
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Code Vectors: Understanding Programs Through
Embedded Abstracted Symbolic Traces
Jordan Henkel

Univ. of Wisconsin–Madison, USA
jjhenkel@cs.wisc.edu

Shuvendu Lahiri
Microsoft Research, USA

Shuvendu.Lahiri@microsoft.com

Ben Liblit
Univ. of Wisconsin–Madison, USA

liblit@cs.wisc.edu

Thomas Reps
Univ. of Wisconsin–Madison and GrammaTech, Inc., USA

reps@cs.wisc.edu

ABSTRACT
With the rise of machine learning, there is a great deal of interest in
treating programs as data to be fed to learning algorithms. However,
programs do not start off in a form that is immediately amenable
to most off-the-shelf learning techniques. Instead, it is necessary to
transform the program to a suitable representation before a learning
technique can be applied.

In this paper, we use abstractions of traces obtained from sym-
bolic execution of a program as a representation for learning word
embeddings. We trained a variety of word embeddings under hun-
dreds of parameterizations, and evaluated each learned embedding
on a suite of different tasks. In our evaluation, we obtain 93% top-1
accuracy on a benchmark consisting of over 19,000 API-usage analo-
gies extracted from the Linux kernel. In addition, we show that
embeddings learned from (mainly) semantic abstractions provide
nearly triple the accuracy of those learned from (mainly) syntactic
abstractions.

ACM Reference Format:
Jordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps. 2018. Code
Vectors: Understanding Programs Through Embedded Abstracted Sym-
bolic Traces. In Proceedings of The 26th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE 2018). ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Computer science has a long history of considering programs as
data objects [7, 10]. With the rise of machine learning, there has
been renewed interest in treating programs as data to be fed to
learning algorithms [2]. However, programs have special charac-
teristics, including several layers of structure, such as a program’s
context-free syntactic structure, non-context-free name and type
constraints, and the program’s semantics. Consequently, programs
do not start off in a form that is immediately amenable to most

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United States
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

off-the-shelf learning techniques. Instead, it is necessary to trans-
form the program to a suitable representation before a learning
technique can be applied.

This paper contributes to the study of such representations in the
context of word embeddings. Word embeddings are a well-studied
method for converting a corpus of natural-language text to vector
representations of words embedded into a low-dimensional space.
These techniques have been applied successfully to programs be-
fore [11, 28, 33], but different encodings of programs into word
sequences are possible, and some encodings may be more appropri-
ate than others as the input to a word-vector learner.

The high-level goals of our work can be stated as follows:

Devise a parametric encoding of programs into word sequences
that (i) can be tuned to capture different representation choices
on the spectrum from (mainly) syntactic to (mainly) semantic,
(ii) is amenable to word-vector-learning techniques, and (iii)
can be obtained from programs efficiently.

We also wish to understand the advantages and disadvantages of
our encoding method. §5–§8 summarize the experiments that we
performed to provide insight on high-level goal (ii).

We satisfy high-level goals (i) and (iii) by basing the encoding
on a lightweight form of intraprocedural symbolic execution.

• We base our technique on symbolic execution due to the
gap between syntax (e.g., tokens or abstract syntax trees
(ASTs)) and the semantics of a procedure in a program. In
particular, token-based techniques impose a heavy burden on
the embedding learner. For instance, it is difficult to encode
the difference between constructions such as a == b and
!(a != b) via a learned, low-dimensional embedding [4].

• Our method is intraprocedural so that different procedures
can be processed in parallel.

• Our method is parametric in the sense that we introduce a
level of mapping from symbolic-execution traces to the word
sequences that are input to the word-vector learner. (We call
these abstraction mappings or abstractions, although strictly
speaking they are not abstractions in the sense of abstract
interpretation [6].) Different abstraction mappings can be
used to extract different word sequences that are in different
positions on the spectrum of (mainly) syntactic to (mainly)
semantic.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United StatesJordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

We have developed a highly parallelizable toolchain that is capable
of producing a parametric encoding of programs to word sequences.
For instance, we can process 311,670 procedures in the Linux kernel1
in 4 hours,2 using a 64-core workstation (4 CPUs each clocked at
2.3 GHz) running CentOS 7.4 with 252 GB of RAM.

After we present our infrastructure for generating parametric
encodings of programs as word sequences (§2), there are a number
of natural research questions that we consider.

First, we explore the utility of embeddings learned from our
toolchain:

Research Question 1: Are vectors learned from abstracted
symbolic traces encoding useful information?

Judging utility is a difficult endeavor. Natural-language embed-
dings have the advantage of being compatible with several canon-
ical benchmarks for word-similarity prediction or analogy solv-
ing [8, 13, 20, 22, 36, 37, 40]. In the domain of program understand-
ing, no such canonical benchmarks exist. Therefore, we designed a
suite of over nineteen thousand code analogies to aid in the evalua-
tion of our learned vectors.

Next, we examine the impact of different parameterizations of
our toolchain by performing an ablation study. The purpose of this
study is to answer the following question:

ResearchQuestion 2: Which abstractions produce the best
program encodings for word-vector learning?

There are several examples of learning from syntactic artifacts,
such as ASTs or tokens. The success of such techniques raises the
question of whether adding a symbolic-execution engine to the
toolchain improves the quality of our learned representations.

ResearchQuestion 3: Do abstracted symbolic traces at the
semantic end of the spectrum provide more utility as the input
to a word-vector-learning technique compared to ones at the
syntactic end of the spectrum?

Because our suite of analogies is only a proxy for utility in more
complex downstream tasks that use learned embeddings, we pose
one more question:

Research Question 4: Can we use pre-trained word-vector
embeddings on a downstream task?

The contributions of our work can be summarized as follows:
We created a toolchain for taking a program or corpus of

programs and producing intraprocedural symbolic traces. The
toolchain is based on Docker containers, is parametric, and oper-
ates in a massively parallel manner. Our symbolic-execution engine
prioritizes the amount of data generated over the precision of the
analysis: in particular, no feasibility checking is performed, and no
memory model is used during symbolic execution.
1Specifically, we used a pre-release of Linux 4.3 corresponding to com-
mit fd7cd061adcf5f7503515ba52b6a724642a839c8 in the GitHub Linux kernel
repository.
2During trace generation, we exclude only vhash_update , from crypto/vmac.c,
due to its size.

int example () {

buf = alloc (12);

if (buf != 0) {

bar(buf);

free(buf);

return 0;

} else {

return -ENOMEM;

}

}

Figure 1: An example procedure

We generated several datasets of abstracted symbolic traces
from the Linux kernel. These datasets feature different parame-
terizations (abstractions), and are stored in a format suitable for
off-the-shelf word-vector learners.

Wecreated a benchmark suite of over 19,000 API-usage analo-
gies.

We report on several experiments using these datasets:
• In §5, we achieve 93% top-1 accuracy on a suite of over 19,000
analogies.

• In §6, we perform an ablation study to assess the effects of
different abstractions on the learned vectors.

• In §7, we demonstrate how vectors learned from (mainly)
semantic abstractions can provide nearly triple the accuracy
of vectors learned from (mainly) syntactic abstractions.

• In §8, we learn a model of a specific program behavior (which
error a trace is likely to return), and apply the model in a
case study to confirm actual bugs found via traditional static
analysis.

Our toolchain, pre-trained word embeddings, and code-analogy
suite will be made available to the research community. (They
cannot be submitted as supplementary material due to their size.)

Organization. The remainder of the paper is organized as follows:
§2 provides an overview of our toolchain and applications. §3 details
the parametric aspect of our toolchain and the abstractions we
use throughout the remainder of the paper. §4 briefly describes
word-vector learning. §5–§8 address our four research questions.
§9 considers threats to the validity of our approach. §10 discusses
related work. §11 concludes.

2 OVERVIEW
Our toolchain consists of three phases: transformation, abstraction,
and learning. As input, the toolchain expects a corpus of buildable
C projects, a description of abstractions to use, and a word-vector
learner. As output, the toolchain produces an embedding of abstract
tokens to double-precision vectors with a fixed, user-supplied, di-
mension. We illustrate this process as applied to the example in
Fig. 1.
Phase I: Transformation. The first phase of the toolchain enu-
merates all paths in each source procedure. We begin by unrolling
(and truncating) each loop so that its body is executed zero or one
time, thereby making each procedure loop-free at the cost of dis-
carding many feasible traces. We then apply an intraprocedural

2

https://github.com/torvalds/linux/tree/fd7cd061adcf5f7503515ba52b6a724642a839c8

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Code Vectors: Understanding Programs Through EASTs ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United States

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

call alloc (12);

assume alloc (12) != 0;

call bar(alloc (12));

call free(alloc (12));

return 0;

(a) Trace 1

call alloc (12);

assume alloc (12) == 0;

return -ENOMEM;

(b) Trace 2

Figure 2: Traces from the symbolic execution of the proce-
dure in Fig. 1

Called(alloc)

RetNeq(alloc , 0)

Called(bar)

Called(free)

(a) Abstracted Trace 1

Called(alloc)

RetEq(alloc , 0)

RetError(ENOMEM)

(b) Abstracted Trace 2

Figure 3: Result of abstracting the two traces in Fig. 2b

symbolic executor to each procedure. Fig. 2 shows the results of
this process as applied to the example code in Fig. 1.

Phase II: Abstraction. Given a user-defined set of abstractions,
the second phase of our toolchain leverages the information gleaned
from symbolic execution to generate abstracted traces. One key
advantage of performing some kind of abstraction is a drastic re-
duction in the number of possible tokens that appear in the traces.
Consider the transformed trace in Fig. 2b. If we want to understand
the relationship between allocators and certain error codes, then
we might abstract procedure calls as parameterized tokens of the
form Called(callee); comparisons of returned values to constants
as parameterized RetEq(callee, value) tokens; and returned error
codes as parameterized RetError(code) tokens. Fig. 3 shows the
result of applying these abstractions to the traces from Fig. 2.

Phase III: Learning. Our abstracted representation discards ir-
relevant details, flattens control flows into sequential traces, and
exposes key properties in the form of parameterized tokens that
capture domain information such as Linux error codes. These qual-
ities make abstracted traces suitable for use with a word-vector
learner. Word-vector learners place words that appear in similar
contexts close together in an embedding space. When applied to
natural language, learned embeddings can answer questions such
as “king is to queen as man is to what?” (Answer: woman.) Our
goal is to learn embeddings that can answer questions such as:

• If a lock acquired by calling spin_lock is released by call-
ing spin_unlock, then how should I release a lock acquired
by calling mutex_lock_nested? That is, Called(spin_lock) is
to Called(spin_unlock) as Called(mutex_lock_nested) is to
what? (Answer: Called(mutex_unlock).)

• Which error code is most commonly used to report allocation
failures? That is, which RetError(code) is most related to
RetEq(alloc, 0)? (Answer: RetError(ENOMEM).)

• Which procedures and checks are most related to alloc?
(Answers: Called(free), RetNeq(alloc, 0), etc.)

The remainder of the paper describes a framework of abstrac-
tions and a methodology of learning embeddings that can effec-
tively solve these problems. Along the way, we detail the challenges
that arise in applying word embeddings to abstract path-sensitive
artifacts.

3 ABSTRACTIONS
One difference between learning from programs and learning from
natural language is the size of the vocabulary in each domain. In
natural language, vocabulary size is bounded (e.g., by the words
in a dictionary, ignoring issues like misspellings). In programs, the
vocabulary is essentially unlimited: due to identifier names, there
are a huge number of distinct words that can occur in a program.
To address the issue of vocabulary size, we perform an abstraction
operation on symbolic traces, so that we work with abstracted
symbolic traces when learning word vectors from programs.

3.1 Abstracted Symbolic Traces
We now introduce the set of abstractions that we use to cre-
ate abstracted symbolic traces. Selected abstractions appear in
the conclusions of the deduction rules shown in Fig. 4. The ab-
stractions fall into a few simple categories. The Called(callee) and
AccessPathStore(path) abstractions can be thought of as “events”
that occur during a trace. Abstractions like RetEq(callee, value) and
Error serve to encode the “status” of the current trace: they pro-
vide contextual information that can modify the meaning of an
“event” observed later in the trace. Near the end of the trace, the
RetError(code), RetConst(value), and PropRet(callee) abstractions
provide information about the result returned at the end of the
trace. Taken together, these different pieces of information abstract
the trace; however, the abstracted trace is still a relatively rich digest
of the trace’s behavior.

With the abstractions described above, we found that the learned
vectors were sub-optimal. Our investigation revealed that some of
the properties we hoped would be learned required leveraging
contextual information that was outside the “window” that a word-
vector learner was capable of observing. For example, to understand
the relationship between a pair of functions like lock and unlock, a
word-vector learner must be able to cope with an arbitrary number
of words occurring between the functions of interest. Such distances
are a problem, because lengthening the history given to a word-
vector learner also increases the computational resources necessary
to learn good vectors.

Due to the impracticality of increasing the context given to a
word-vector learner, we introduced two additional abstractions:
ParamTo and ParamShare. These abstractions encode the flow of data
in the trace to make relevant contextual information available with-
out the need for arbitrarily large contexts. As shown in §6, the
abstractions that encode semantic information, such as dataflow
facts, end up adding the most utility to our corpus of abstracted
traces. This observation is in line with the results of Allamanis
et al. [3], who found that dataflow edges positively impact the
performance of a learned model on downstream tasks.

We augment the abstractions shown in Fig. 4, with the following
additional abstractions, which are similar to the ones discussed
above:

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United StatesJordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

call foo()

Called(foo)

call bar(foo())

ParamTo(bar, foo)

call foo(obj)
call bar(obj)

ParamShare(bar, foo)

assume foo() == 0

RetEq(foo, 0)

obj->foo.bar = baz

AccessPathStore(->foo.bar)

return -C ∧ C ∈ ERR_CODES

RetError(ERR_CODES[C]), Error
return C ∧ C < ERR_CODES

RetConst(C)

return foo()

PropRet(foo)

PropRet(PTR_ERR)

Error

Figure 4: Example derivations for selected abstractions

// 1,2 FunctionStart

lock(&obj ->lock); // 1,2 Call(lock)

foo = alloc (12); // 1,2 Call(alloc)

if (foo != 0) { // 1 RetNeq(alloc , 0)

obj ->baz = // 1 AccessPathStore(->baz)

bar(foo); // 1 ParamTo(bar , alloc)

// 1 Call(bar)

} else { // 2 RetEq(alloc , 0)

unlock(// 2 ParamShare(unlock , lock)

&obj ->lock); // 2 Call(unlock)

return -ENOMEM; // 2 RetError(ENOMEM)

// 2 Error

} // 2 FunctionEnd

unlock(// 1 ParamShare(unlock , lock)

&obj ->lock); // 1 Call(unlock)

return 0; // 1 RetConst (0)

// 1 FunctionEnd

Figure 5: Sample procedure with generated abstractions
shown as comments

• RetNeq(callee, value), RetLessThan(callee, value), . . . : vari-
ants of the RetEq(callee, value) abstraction shown in Fig. 4.

• FunctionStart and FunctionEnd: abstractions introduced at
the beginning and end of each abstracted trace.

• AccessPathSensitive(path): similar to AccessPathStore; en-
codes any complex field and array accesses that occur in
assume statements.

3.2 Encoding Abstractions as Words
We now turn to how the encoding of these abstractions as words
and sentences (to form our trace corpus) can impact the utility
of learned vectors. To aid the reader’s understanding, we use a
sample procedure and describe an end-to-end application of our
abstractions and encodings.

Fig. 5 shows a sample procedure along with its corresponding
abstractions. The number(s) before each abstraction signify which
of the two paths through the procedure the abstraction belongs to.
To encode these abstractions as words, we need to make careful
choices as to what pieces of information are worthy of being repre-
sented as words, and how this delineation affects the questions we
can answer using the learned vectors.

For instance, consider the RetNeq(alloc, 0) abstraction. There
are several simple ways to encode this information as a sequence
of words:

(1) RetNeq(alloc, 0) =⇒ alloc , $NEQ , 0

match abstraction with

| Called (x) -> x

| ParamTo (_,x) -> x

| ParamShare (_,x) -> x

| RetEq (x,c) -> x ^ "_$EQ_" ^ c

| RetNeq (x,c) -> x ^ "_$NEQ_" ^ c

(* ... *)

| PropRet (x) -> "$RET_" ^ x

| RetConst (c) -> "$RET_" ^ c

| RetError (e) -> "$RET_" ^ ERR_CODES[e]

| FunctionStart -> "$START"

| FunctionEnd -> "$END"

| Error -> "$ERR"

| AccessPathStore (p) -> "!" ^ p

| AccessPathSensitive (p) -> "?" ^ p

Figure 6: Encoding of abstractions

(2) RetNeq(alloc, 0) =⇒ alloc , $NEQ_0

(3) RetNeq(alloc, 0) =⇒ alloc_$NEQ , 0

(4) RetNeq(alloc, 0) =⇒ alloc_$NEQ_0

Each of these four encodings comes with a different trade-off.
The first encoding splits the abstraction into several fine-grained
words, which, in turn, reduces the size of the overall vocabulary.
This approach may benefit the learned vectors because smaller
vocabularies can be easier to work with. On the other hand, splitting
the information encoded in this abstraction into several words
makes some questions more difficult to ask. For example, it is much
easier to ask what is most related to alloc being not equal to zero
when we have just a single word, alloc_$NEQ_0 , to capture such
a scenario.

In our implementation, we use the fourth option. It proved diffi-
cult to ask interesting questions when the abstractions were broken
down into fine-grained words. This decision did come with the cost
of a larger vocabulary.3 Encodings for the rest of our abstractions
are shown in Fig. 6. The sentences generated by applying these
encodings to Fig. 5 are shown in Fig. 7.

4 WORD2VEC
Word2Vec is a popular method for taking words and embedding
them into a low-dimensional vector space [22]. Instead of using a

3We mitigate the increase in vocabulary size from constructions like alloc_$NEQ_0

by restricting the constants we look for. Our final implementation only looks for
comparisons to constants in the set {−2, −1, 0, 1, 2, 3, 4, 8, 16, 32, 64}.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Code Vectors: Understanding Programs Through EASTs ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United States

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

$START lock alloc alloc_$NEQ_0 !->baz

alloc bar lock unlock $RET_0 $END

(a) Trace 1

$START lock alloc alloc_$EQ_0 lock

unlock $ERR $RET_ENOMEM $END

(b) Trace 2

Figure 7: Traces for Fig. 5 generated by the encoding from
Fig. 6

one-hot encoding—where each element of a vector is associated
with exactly one word—word2vec learns a denser representation
that captures meaningful syntactic and semantic regularities, and
encodes them in the cosine distance between words.

For our experiments, we used GloVe [31] due to its favorable per-
formance characteristics. GloVe works by leveraging the intuition
that word-word co-occurrence probabilities encode some form of
meaning. A classic example is the relationship between the word
pair “ice” and “steam” and the word pair “solid” and “gas.” Gas and
steam occur in the same sentence relatively frequently, compared
to the frequency with which the words gas and ice occur in the
same sentence. Consequently, the following ratio is significantly
less than 1:

Pr(gas | ice)
Pr(gas | steam)

If, instead, we look at the frequency of sentences with both solid
and ice compared to the frequency of sentences with both solid and
steam, we find the opposite. The ratio

Pr(solid | ice)
Pr(solid | steam)

is much greater than 1. This signal is encoded into a large co-
occurrence matrix. GloVe then attempts to learn word vectors for
which the dot-product of two vectors is close to the logarithm of
their probability of co-occurrence.

5 RQ1: ARE LEARNED VECTORS USEFUL?
Research Question 1 asked whether vectors learned from abstracted
symbolic traces encode useful information. We assess utility via
three experiments over word vectors. Each of the following subsec-
tions describes and interprets one experiment in detail.

5.1 Experiment 1: Code Analogies
An interesting aspect of word vectors is their ability to express
relationships between analogous words using simple math and
cosine distance. Encoding analogies is an intriguing byproduct of a
“good” embedding and, as such, analogies have become a common
proxy for the overall quality of learned word vectors.

No standard test suite for code analogies exists, so we cre-
ated such a test suite using a combination of manual in-
spection and automated search. The test suite consists of
twenty different categories, each of which has some number
of function pairs that have been determined to be analogous.
For example, consider mutex_lock_nested/mutex_unlock and

spin_lock/spin_unlock ; these are two pairs from the “lock /
unlock” category given in Tab. 1. We can construct an analogy by
taking these two pairs and concatenating them to form the analogy
“ mutex_lock_nested is to mutex_unlock as spin_lock is to
spin_unlock .” By identifying high-level patterns of behavior, and
finding several pairs of functions that express this behavior, we
created a suite that contains 19,042 code analogies.

Tab. 1 lists our categories and the counts of available pairs, along
with a representative pair from each category. Tab. 1 also provides
accuracy metrics generated using the vectors learned from what we
will refer to as the “baseline configuration,”4 which abstracts sym-
bolic traces using all of the abstractions described in in §3. We used
a grid-search over hundreds of parameterizations to pick hyper-
parameters for our word-vector learner. For the results described
in this section, we used vectors of dimension 300, a symmetric
window size of 50, and a vocabulary-minimum threshold of 1,000
to ensure that the word-vector learner only learns embeddings for
words that occur a reasonable number of times in the corpus of
traces. We trained for 2,000 iterations to give GloVe ample time to
find good vectors.

In each category, we assume that any two pairs of functions are
sufficiently similar to be made into an analogy. More precisely, we
form a test by selecting two distinct pairs of functions (A,B) and
(C,D) from the same category, and creating the triple (A,B,C) to
give to an analogy solver that is equipped with our learned vectors.
The analogy solver returns a vector D ′, and we consider the test
passed if D ′ = D and failed otherwise. Levy and Goldberg [18]
present the following objective to use when solving analogies with
word-vectors:

D ′ = argmax
d ∈V \{A,B,C}

cos(d,B) − cos(d,A) + cos(d,C)

Results. The “Accuracy” column of Tab. 1 shows that overall ac-
curacy on the analogy suite is excellent. Our embeddings achieve
greater than 90% top-1 accuracy on thirteen out of the twenty cate-
gories. The learned vectors do the worst on the “Ret Check / Call”
category where the top-1 accuracy is only 60%. This category is
meant to relate the checking of the return value of a call with the call
itself. However, we often find that one function allocates memory,
while a different function checks for allocation success or failure.
For example, a wrapper function may allocate complex objects,
but leave callers to check that the allocation succeeds. Because our
vectors are derived from intraprocedural traces, it is sensible that
accuracy suffers for interprocedural behaviors.

By contrast, our vectors perform extraordinarily well on the “Ret
Error / Prop” category (100% top-1). This category represents cases
where an outer function (i) performs an inner call, (ii) detects that
it has received an error result, and (iii) returns (“propagates”) that
error result as the outer function’s own return value. Unlike for the
“Ret Check / Call” category, the nature of the “Ret Error / Prop” cate-
gory ensures that both the check and the return propagation can be
observed in intraprocedural traces, without losing any information.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United StatesJordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Analogy Suite Details

Type Category Representative Pair # of Pairs Passing Tests Total Tests Accuracy

Calls 16 / 32 store16/store32 18 246 306 80.39%
Calls Add / Remove ntb_list_add/ntb_list_rm 9 72 72 100.0%
Calls Create / Destroy device_create/device_destroy 19 302 342 88.30%
Calls Enable / Disable nv_enable_irq/nv_disable_irq 62 3,577 3,782 94.58%
Calls Enter / Exit otp_enter/otp_exit 12 122 132 92.42%
Calls In / Out add_in_dtd/add_out_dtd 5 20 20 100.0%
Calls Inc / Dec cifs_in_send_inc/cifs_in_send_dec 10 88 90 97.78%
Calls Input / Output ivtv_get_input/ivtv_get_output 5 20 20 100.0%
Calls Join / Leave handle_join_req/handle_leave_req 4 8 12 66.67%
Calls Lock / Unlock mutex_lock_nested/mutex_unlock 53 2,504 2,756 90.86%
Calls On / Off b43_led_turn_on/b43_led_turn_off 19 303 342 88.60%
Calls Read / Write memory_read/memory_write 64 3,950 4,032 97.97%
Calls Set / Get set_arg/get_arg 22 404 462 87.45%
Calls Start / Stop nv_start_tx/nv_stop_tx 31 838 930 90.11%
Calls Up / Down ixgbevf_up/ixgbevf_down 24 495 552 89.67%
Complex Ret Check / Call kzalloc_$NEQ_0/kzalloc 21 252 420 60.00%
Complex Ret Error / Prop write_bbt_$LT_0/$RET_write_bbt 25 600 600 100.0%
Fields Check / Check ?->dmaops/?->dmaops->altera_dtype 50 2,424 2,450 98.94%
Fields Next / Prev !.task_list.next/!.task_list.prev 16 240 240 100.0%
Fields Test / Set ?->at_current/!->at_current 39 1,425 1,482 96.15%

Totals: 508 17,890 19,042 93.95%

ret = new(/*...*/, &priv ->bo);

if (!ret) {

ret = pin(priv ->bo, /*...*/);

if (!ret) {

ret = map(priv ->bo);

if (ret)

unpin(priv ->bo);

}

if (ret)

ref(NULL , &priv ->bo);

}

Figure 8: Excerpt from nv17_fence.c; names have been
shortened to conserve space.

5.2 Experiment 2: Simple Similarity
One of the most basic word-vector tasks is to ask for the k nearest
vectors to some chosen vector (using cosine distance). We expect
the results of such a query to return a list of relevant words from our
vocabulary. Our similarity experiments were based on two types
of queries: (i) given a word, find the closest word, and (ii) given a
word, find the five closest words.

4The baseline configuration is described in more detail in §6, where it is also called
configuration (1).

Similar pairs. We identified the single most similar word to each
word in our vocabulary V. Manual inspection reveals several in-
triguing word pairs:

• sin_mul and cos_mul

• dec_stream_header and dec_stream_footer

• rx_b_frame and tx_b_frame

• nouveau_bo_new_$EQ_0 and nouveau_bo_map 5

The last pair is of particular interest, because it expresses a com-
plex pattern of behavior that would be impossible to encode without
some abstraction of the path condition. The last pair suggests that
there is a strong relationship between the function new return-
ing 0 (which signals a successful call) and then the subsequent
performance of some kind of map operation with the map call. To
gain a deeper understanding of what the vectors are encoding, we
searched for instances of this behavior in the original source code.
We found several instances of the pattern shown in Fig. 8.

The code in Fig. 8 raise a new question: why isn’t pin more
closely related to new_$EQ_0 ? We performed additional similarity
queries to gain a deeper understanding of how the learned vectors
have encoded the relationship between new , pin , and map .

5In the following text, and in Fig. 8, we remove the nouveau_bo_ prefix to conserve
space.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Code Vectors: Understanding Programs Through EASTs ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United States

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

First, we checked to see how similar pin is to new_$EQ_0 . We
found that pin is the fourth-most related word to new_$EQ_0 ,
which suggests that a relationship does exist, but that the relation-
ship between new_$EQ_0 and pin is not as strong as the one
between new_$EQ_0 and map . Looking back at the code snippet
(and remembering that several more instances of the same pattern
can be found in separate files), we are left with the fact that pin

directly follows from the successful new . Therefore, intuition dic-
tates that pin should be more strongly related to new than map .
The disagreement between our intuition and the results of our
word-vector queries motivated us to investigate further.

By turning to the traces for an answer, we uncovered a more
complete picture. In 3,194 traces, new co-occurs with pin . In
3,145 traces, new co-occurs with map . If we look at traces that
do not contain a call to new , there are 11, 354 traces that have
no call to new , but still have a call to pin . In contrast, only 352
traces have no call to new , but still have a call to map . Finally,
we have a definitive answer to the encoding learned by the vectors:
it is indeed the case that new and map are more related in our
corpus of traces, because almost every time a call to map is made,
a corresponding call to new precedes it. Our intuition fooled us,
because the snippets of source code only revealed a partial picture.

Top-5 similar words and the challenge of prefix dominance.
Another similarity-based test is to take a word and find the top-k
closest words in the learned embedding space. Ideally, we’d see
words that make intuitive sense. For the purpose of evaluation, we
picked two words: affs_bread , a function in the AFS file system
that reads a block, and kzalloc , a memory allocator. For each
target word, we evaluated the top-5 most similar words for rele-
vance. In the process, we also uncovered an interesting challenge
when learning over path-sensitive artifacts, which we call prefix
dominance.

Our corpus of symbolic traces can be thought of as a corpus of
execution trees. In fact, in the implementation of our trace gen-
erator, the traces only exist at the very last moment. Instead of
storing traces, we store a tree that encodes, without unnecessary
duplication, the information gained from symbolically executing
a procedure. If we think about the dataset of traces as a dataset
of trees (each of which holds many traces that share common pre-
fixes), we begin to see that learning word vectors from traces is an
approximation of learning directly from the execution trees.

The approximation of trees by traces works, in the sense that
we can use the traces to learn meaningful vectors, but the approxi-
mation is vulnerable to learning rare behaviors that exist at the be-
ginning of a procedure whose trace-tree has many nested branches.
These rare behaviors occur only once in the original procedure text
and corresponding execution tree, but are replicated many times in
the traces. In a procedure with significant branching complexity,
a single occurrence of rare behavior can easily overwhelm any
arbitrary number of occurrences of expected behavior.

In Tab. 2, we see two words, affs_bread and kzalloc ,
and the five most similar words to each of them. Word similar-
ity has captured many expected relationships. For example, the

Table 2: Top-5 closest words to affs_bread and kzalloc

affs_bread kzalloc

affs_bread_$NEQ_0 kzalloc_$NEQ_0

affs_checksum_block kfree

AFFS_SB _volume

affs_free_block snd_emu10k1_audigy_write_op

affs_brelse ?->output_amp

fact that kzalloc is most commonly checked to be non-null
(kzalloc_$NEQ_0) and then also kfree d is what we would ex-
pect, given the definition of an allocator. Similarly, we can see that
affs_bread is also checked to be non-null, checksummed, freed,
released, etc. However, in addition to these expected relationships,
the last three entries for kzalloc seem out of place. These un-
expected entries are present in the top-5 answer because of prefix
dominance.

We searched our traces for places where kzalloc and the
three unexpected entries in the table co-occur. We found one func-
tion with 5,000 paths (5,000 being our “budget” for the number
of traces we are willing to generate via symbolic execution for
a single procedure), of which 4,999 have several instances of the
pattern kzalloc followed by snd_emu10k1_audigy_write_op .
This one function, with its multitude of paths, overwhelms our
dataset, and causes the word vectors to learn a spurious relationship.
Prefix dominance also explains the strong associations between
kzalloc and _volume and ?->output_amp .
On the other hand, affs_bread is relatively unaffected by pre-

fix dominance. Examining our traces for the affs file system
that contains this function, we found that no procedures had an
overwhelming number of paths. Therefore, we never see an over-
whelming number of affs_bread usage patterns that are rare at
the source level but common in our set of traces.

5.3 Experiment 3: Queries Via Word-Vector
Averaging

Word vectors have the surprising and useful ability to encode mean-
ing when averaged [16, 17]. We devised a test to see if our learned
vectors are able to leverage this ability to capture a relationship
between allocation failure and returning -ENOMEM .

To understand whether our word vectors are capable of answer-
ing such a high-level question, we evaluated their performance on
increasingly targeted queries (represented by averaged vectors).
Each query was restricted to search only for words in the subspace
of the embedding space that contains kernel error-codes. (Narrow-
ing to the subspace of error codes ensures that we are only looking
at relevant words, and not at the whole vocabulary.)

Results.We identified twenty different functions that act as allo-
cators in the Linux kernel.

First, for each such allocator, we took its word vector A, and
queried for the closest vector to A (in the subspace of error codes).

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United StatesJordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

This method found the correct error code only twice out of twenty
tests (i.e., 10% accuracy).

Second, we asked for the vector closest to an average vector
that combined the vector for the allocator A of interest and the
vector

−−−−→
$ERR for a generic error:6 (A +−−−−→$ERR)/2. This query found

the correct ENOMEM code fourteen times out of twenty (i.e., 70%
accuracy).

Third, instead of averaging the allocator’s A vector with
−−−−→
$ERR,

we tried averaging A with the vector for the special $END token
that signals the end of a trace. Seeking the error code closest to
(A +−−−−→$END)/2 found the correct result for sixteen of twenty test
cases (i.e., 80% accuracy). The fact that this method outperforms
our previous query reveals that the call to an allocator being near
the end of a trace is an even stronger signal than the $ERR token.

Finally, we mixed the meaning of the allocator, the er-
ror token, and the end-of-trace token by averaging all three:
(A +−−−−→$ERR+

−−−−→
$END)/3. The error code whose vector is closest to

this query is the correct ENOMEM code for eighteen of the twenty
tests (i.e., 90% accuracy). The steadily increasing performance indi-
cates that targeted queries encoded as average word vectors can
indeed be semantically meaningful.

The effectiveness of these queries, and the results from §5.1
and §5.2, support a positive answer to Research Question 1: learned
vectors do encode useful information about program behaviors.

6 RQ2: ABLATION STUDY
In this section, we present the results of an ablation study to isolate
the effects that different sets of abstractions have on the utility of
the learned vectors. We used the benchmark suite of 19,042 code-
analogies from §5 to evaluate eight different configurations. We
scored each configuration according to the number of analogies
correctly encoded by theword vectors learned for that configuration
(i.e., we report top-1 results).

In addition to the baseline configuration from §5.1, we parti-
tioned the abstractions into six classes7 and generated six new
embeddings, each with one of the six abstraction classes excluded.
We also used one more configuration in which stop words were
included. In natural language processing, stop words are words that
are filtered out of a processing toolchain. Sometimes these are the
most common words in a language, but any group of words can be
designated as stop words for a given application. In our context,
stop words are function names that occur often, but add little value
to the trace. Examples are __builtin_expect and automatically
generated __compiletime_assert s.

We evaluated the following eight configurations:
(1) baseline: all abstractions from §3;
(2) baseline without ParamTo and ParamShare;
(3) baseline without RetEq, RetNeq, etc.;
(4) baseline without AccessPathStore and AccessPathSensitive;
(5) baseline without PropRet, RetError, and RetConst;

6The $ERR word is added to any trace that returns either (i) the result of an ERR_PTR

call, or (ii) a constant less than zero that is also a known error code. Consequently, a
vector

−−−→
$ERR is learned for the word $ERR .

7Except for Called, which was used in all configurations.

(1) (2) (3) (4) (5) (6) (7) (8)
0%

20%

40%

60%

80%

100%

85.8%

51.7%

83.4%

61.7%

83% 85.5% 83.8% 82.4%

OOV
Failed
Passed

Figure 9: Ablation study: top-1 analogy results for eight con-
figurations (baseline (1) with up to one individual abstrac-
tion class removed). The vocabulary minimum was 0, and
the number of training iterations was 1,000.

(6) baseline without Error;
(7) baseline without FunctionStart and FunctionEnd; and
(8) baseline with stop words included.
Fig. 9 compares the accuracy of for these eight configurations.

Blue bars indicate the number of tests in the analogy suite that
passed; red indicates tests that failed; and brown indicates out-
of-vocabulary (OOV) tests. Configuration (4) had the most out-
of-vocabulary tests; in this configuration, we do not have words
like !->next and !->prev , which leaves several portions of
the analogy suite essentially unanswerable. Thus, we count out-of-
vocabulary tests as failed tests.

To create a fair playing field for evaluating all eight configu-
rations, we chose a single setting for the hyper-parameters that
were used when learning word vectors. We reduced the threshold
for how often a word must occur before it is added to the vocab-
ulary from 1,000 to 0. The latter parameter, which we refer to as
the vocabulary minimum, significantly impacts performance by
forcing the word-vector learner to deal with thousands of rarely-
seen words. To understand why we must set the vocabulary min-
imum to zero, effectively disabling it, consider the following ex-
ample trace: Called(foo), ParamShare(foo, bar), Called(bar). In
configuration (2), where we ignore ParamShare, we would encode
this trace as the sentence foo bar . In configuration (1), this same
trace is encoded as foo foo bar . The fact that some abstractions
can influence the frequency with which a word occurs in a trace cor-
pus makes any word-frequency-based filtering counterproductive
to our goal of performing a fair comparison.

We also lowered the number of training iterations from 2,000 to
1,000 to reduce the resources required to run eight separate config-
urations of our toolchain. (These changes are what is responsible
for the change in the top-1 accuracy of the baseline configuration
from 93.9% in Tab. 1 to 85.8% in Fig. 9.)

In Fig. 9, one clearly sees that configuration (2) (the one without
any dataflow-based abstractions) suffers the worst performance

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Code Vectors: Understanding Programs Through EASTs ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United States

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

degradation. Configuration (4), which omits access-path-based ab-
stractions, has the second-worst performance hit. These results in-
dicate that dataflow information is critical to the quality of learned
vectors. This conclusion further confirms findings by Allamanis
et al. [3] regarding the importance of dataflow information when
learning from programs.

Fig. 9 also reveals that removing “state” abstractions (RetEq,
RetNeq, etc. and Error) has little effect on quality. However, these
abstractions still add useful terms to our vocabulary, and thereby
enlarge the set of potentially answerable questions. Without these
abstractions, some of the questions in §5 would be unanswerable.

These results support the following answer to Research Ques-
tion 2: dataflow-based abstractions provide the greatest benefit to
word-vector learning. These abstractions, coupled with access-path-
based abstractions, provide sufficient context to let a word-vector
learner create useful embeddings. Adding abstractions based on
path conditions (or other higher-level concepts like Error) adds
flexibility without worsening the quality of the learned vectors.
Therefore, we recommend including these abstractions, as well.

7 RQ3: SYNTACTIC VERSUS SEMANTIC
Now that we have seen the utility of the generated corpus for word-
vector learning (§5) and the interplay between the abstractions we
use (§6), we compare our recommended configuration (1) from §6
with a simpler syntactic-based approach.

We explored several options for a syntactic-based approach
against which to compare. In trying to make a fair comparison, one
difficulty that arises is the amount of data our toolchain produces to
use for the semantics-based approach. If we were to compare con-
figuration (1) against an approach based on ASTs or tokens, there
would be a large disparity between the paucity of data available
to the AST/token-based approach compared to the abundance of
data available to the word-vector learner: an AST- or token-based
approach would only have one data point per procedure, whereas
the path-sensitive artifacts gathered using configuration (1) provide
the word-vector learner with hundreds, if not thousands, of data
points per procedure.

To control for this effect and avoid such a disparity, we instead
compared configuration (1) against a configuration of our toolchain
that uses only “syntactic” abstractions—i.e., abstractions that can be
applied without any information obtained from symbolic execution.
Thus, the syntactic abstractions are:

• FunctionStart and FunctionEnd,
• AccessPathStore(path), and
• Called(callee).

The rest of our abstractions use deeper semantic information,
such as constant propagation, dataflow information, or the path-
condition for a given trace.

Using only the syntactic abstractions, we generated a corpus of
traces, and then learned word vectors from the corpus. We com-
pared the newly learned word vectors to the ones obtained with
configuration (1). Fig. 10 clearly shows that semantic abstractions
are crucial to giving the context necessary for successful learning.
Even if we assess performance using only the analogies that are
in-vocabulary for the syntactic-based approach, we find that the
syntactic-based approach achieves only about 44% accuracy, which

0% 20% 40% 60% 80% 100%

Semantic

Syntactic

85.8%

31.4%

Passed Failed OOV

Figure 10: Top-1 analogy results for syntactic versus seman-
tic abstractions. (The vocabulary minimum was 0, and the
number of training iterations was 1,000.)

is about half the accuracy of vectors learned from (mainly) semantic
abstractions.

These results support an affirmative answer to Research Ques-
tion 3: abstracted traces that make use of semantic information
obtained via symbolic execution provide more utility as the in-
put to a word-vector learner than abstracted traces that use only
syntactic information.

8 RQ4: USE IN DOWNSTREAM TASKS
Research Question 4 asks if we can utilize our pre-trained word-
vector embeddings on some downstream task. To address this ques-
tion, we gathered a dataset of failing traces (traces in which the
$ERR token occurs). We then constructed a dataset suitable for
supervised learning as follows: we took each trace from configura-
tion (2)8 and removed the last three abstract tokens, namely, $ERR ,
$RET_E* , and $END ;9 we used the $RET_E* token as the label
for the trimmed trace.

This dataset is a good starting point, but feeding it to a machine-
learning technique that accepts fixed-length inputs requires further
processing. To preprocess the data, we kept only the last 100 tokens
in each trace.We then took the trimmed traces, and used our learned
word-vector embedding to transform each sequence of words into
a sequence of vectors (of dimension 300). If, originally, a trace had
fewer than 100 tokens, we padded the trace with the zero vector.
We paired each of the trimmed and encoded traces with its label
(which we derived earlier). Lastly, we one-hot encoded the label to
complete the preprocessing of the dataset.

Using the preprocessed dataset, we trained a model to predict the
error code that each trace should return. After training a recurrent
neural network with long short-term memory (LSTM) [15] on this
dataset, for 10 epochs, it achieved 93.6% accuracy on the test set.

To gain insight into the learned model, we selected two specific
traces from the BFS file system that had been patched to fix incorrect
error codes discovered by the JUXTA tool [23]. The first trace we
examined originally returned the ENOSPC error code instead of
the correct ENOMEM code; our learned model predicts the following
three error codes given this trace as input:

• ENOMEM with 99.87% confidence

8The dataflow abstractions present in (1) were created to aid word-vector learners; for
this experiment, we use configuration (2) to exclude those abstractions.
9We exclude traces that yielded the $ERR token due to the presence of

$RET_PTR_ERR . We restrict ourselves to traces that return one of the 50-most-
common error codes. This restriction ensures we have ample training and testing
data for each category.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United StatesJordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

• ENODEV with 0.05% confidence
• EINVAL with 0.04% confidence

For this same trace, our model gives the (original) incorrect code,
ENOSPC , a < 0.01% confidence score.
We applied this same technique to the second patched trace,

which originally returned ENOSPC , and was patched to return
EIO . On this trace, our model predicts:

• EINVAL with 61.82% confidence
• EIO with 18.90% confidence
• ESHUTDOWN with 7.20% confidence

For this trace, our model predicts the correct (fixed) error as the
second most likely result. To understand why, we queried our trace
corpus for traces that failed in a similar way. There were 3,813 sim-
ilar failing traces; 68% of those traces failed with the code EINVAL

and 18% failed with the code EIO . These results suggest that our
model has learned to encode the distribution of our dataset in its
responses. If we query for the probability of the incorrect code, we
again find that the learned model considers it extremely unlikely
(< 0.01%).

The ability of the learned model to predict and confirm fixes
applied to previously buggy code is a strong indicator that models
learned in this manner could be leveraged for tasks like detecting
error-code misuse. One especially nice attribute of a model such as
the one we have described is the transparency of its predictions: a
tool using a model like this as the backend could present developers
with suggested fixes, each with an associated confidence score.

These results support an affirmative answer to Research Ques-
tion 4: pre-trained word-vector embeddings are able to support
downstream tasks and provide a natural encoding of abstracted
traces into the sequences of vectors that learning models like the
LSTM expect.

Learning Directly From Abstracted Traces. To understand the
utility of not just our learned vectors, but also our corpus of ab-
stracted traces from configuration (2), we trained a simpler bag-
of-words-style model on our dataset of traces that end in an error.
To evaluate the utility of our corpus directly, we did not encode
words using a learned embedding for this trial. This model achieved
nearly the same accuracy on the task of predicting error codes,
which suggests that our corpus of abstracted traces is valuable in a
wider context; the utility of abstracted traces as inputs to learning
suggests that path-sensitive data, with some level of abstraction, is
a fruitful encoding of programs.

9 THREATS TO VALIDITY
There are several threats to the validity of our work.

We leverage a fast, but imprecise, symbolic-execution engine. It
is possible that information gained from the detection of infeasible
paths and the use of a memory model would improve the quality
of our learned vectors. In addition, it is likely that a corpus of
interprocedural traces would impact our learned vectors.

We chose to focus our attention on the Linux kernel. It is pos-
sible that learning good word-embeddings using artifacts derived

from the Linux kernel does not translate to learning good word-
embeddings for programs in general. To mitigate this risk, we maxi-
mized the amount of diversity in the ingested procedures by ingest-
ing the Linux kernel with all modular and optional code included.

Our analogies benchmark and the tests based on word-vector
averaging are only proxies for meaning, and, as such, only serve as
an indirect indicator of the quality of the learned word vectors. In
addition, we created these benchmarks ourselves, and thus there
is a risk that we introduced bias into our experiments. Unfortu-
nately, we do not have benchmarks as extensive as those created
throughout the years in the NLP community. Similar to Mikolov
et al. [21], we hope that our introduction of a suitable benchmark
will facilitate comparisons between different learned embeddings
in the future.

10 RELATEDWORK
Recently, several techniques have leveraged learned embeddings for
artifacts generated from programs. Nguyen et al. [27, 28] leverage
word embeddings (learned from ASTs) in two domains to facilitate
translation from Java to C#. Pradel and Sen [33] use embeddings
(learned from custom tree-based contexts built from ASTs) to boot-
strap anomaly detection against a corpus of JavaScript programs.
Gu et al. [11] leverage an encoder/decoder architecture to embed
whole sequences in their DeepAPI tool for API recommendation.
API2API by Ye et al. [39] also leverages word embeddings, but it
learns the embeddings from API-related natural-language docu-
ments instead of an artifact derived directly from source code.

Venturing into general program embeddings, there are several re-
cent techniques that approach the problem of embedding programs
(or, more generally, symbolic-expressions/trees) in unique ways. Us-
ing input/output pairs as the input data for learning, Piech et al. [32]
and Parisotto et al. [29] learn to embed whole programs. Allamanis
et al. [3] learn to embed whole programs via Gated Graph Recurrent
Neural Networks (GG-RNNs) [19]. Allamanis et al. [4] approach
the more foundational problem of finding continuous representa-
tions of symbolic expressions. Mou et al. [24] introduce tree-based
convolutional neural networks (TBCNNs), another model for em-
bedding programs. Peng et al. [30] provide an AST-based encoding
of programs with the goal of facilitating deep-learning methods. Al-
lamanis et al. [2] give a comprehensive survey of these techniques,
and many other applications of machine learning to programs.

We are not aware of any work that attempts to embed traces
generated from symbolic execution. On the contrary, Fowkes and
Sutton [9] warn of possible difficulties learning from path-sensitive
artifacts. We believe that our success in using symbolic traces as
the input to a learner is due to the addition of path-condition and
dataflow abstractions—the extra information helps to ensure that a
complete picture is seen, even in a path-sensitive setting.

In the broader context of applying statistical NLP techniques
to programs, there has been a large body of work using language
models to understand programs [1, 5, 14, 26, 35]; to find misuses [25,
38]; and to synthesize expressions and code snippets [12, 34].

11 CONCLUSION
The expanding interest in treating programs as data to be fed to
general-purpose learning algorithms has created a need for meth-
ods to efficiently extract, canonicalize, and embed artifacts derived

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Code Vectors: Understanding Programs Through EASTs ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United States

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

from programs. In this paper, we described a toolchain for effi-
ciently extracting program artifacts; a parameterized framework of
abstractions for canonicalizing these artifacts; and an encoding of
these parameterized embeddings in a format that can be used by
off-the-shelf word-vector learners.

Our work also provides a new benchmark to probe the quality of
word-vectors learned from programs. Our ablation study used the
benchmark to provide insight about which abstractions contributed
the most to our learned word vectors. We also provided evidence
that (mostly) syntactic abstractions are ill-suited as the input to
learning techniques. Lastly, we used these tools and datasets to learn
a model of a specific program behavior (answering the question,
“Which error is a trace likely to return?”), and applied the model
in a case study to confirm actual bugs found via traditional static
analysis.

ACKNOWLEDGMENTS
This research was supported, in part, by a gift from Rajiv and
Ritu Batra; by AFRL under DARPA MUSE award FA8750-14-2-0270
and DARPA STAC award FA8750-15-C-0082; by ONR under grant
N00014-17-1-2889; by NSF under grants CCF-1318489, CCF-1420866,
and CCF-1423237; and by the UW–Madison Office of the Vice Chan-
cellor for Research and Graduate Education with funding from the
Wisconsin Alumni Research Foundation. Any opinions, findings,
and conclusions or recommendations expressed in this publication
are those of the authors, and do not necessarily reflect the views of
the sponsoring agencies.

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing Natural Coding Conventions. In Proceedings of the 22Nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 281–293. https://doi.org/10.1145/2635868.2635883

[2] Miltiadis Allamanis, Earl T Barr, Premkumar T Devanbu, and Charles A Sutton.
2017. A Survey of Machine Learning for Big Code and Naturalness. CoRR
abs/1709.0 (2017). arXiv:1709.06182 http://arxiv.org/abs/1709.06182

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2017. Learning
to Represent Programs with Graphs. CoRR abs/1711.0 (2017). arXiv:1711.00740
http://arxiv.org/abs/1711.00740

[4] Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles
Sutton. 2016. Learning Continuous Semantic Representations of Symbolic Ex-
pressions. arXiv preprint arXiv:1611.01423 (2016).

[5] Miltiadis Allamanis, Daniel Tarlow, AndrewD. Gordon, and YiWei. 2015. Bimodal
Modelling of Source Code and Natural Language. In Proceedings of the 32Nd
International Conference on International Conference onMachine Learning - Volume
37 (ICML’15). JMLR.org, 2123–2132. http://dl.acm.org/citation.cfm?id=3045118.
3045344

[6] P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
238–252.

[7] V. Donzeau-Gouge, G. Huet, G. Kahn, and B. Lang. 1980. Programming environ-
ments based on structured editors: The MENTOR experience. Technical Report 26.
INRIA.

[8] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. 2001. Placing Search in Context: The Concept
Revisited. In Proceedings of the 10th International Conference on World Wide Web
(WWW ’01). ACM, New York, NY, USA, 406–414. https://doi.org/10.1145/371920.
372094

[9] Jaroslav Fowkes and Charles Sutton. 2015. Parameter-Free Probabilistic
API Mining across GitHub. (2015). https://doi.org/10.1145/2950290.2950319
arXiv:1512.05558

[10] H. Ganzinger and N.D. Jones (Eds.). 1986. Proc. Programs as Data Objects. LNCS,
Vol. 217.

[11] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep
API Learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE 2016). ACM, New York, NY,

USA, 631–642. https://doi.org/10.1145/2950290.2950334
[12] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java Expressions from

Free-form Queries. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 416–432. https://doi.org/10.1145/
2814270.2814295

[13] Felix Hill, Roi Reichart, and Anna Korhonen. 2015. Simlex-999: Evaluating
Semantic Models with Genuine Similarity Estimation. Comput. Linguist. 41, 4
(Dec. 2015), 665–695. https://doi.org/10.1162/COLI_a_00237

[14] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA,
837–847. http://dl.acm.org/citation.cfm?id=2337223.2337322

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (Nov. 1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[16] Tom Kenter, Alexey Borisov, and Maarten de Rijke. 2016. Siamese CBOW: Opti-
mizing Word Embeddings for Sentence Representations. In Proceedings of the The
54th Annual Meeting of the Association for Computational Linguistics (ACL 2016).

[17] Quoc Le and Tomas Mikolov. 2014. Distributed Representations of Sentences and
Documents. In Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32 (ICML’14). JMLR.org, II–1188–II–
1196. http://dl.acm.org/citation.cfm?id=3044805.3045025

[18] Omer Levy and Yoav Goldberg. 2014. Linguistic Regularities in Sparse and Explicit
Word Representations. In Proceedings of the Eighteenth Conference on Computa-
tional Natural Language Learning. Association for Computational Linguistics,
Ann Arbor, Michigan, 171–180. http://www.aclweb.org/anthology/W/W14/W14-
1618

[19] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S Zemel. 2015. Gated
Graph Sequence Neural Networks. CoRR abs/1511.0 (2015). arXiv:1511.05493
http://arxiv.org/abs/1511.05493

[20] Thang Luong, Richard Socher, and Christopher D Manning. 2013. Better Word
Representations with Recursive Neural Networks for Morphology. In CoNLL.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781 http://arxiv.org/abs/1301.3781

[22] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.
In Advances in Neural Information Processing Systems 26, C J C Burges, L Bot-
tou, M Welling, Z Ghahramani, and K Q Weinberger (Eds.). Curran Associates,
Inc., 3111–3119. http://papers.nips.cc/paper/5021-distributed-representations-
of-words-and-phrases-and-their-compositionality.pdf

[23] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking Semantic Correctness: The Case of Finding File
System Bugs. In Proceedings of the 25th Symposium on Operating Systems Prin-
ciples (SOSP ’15). ACM, New York, NY, USA, 361–377. https://doi.org/10.1145/
2815400.2815422

[24] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural
Networks over Tree Structures for Programming Language Processing. (2016).
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775/11735

[25] Vijayaraghavan Murali, Swarat Chaudhuri, and Chris Jermaine. 2017. Bayesian
Specification Learning for Finding API Usage Errors. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2017). ACM,
New York, NY, USA, 151–162. https://doi.org/10.1145/3106237.3106284

[26] Anh Tuan Nguyen and Tien N. Nguyen. 2015. Graph-based Statistical Language
Model for Code. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA, 858–868.
http://dl.acm.org/citation.cfm?id=2818754.2818858

[27] Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. 2016. Mapping
API Elements for Code Migration with Vector Representations. In Proceedings of
the 38th International Conference on Software Engineering Companion (ICSE ’16).
ACM, New York, NY, USA, 756–758. https://doi.org/10.1145/2889160.2892661

[28] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen.
2017. Exploring API Embedding for API Usages and Applications. In Proceedings
of the 39th International Conference on Software Engineering (ICSE ’17). IEEE Press,
Piscataway, NJ, USA, 438–449. https://doi.org/10.1109/ICSE.2017.47

[29] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong
Zhou, and Pushmeet Kohli. 2016. Neuro-Symbolic Program Synthesis. CoRR
abs/1611.0 (2016). arXiv:1611.01855 http://arxiv.org/abs/1611.01855

[30] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin. 2015. Building
Program Vector Representations for Deep Learning. In Proceedings of the 8th
International Conference on Knowledge Science, Engineering and Management -
Volume 9403 (KSEM 2015). Springer-Verlag New York, Inc., New York, NY, USA,
547–553. https://doi.org/10.1007/978-3-319-25159-2_49

[31] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-
1162

11

https://doi.org/10.1145/2635868.2635883
http://arxiv.org/abs/1709.06182
http://arxiv.org/abs/1709.06182
http://arxiv.org/abs/1711.00740
http://arxiv.org/abs/1711.00740
http://dl.acm.org/citation.cfm?id=3045118.3045344
http://dl.acm.org/citation.cfm?id=3045118.3045344
https://doi.org/10.1145/371920.372094
https://doi.org/10.1145/371920.372094
https://doi.org/10.1145/2950290.2950319
http://arxiv.org/abs/1512.05558
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1145/2814270.2814295
https://doi.org/10.1145/2814270.2814295
https://doi.org/10.1162/COLI_a_00237
http://dl.acm.org/citation.cfm?id=2337223.2337322
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=3044805.3045025
http://www.aclweb.org/anthology/W/W14/W14-1618
http://www.aclweb.org/anthology/W/W14/W14-1618
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.1145/2815400.2815422
https://doi.org/10.1145/2815400.2815422
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11775/11735
https://doi.org/10.1145/3106237.3106284
http://dl.acm.org/citation.cfm?id=2818754.2818858
https://doi.org/10.1145/2889160.2892661
https://doi.org/10.1109/ICSE.2017.47
http://arxiv.org/abs/1611.01855
http://arxiv.org/abs/1611.01855
https://doi.org/10.1007/978-3-319-25159-2_49
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ESEC/FSE 2018, 4–9 November, 2018, Lake Buena Vista, Florida, United StatesJordan Henkel, Shuvendu Lahiri, Ben Liblit, and Thomas Reps

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[32] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. 2015. Learning Program Embeddings to Propagate
Feedback on Student Code. In Proceedings of the 32Nd International Conference on
International Conference on Machine Learning - Volume 37 (ICML’15). JMLR.org,
1093–1102. http://dl.acm.org/citation.cfm?id=3045118.3045235

[33] Michael Pradel and Koushik Sen. 2017. Deep Learning to Find Bugs. (2017).
[34] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM: Synthesizing

What I Mean: Code Search and Idiomatic Snippet Synthesis. In Proceedings of the
38th International Conference on Software Engineering (ICSE ’16). ACM, New York,
NY, USA, 357–367. https://doi.org/10.1145/2884781.2884808

[35] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code Completion with
Statistical Language Models. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’14). ACM, New
York, NY, USA, 419–428. https://doi.org/10.1145/2594291.2594321

[36] Herbert Rubenstein and John B Goodenough. 1965. Contextual Correlates of
Synonymy. Commun. ACM 8, 10 (Oct. 1965), 627–633. https://doi.org/10.1145/

365628.365657
[37] Sean Szumlanski, Fernando Gómez, and Valerie Sims. 2013. A New Set of Norms

for Semantic Relatedness Measures. (2013), 890–895 pages.
[38] Song Wang, Devin Chollak, Dana Movshovitz-Attias, and Lin Tan. 2016. Bugram:

BugDetectionwith N-gram LanguageModels. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016). ACM,
New York, NY, USA, 708–719. https://doi.org/10.1145/2970276.2970341

[39] X Ye, H Shen, X Ma, R Bunescu, and C Liu. 2016. FromWord Embeddings to Doc-
ument Similarities for Improved Information Retrieval in Software Engineering.
In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
404–415. https://doi.org/10.1145/2884781.2884862

[40] Geoffrey Zweig and Chris J C Burges. 2011. The Microsoft Research Sentence
Completion Challenge. Technical Report. https://www.microsoft.com/en-us/
research/publication/the-microsoft-research-sentence-completion-challenge/

12

http://dl.acm.org/citation.cfm?id=3045118.3045235
https://doi.org/10.1145/2884781.2884808
https://doi.org/10.1145/2594291.2594321
https://doi.org/10.1145/365628.365657
https://doi.org/10.1145/365628.365657
https://doi.org/10.1145/2970276.2970341
https://doi.org/10.1145/2884781.2884862
https://www.microsoft.com/en-us/research/publication/the-microsoft-research-sentence-completion-challenge/
https://www.microsoft.com/en-us/research/publication/the-microsoft-research-sentence-completion-challenge/

	Abstract
	1 Introduction
	2 Overview
	Phase I: Transformation
	Phase II: Abstraction
	Phase III: Learning

	3 Abstractions
	3.1 Abstracted Symbolic Traces
	3.2 Encoding Abstractions as Words

	4 Word2Vec
	5 RQ1: Are Learned Vectors Useful?
	5.1 Experiment 1: Code Analogies
	5.2 Experiment 2: Simple Similarity
	5.3 Experiment 3: Queries Via Word-Vector Averaging

	6 RQ2: Ablation Study
	7 RQ3: Syntactic Versus Semantic
	8 RQ4: Use in Downstream Tasks
	9 Threats to Validity
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

