have leveraged learned embeddings for
artifacts generated from programs. Nguyen et al. [27, 28] leverage
word embeddings (learned from ASTs) in two domains to facilitate
translation from Java to C#. Pradel and Sen [33] use embeddings
(learned from custom tree-based contexts built from ASTs) to boot-
strap anomaly detection against a corpus of JavaScript programs.
Gu et al. [11] leverage an encoder/decoder architecture to embed
whole sequences in their DeepAPI tool for API recommendation.
API2API by Ye et al. [39] also leverages word embeddings, but it
learns the embeddings from API-related natural-language docu-
ments instead of an artifact derived directly from source code.

Venturing into general program embeddings, there are several re-
cent techniques that approach the problem of embedding programs
(or, more generally, symbolic-expressions/trees) in unique ways. Us-
ing input/output pairs as the input data for learning, Piech et al. [32]
and Parisotto et al. [29] learn to embed whole programs. Allamanis
et al. [3] learn to embed whole programs via Gated Graph Recurrent
Neural Networks (GG-RNNs) [19]. Allamanis et al. [4] approach
the more foundational problem of finding continuous representa-
tions of symbolic expressions. Mou et al. [24] introduce tree-based
convolutional neural networks (TBCNNs), another model for em-
bedding programs. Peng et al. [30] provide an AST-based encoding
of programs with the goal of facilitating deep-learning methods. Al-
lamanis et al. [2] give a comprehensive survey of these techniques,
and many other applications of machine learning to programs.

We are not aware of any work that attempts to embed traces
generated from symbolic execution. On the contrary, Fowkes and
Sutton [9] warn of possible difficulties learning from path-sensitive
artifacts. We believe that our success in using symbolic traces as
the input to a learner is due to the addition of path-condition and
dataflow abstractions—the extra information helps to ensure that a
complete picture is seen, even in a path-sensitive setting.

In the broader context of applying statistical NLP techniques
to programs, there has been a large body of work using language
models to understand programs [1, 5, 14, 26, 35]; to find misuses [25,
38]; and to synthesize expressions and code snippets [12, 34].

11 CONCLUSION
The expanding interest in treating programs as data to be fed to
general-purpose learning algorithms has created a need for meth-
ods to efficiently extract, canonicalize, and embed artifacts derived

10
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from programs. In this paper, we described a toolchain for effi-
ciently extracting program artifacts; a parameterized framework of
abstractions for canonicalizing these artifacts; and an encoding of
these parameterized embeddings in a format that can be used by
off-the-shelf word-vector learners.

Our work also provides a new benchmark to probe the quality of
word-vectors learned from programs. Our ablation study used the
benchmark to provide insight about which abstractions contributed
the most to our learned word vectors. We also provided evidence
that (mostly) syntactic abstractions are ill-suited as the input to
learning techniques. Lastly, we used these tools and datasets to learn
a model of a specific program behavior (answering the question,
“Which error is a trace likely to return?”), and applied the model
in a case study to confirm actual bugs found via traditional static
analysis.
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