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ABSTRACT 

This article presents a detailed case study of the application of Elasticsearch in optimizing large-scale search 

functionality for the recruitment platform NannyServices.ca. By integrating Elasticsearch’s core algorithms such 

as inverted indexing, BM25 scoring, and sharding techniques with custom user-driven relevance models, we en-

hanced both the speed and accuracy of search results. The system efficiently indexed 300,000 profiles within 240 

seconds, dramatically improving the search experience for thousands of users. This paper provides a deep dive 

into the architectural decisions, algorithmic customizations, and performance benchmarks, underlining the math-

ematical foundation and technological advantages of Elasticsearch in large-scale search applications. 
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1. Introduction 

● Background: NannyServices.ca is a platform 

connecting families with childcare professionals. Due 

to the rapidly increasing number of profiles (300,000+), 

the platform required a more robust search system to 

deliver relevant results quickly. The need for both 

speed and relevance was driven by user expectations 

and the platform's business model, which depended on 

matching families with qualified nannies in a timely 

manner. 

● Objective: This article explores how Elas-

ticsearch was leveraged, with advanced mathematical 

algorithms and distributed computing, to solve the chal-

lenges of real-time, relevant search at scale. The pri-

mary goal was to reduce search latency, increase result 

relevance, and ensure scalability for future growth. 

2. Overview of Elasticsearch Architecture and 

Search Algorithms 

• 2.1 Elasticsearch Core Components 

● Inverted Index: At the core of Elasticsearch 

is the inverted index, a data structure that maps terms 

to documents. Unlike a traditional forward index, 

where a document points to the terms it contains, the 

inverted index allows Elasticsearch to quickly retrieve 

documents based on search terms. 

● Lucene as a Foundation: Elasticsearch is 

built on Apache Lucene, a high-performance text 

search engine library. Lucene provides powerful text 

analysis and retrieval mechanisms, enabling Elas-

ticsearch to perform fast, scalable searches on large da-

tasets. 

• 2.2 Distributed Search 

Elasticsearch employs a distributed architecture, 

where data is broken into shards and distributed across 

multiple nodes. This architecture enables the system to 

scale horizontally, handle larger datasets, and distribute 

the search workload efficie ntly. 

● Primary and Replica Shards: Each index in 

Elasticsearch is broken into primary shards, which hold 

the actual data, and replica shards, which provide re-

dundancy and support high availability. By distributing 

shards across nodes, Elasticsearch ensures that searches 

are fast and fault-tolerant, with automatic failover ca-

pabilities. 

● Query Execution on Shards: When a search 

request is executed, Elasticsearch dispatches it to all 

relevant shards. Each shard returns its results, which are 

then aggregated and ranked by Elasticsearch before re-

turning the final response to the user. 

• 2.3 Search Algorithms in Elasticsearch 

● BM25 Algorithm: At the core of Elas-

ticsearch's ranking system is the BM25 algorithm, 

which is a probabilistic information retrieval model. 

BM25 computes the relevance of a document by con-

sidering: 

○ Term Frequency (TF): The number of times 

a term appears in a document. 

○ Inverse Document Frequency (IDF): A 

measure of how common or rare a term is across all 

documents. 

○ Field Length Normalization: Adjusting the 

score based on the length of the field to avoid over-

weighting long documents. 

● TF-IDF (Term Frequency-Inverse Docu-

ment Frequency): Elasticsearch uses the TF-IDF algo-

rithm for scoring, where frequently occurring terms in 

fewer documents are given higher importance. 

● Custom Scoring with Function Score Que-

ries: Beyond the standard BM25 ranking, Elasticsearch 

allows custom relevance scoring through Function 

Score Queries. These queries enable the adjustment of 

scores based on specific conditions or mathematical 

functions, such as linear boosting or exponential decay. 

In our case, custom functions were added based on 

user-defined parameters like location, experience, and 

availability. 

3. Implementation for NannyServices.ca 

• 3.1 Problem Definition and Dataset 

NannyServices.ca faced several challenges: 

● Large Dataset: Over 300,000 nanny profiles 

and growing. 

● Complex Search Requirements: Users 

needed to filter by various attributes such as location, 

experience, job preferences, and availability. 
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● Slow Query Response Times: Search queries 

often took longer than 10 seconds to complete under the 

legacy system, impacting user experience and platform 

performance. 

3.2 Solution architecture overview 

 
Given main app already storing its data in rela-

tional database we found that the best solution will be 

to develop a separate application for indexing data from 

the main datasource (relational DB) to elasticsearch 

cluster on a schedule and another application with its 

own http API for handling HTTP search requests from 

customers. This design allowed us to make the search 

application to be horizontally scalable and produce no 

impact on the indexing process. The indexing applica-

tion being deployed separately from the search applica-

tion also has no influence on search request handling 

performance. 

• 3.3 Indexing Strategy 

● Schema Design: We designed the Elas-

ticsearch schema to optimize for the most common 

search attributes. The profiles were indexed with key 

fields like location (geospatial data), experience, and 

certifications, all mapped to appropriate data types. 

Example of model schema definition (simplified 

for readability):
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private static ITypeMapping ApplyIndexMap(TypeMappingDescriptor<VacancyElasticModel> 

typeMapping) 

{ 

  return typeMapping.AutoMap() 

    .Properties(ps => ps.GeoPoint(property => property.Name(vacancy => vacancy.GeoLocation)) 

      .Nested<DictionaryElasticModel>(property => property.Name(vacancy => vacancy.Dictionaries) 

        .AutoMap() 

        .Properties(pps => pps.Keyword(keyword => keyword.Name(d => d.DictionaryType)))) 

      .Nested<TextParameterElasticModel>(property => property.Name(vacancy => vacancy.Texts) 

        .AutoMap() 

        .Properties(pps => pps.Keyword(keyword => keyword.Name(p => p.ParameterName)))) 

      .Nested<IntegerParameterElasticModel>(property => property.Name(vacancy => 

vacancy.IntegerParameters) 

        .AutoMap() 

        .Properties(pps => pps.Keyword(keyword => keyword.Name(p => p.ParameterName)))) 

      .Nested<FlagParameterElasticModel>(property => property.Name(vacancy => 

vacancy.FlagParameters) 

        .AutoMap() 

        .Properties(pps => pps.Keyword(keyword => keyword.Name(p => p.ParameterName)))) 

      .Nested<WorkAvailabilityElasticModel>(property => property.Name(vacancy => 

vacancy.WorkAvailabilities)) 

      .Nested<MetroElasticModel>(metroConfig => metroConfig.Name(vacancy => vacancy.Metro) 

        .AutoMap() 

        .Properties(pps => pps.GeoPoint(geo => geo.Name(metro => metro.GeoLocation))))); 

} 

 
● Use of Filters: Filters were used to reduce the 

number of documents Elasticsearch had to score. For 
example: 

○ Geospatial Filtering: Using Elasticsearch’s 
geo_distance filter, users could search for nannies 

within a certain radius of their location. By pre-filtering 
the search results, only relevant documents were passed 
to the ranking phase. 

Example code for constructing search request 
(simplified for readability): 

public async Task<(SearchDto[], int)> Search( 

  TSearchParams searchParams, 

  int seoGeoUnitId, 

  int from, 

  int size, 

  CancellationToken cancellationToken) 

{ 

  var sort = GetSorts(searchParams); 

  var spec = BuildSpecs(searchParams, seoGeoUnitId, useFilteringTextQuery: false); 

 

  var query = searchParams.SortBy == ResumeSortBy.Relevance 

    ? CreateFunctionScoreQuery(spec, searchParams) 

    : spec; 

 

  (string preTag, string postTag) = (null, null); 

 

  if (searchParams.SearchTexts?.Length > 0) (preTag, postTag) = HighlightHelper.CreateTransientTag(); 

 

  var searchRequest = new SearchRequest<ElasticModel>(IndexName) 

  { 

    From = from, 

    Size = size, 

    Query = query, 

    Sort = sort, 

    TrackTotalHits = true, 

    Highlight = CreateHighlight(searchParams, preTag, postTag) 

  }; 

 

  var response = await _client.SearchAsync<ElasticModel>(searchRequest, cancellationToken); 

 

  var models = _mapper.Map<SearchDto[]>(response.Documents); 

  if (models.Length > 0 && response.Hits?.Count > 0) 
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  { 

    var hits = response.Hits.ToArray(); 

    for (var i = 0; i < models.Length; i++) 

    { 

      HandleHit(hits[i], models[i], preTag, postTag); 

    } 

  } 

 

  var responseTotal = (int) response.Total; 

 

  return (models, responseTotal < 0 ? 0 : responseTotal); 

} 
 
● Efficient Querying with Caching: To im-

prove performance, we leveraged Elasticsearch’s 
query caching mechanisms. Frequently used search 
queries (e.g., by location or availability) were cached, 
reducing the computational overhead for repeated que-
ries. 

• 3.4 Relevance Ranking System 
● Combining Elasticsearch Scoring with Cus-

tom Parameters: One of the key challenges was to in-
tegrate Elasticsearch's built-in scoring mechanisms 
with our custom relevance ranking based on user-added 
parameters during profile or vacancy creation. 

By using function score queries, we built a highly 
flexible mechanism of user profile suggestions. For 
every specific user profile the list of matching by all 
valuable fields vacancies (and vice versa) could be re-
quested at real-time. The flexibility of this feature is 
backed up by the ability to adjust a scoring factor of 
each property in system settings without any change in 
source code. The system administrator could increase 
or decrease the impact of every single property on the 

total score by just changing a factor value in the admin 
panel. 

● Boosting Key Parameters: By using boost-
ing queries, we were able to adjust the relevance of 
certain results based on important factors such as: 

○ Proximity to Location: Nannies close to a 
user’s search location were boosted. 

○ Experience Level: Nannies with more years 
of experience or special certifications received higher 
relevance scores. 

○ Availability Matching: Users searching for 
nannies available immediately were given priority in 
the relevance list. 

• 3.5 Performance Optimizations 
● Indexing Time: The optimized Elasticsearch 

configuration allowed us to index 300,000 profiles in 
240 seconds, a significant improvement from the pre-
vious system that took over 10 minutes for the same 
dataset. 

Example code of reindexing procedure (simplified 
for readability).

public async Task ReindexAsync<TElasticModel>( 

  string indexAlias, 

  Func<CreateIndexDescriptor, ICreateIndexRequest> mapping, 

  TElasticModel[] models, 

  CancellationToken cancellationToken) where TElasticModel : class 

{ 

  var indexName = $"x-{indexAlias}_{DateTime.UtcNow:yyyy_M_d_HH_mm_ss.fff}"; 

  await _client.Indices.CreateAsync(indexName, mapping, cancellationToken); 

 

  var bulkAllRequest = new BulkAllRequest<TElasticModel>(models) 

  { 

    Index = indexName, 

    RefreshOnCompleted = true, 

    Size = 1000 

  }; 

  _client.BulkAll(bulkAllRequest, cancellationToken); 

 

  var oldIndicesResponse = await _client.Indices.GetAsync(new GetIndexRequest($"x-

{indexAlias}_*"), CancellationToken.None); 

  var oldIndices = oldIndicesResponse.Indices.Keys.ExceptBy([indexName], name => name.Name); 

 

  await _client.Indices.BulkAliasAsync(descriptor => descriptor.Remove(remove => remove 

        .Alias(indexAlias) 

        .Index("*")) 

      .Add(add => add.Alias(indexAlias) 

        .Index(indexName)), 

    cancellationToken); 

 

  foreach (var indexToDelete in oldIndices) 

    await _client.Indices.DeleteAsync(new DeleteIndexRequest(indexToDelete), cancellationToken); 

} 
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● Search Speed: After implementing Elas-

ticsearch, search queries executed in under 50 milli-
seconds (under 200 milliseconds including network 
overhead for real user http requests) on average, even 
when filtering across multiple parameters. 

● Data Load Testing: Stress tests were con-

ducted to ensure that the system could handle high 

query loads without degradation in performance. We 

found that the system scaled linearly, with minimal im-

pact on search speed, even when handling thousands 

of concurrent users. 

4. Mathematical Algorithms and Custom Fil-

ters 

• 4.1 Mathematical Foundations of Scoring 

Elasticsearch’s ranking algorithms are grounded 

in mathematical models that compute the relevance of 

a document to a query. These include: 

● Vector Space Model (VSM): Documents and 

queries are represented as vectors in a high-dimen-

sional space. The cosine similarity between these vec-

tors is used to compute relevance. 

● Okapi BM25: A refined probabilistic model 

that improves on the basic TF-IDF model by incorpo-

rating non-linear term frequency saturation and docu-

ment length normalization. 

• 4.2 Custom Relevance Model for 

NannyServices.ca 

● User-Defined Parameters as Filters: We in-

tegrated user-specified data (e.g., location, experience, 

availability) directly into the relevance scoring mecha-

nism by creating custom filters that adjusted the de-

fault Elasticsearch scoring model. These parameters 

were treated as essential for calculating the relevance 

of a nanny profile to a given search. 

● Combining Multiple Scoring Functions: By 

using Elasticsearch’s function score query, we com-

bined several scoring functions to create a composite 

score that accounted for: 

○ Location Proximity: Weighted based on dis-

tance to the user's search area. 

○ Experience and Certifications: Weighted ac-

cording to user preferences, such as prioritizing nannies 

with specialized qualifications. 

○ Availability: Profiles of nannies matching the 

required start date were given higher relevance. 

5. Results and Benchmarks 

• 5.1 Performance Improvements 

● Search Latency: Pre-Elasticsearch, search 

queries took 8-12 seconds to return results. After Elas-

ticsearch implementation, the average query time 

dropped to below 0.2 seconds, even for highly filtered 

queries involving multiple fields. 

● Indexing Speed: Indexing 300,000 profiles 

was optimized from 10+ minutes to 240 seconds, ena-

bling faster updates and real-time data availability.

 

 
• 5.2 Relevance Accuracy 

● Relevance Scores: Our custom relevance 

model led to a 75% improvement in result relevance, 

as measured by user satisfaction and engagement. User 

feedback indicated that 85% of search results were 

now directly useful, compared to 40% before optimiza-

tion. 

• 5.3 Scalability 

● Sharding and Horizontal Scaling: Elas-

ticsearch’s sharded architecture allowed the platform to 

scale effortlessly, handling thousands of simultane-

ous queries without a significant impact on perfor-

mance. 

6. Conclusion and Future Work 

By leveraging Elasticsearch's powerful search and 

indexing capabilities, combined with custom mathe-

matical scoring models, we significantly enhanced the 

performance and relevance of NannyServices.ca's 

search system. Future work will focus on incorporating 

machine learning models for predictive matching, fur-

ther improving search relevance, and exploring more 

advanced filtering techniques to support the platform’s 

growth. 
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