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Abstract
Data has become an asset for companies, originating from various
sources, such as IoT paradigms. It is crucial to safeguard its life
cycle using suitable, scalable, and effective technologies, like those
enabled by cloud computing models. However, in order to extract
value from this data, complementary processes of collection, re-
finement, cleaning, or modeling, among many others, are required.
Furthermore, organizations greatly vary in their methodologies
and approaches to handling data, which further emphasizes the
need for standardized techniques. In this regard, data management
methodologies promote the adoption of the various dimensions of
data quality in order to ensure the reliability of data across different
systems and processes. The main contribution of this manuscript
is the proposal of a new data quality dimension, coined purity, to
measure the importance of the data in a processing pipeline topol-
ogy. As a result, organizations can better guarantee the quality of
their datasets in order to raise the success of data-driven endeavors
within organizations. The proposed methodology is validated in an
urban mobility use case.

CCS Concepts
• Computer systems organization→ Cloud computing; • In-
formation systems→ Data access methods.
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1 Introduction
In the era of digital transformation, the adoption of cloud computing
has offered organizations scalable and flexible infrastructure to
store, process, and analyze massive volumes of data [32]. Cloud
paradigms provide unparalleled opportunities for flexibility, cost-
effectiveness, and security [7, 35]. However, amidst the advantages,
a critical challenge emerges: the quality of the data residing in these
cloud environments.

The term data quality is defined as the suitability of the data
for the use case, emphasising its relative and dynamic nature, the
context, and the requirements that depend on and may change over
time [29]. In the context of urban mobility data, as cloud services
continue to evolve, incorporating technologies such as machine
learning and artificial intelligence, the role of high-quality data
becomes even more important. The success of predictive models
and intelligent algorithms hinges on the quality of the training data
they receive. Poor data quality not only undermines the perfor-
mance of these advanced technologies but also introduces biases
and inaccuracies in the model performance that can affect the final
decisions of the models [10].

Unfortunately, real-life data is often dirty1, which negatively
impacts the accuracy of the insights that can be obtained from
that data [22]. There are numerous challenges associated with data
management specially in this era, which are only aggravated by the
growing size of data generated per year [28]. These challenges range
from the security, privacy, and infrastructure [24]; to dependency
from other organizations, lack of communication between teams,
and increased responsibilities of the data pipeline owner [27]. In

1Data that is out of date, incorrect, incomplete, not integrated, or duplicated, among
other things.
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the following section, we elaborate on the problem we address in
this manuscript.

1.1 Problem Statement
The success of data-driven decision-making and analytics in the
cloud continuum is heavily reliant on the quality of the underlying
data in the field of urban logistics. Recognizing the difficulty in
mandating fixed quality standards for data providers, the decision
has been made to shift the quality calculation to a central node in
the cloud [11].

Despite the potential benefits, the absence of standardized and
stringent data quality measures in cloud paradigms raises serious
concerns. Inaccuracies, inconsistencies, and incompleteness within
datasets can have far-reaching implications, impacting the relia-
bility of analytical outcomes [21, 40]. Compromising the integrity
of decision-making processes and diminishing the overall perfor-
mance of cloud-based applications [14].

Data quality issues in cloud environments canmanifest at various
stages of the data life cycle, from the point of data ingestion to
extraction and analysis. Challenges such as data duplication, format
inconsistencies, and outdated information can proliferate, leading to
a cascade of downstream effects that deteriorate the trustworthiness
of insights derived from cloud-hosted data [1, 31]. The inefficiency
in data can lead to long and redundant access times, also increasing
operating costs associated with bandwidth and storage.

1.2 Contribution
This paper aims to delve into the importance of data quality in the
computing continuum in an urban mobility use case. Emphasizing
the establishment of robust data quality standards, protocols, and
governance frameworks within the cloud ecosystem for organiza-
tions. Addressing these challenges is essential not only for ensuring
the accuracy and reliability of data analytics but also for fortifying
the foundation upon which critical business decisions are made.

To this end, the main contribution of this manuscript is the proposal
of a new data quality dimension, coined ’Purity’, which evaluates how
pure different datasets are in comparison to others in the network. The
purity of a dataset is measured by its significance in interacting with
other datasets within the same network, as well as by how important
its values are for the rest of the datasets. Furthermore, this dimension
will be useful for predicting the quality of a dataset, which depends
on the origin of its data. This dimension of quality will be validated
in an urban mobility scenario.

The rest of the paper is organized as follows. Section 2 provides
a brief introduction of the background and the related work is
presented in Section 3. In Section 4, the workflow for the proper
measurement of data quality is explained. Section 5 provides an
overview of the new quality dimension purity, while Section 6
goes into further detail about the mathematical estimation for it.
Section 7 portrays the validation scenario. Finally, the conclusions
and future works are drawn in Section 8.

2 Background
In this section, we have delved into aspects of data life cycle and re-
lated paradigms that must be known to understand the contribution
presented in this article on data quality.

2.1 Data Centralization on Cloud
Data centralization brings together all data into one place so it can
be more effectively managed and accessed[13]. As businesses rely
on a larger number of data sources than ever before, the importance
of having a centralized approach to store and manage it has never
been greater. The storage architectures that allow such centraliza-
tion are several, the most well-known in recent times being Data
Warehouse[39] and Data Lake[26]. The cloud computing model has
allowed a democratization of these architectures. Unlike traditional
data storage solutions, cloud-based options offer great scalability
and flexibility at a reasonable cost. Besides, centralizing data in-
creases collaboration among teams and ensures that everyone has
access to validated, complete datasets, modelled in a unified man-
ner. Data silos make it impossible to gain a clear, unified view of
business data [30]. In the work of data engineers, significant effort
is invested in reconciling disparate data sets, and there are many
inefficiencies in not establishing ways to standardize, unify, and
reproduce these data governance phases. In this context, a large
part of the challenges is always associated with activities related to
data quality[4], from the methodology in which it is measured, to
the dimensions or indicators that reflect the reality of the data and
the transformations that have suffered. It is important to highlight
that in this work we are framed in a cloud computing model, and
in the specific problem of centralized storage architectures, which
aim to solve and manage the data quality activity from the central
repository that represent the unified storage of all data sources. The
problem of quality measurement in federated or fully distributed
environments is beyond the scope of this work, and is also a topic
of special interest today, for example in the mobility domain[16].

2.2 Existing Data Quality Dimensions
Data quality management is an extremely important process for
organizations to tackle the problem of poor data quality, establish-
ing a set of best practices for improving this quality and enhancing
the value of the data and hence the outcomes obtained from them.
Data quality dimensions[25] describe the characteristics by which
the quality of the data is measured. Since the quality of the data is
different for every organization, the metrics to measure differ from
another. Different articles and studies define several of them, but
the six most used dimensions are the following: [6]:

• Consistency: data is uniform, accurate, and coherent across
diverse datasets within the company.

• Accuracy: the data represents the “reality” that the organiza-
tion wants to analyze.

• Completeness: all the data the company needs is available
and findable.

• Timeliness: the organization should have the data at the
specific moment they are needed.

• Uniqueness: one specific data appears once in the storage
system.

• Validity: the format and type of data are as expected.

3 Related Work
The usual definition of data quality is the idea to which the data
meets the expectations of data consumers based on their intended
use of the data[5]. However, a significant challenge arises because
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Figure 1: Data Purity Methodology Flow

the intended use of data is often not fixed and can vary depending
on the specific use case. In decentralized environments oriented
toward exploratory analysis, this complicates the development of
appropriate methodologies and technologies to measure the quality
of the data from its origin to its consumption.

We present an analysis of the main related works in the litera-
ture regarding existing tools and frameworks for quality measure-
ment in decentralized storage environments. Reviewing the current
literature, we have found the following studies that we consider
interesting in our work. In [2], M. Altendeitering et. al. proposed a
software reference architecture for data quality tools that guides
organizations in creating state-of-the-art solutions. The work [17]
presented a new big data quality framework in which four new
dimensions are considered integrity, accessibility, ease of manip-
ulation, and security. Whereas, in the paper [20], the researchers
tried to generalize the quality assessment operations by providing
a new ISO-based declarative data quality assessment framework
(BIGQA), that supports data quality assessment in different do-
mains and contexts. In [38], I. Taleb et. al. introduced a new concept
called Big Data Quality Profile, where the intention is to define
quality outline, requirements, attributes, dimensions, scores, and
rules related to quality dimensions. Finally, the work [41] provides
a novel technique for detecting Big Data quality anomalies relat-
ing to six quality dimensions: accuracy, consistency, completeness,
conformity, uniqueness, and readability.

In conclusion, after analyzing the previous studies we are not
aware that there is any work, either from a conceptual point of
view, or from a tool implementation point of view, that considers
quality measures oriented to the issues or degradation in the data
or its value that imposes its centralization in a common repository.

4 Methodology for measuring the purity and
the quality of the data

There are a series of stages in the flow for the proper measurement
of the data quality, these are shown in Figure 1. First, in (1), the
different data sources need to be selected. These data sources are
comprised of the various databases stored in the cloud system, and
the data quality of the dataset is calculated (2). Once the sources to
work with have been selected, before joining the data, the quality
that the future dataset is calculated through mathematical formu-
lation (3). This allows notifying the user of the expected outcome
before performing the data union, economizing data processing in
case the result is not as anticipated. These objectives are formalized
in further detail in Section 6.

Once the join is accepted by the user, it is time to create the
data product by merging the sources and adding metadata to the
resulting dataset (4). After the merge, the metadata that will depict
the dataset is formed by provider identifiers, the type of join that

has been performed, the quality of the sources, its own quality, and
the importance it holds within the cloud network (5). Using these
data, the resultant dataset is introduced into the dataset network in
order to determine its centrality in relation to the other datasets in
the network.

The last two identifiers are the ones that will have the greatest
impact on the development of this paper. The quality dimensions
are responsible for assigning intrinsic value to the data, because
the higher the quality, the more reliable its use will be for future
work. In addition, centrality indicators will determine the value
of the dataset within the network, quantifying its importance in
relation to other data in the cloud. This enhances decision-making
when working with data and provides greater efficiency to search
processes. The following scenarios are responsible for calculating
the six data quality dimensions (Completeness, Accuracy, Consis-
tency, Validity, Uniqueness, and Timeliness) and for performing
centrality calculations using the purity dimension (Degree Central-
ity, Betweenness Centrality, and Closeness Centrality). All these
quality indicators are detailed in Section 5.

5 Data Purity Dimensions
This section describes the main contribution of this manuscript to
data quality with the new data purity dimension. The Purity dimen-
sion is responsible for measuring how central the various datasets
are. It becomes critical for success, complex, and interdependent
within the company’s network, which is why data centralization
offers organizations benefits such as improved efficiency, quality,
and decision-making.

Data plays a crucial role in informed decision-making, impacting
the quality of business decisions based on data quality and availabil-
ity. Efficient data management enhances internal processes, leading
to increased operational efficiency and reduced costs. Organiza-
tions effectively leveraging their data tend to be more competitive,
adapting quickly to market changes and understanding customer
needs. Additionally, service quality can be improved by collecting
and analyzing data related to customer feedback, production effi-
ciency, and other relevant factors [33]. All these advantages can
be measured with the data purity dimension; that is why this sec-
tion will explain the different Key Performance Indicators (KPIs)
designed to measure centrality of each dataset in the network that
is created with all the data sources of the company.

5.1 Degree Centrality
As explained in [18, 19], degree centrality is the simplest and most
straightforward measure. It quantifies the number of direct connec-
tions a node has in a network. Multiple ties to the same node are
counted only once.

In simpler terms, the degree centrality of a node is the number
of connections it has. The higher the number of connections a node
has, the greater its degree centrality, and consequently, it is con-
sidered more central in the network [23]. In the context discussed
in this research, this indicator is used to analyze how many con-
nections each dataset has to understand their importance in the
cloud environment. Thus, datasets with higher degree centrality
are deemed more important, indicating that their data purity has a
greater value.
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5.2 Betweenness Centrality
In [3, 19], unlike degree centrality, betweenness centrality focuses
on the importance of a node as an intermediary in the shortest paths
between other nodes in the network. In other words, it evaluates
how often a node acts as a bridge or intermediary in communication
routes between other nodes.

Betweenness centrality is commonly used in situations where
one aims to identify nodes that play a crucial role in the transfer
of information or resources across a network [3]. In the context
discussed in this paper, this metric will determine the importance
of each node in the dataset network. In the event that a node disap-
pears, it will assess how much communication and efficiency might
deteriorate, particularly if a domain wants to access data held by
another domain.

5.3 Closeness Centrality
In [19], closeness centrality measures how quickly a node can reach
all other nodes in the network. It is based on the average shortest
path length from a node to all other nodes. The importance of the
node resides in proximity to the other nodes of the network.

Closeness centrality is calculated by considering the geodesic
distance (the number of links in the shortest path) between a par-
ticular node and all other nodes in the network [34]. The shorter
the paths connecting a node to other nodes, the higher its closeness
centrality. In practical terms, this implies that a node with high
closeness centrality can communicate or interact with other nodes
in the network more efficiently than a node with low closeness
centrality.

Closeness centrality is especially relevant for the purity indicator
in situations where the speed and efficiency of communication or
information transmission are crucial. In the context discussed in
this research, this metric will determine the importance of each
node in the dataset graph by adding value to nodes that are closer
to a greater number of nodes. This approach will provide insights
into how different domains act upon their various datasets.

5.4 Centralized Quality
These indicators measure the quality of the dataset that is about to
be formed before it is created, allowing notification to the user about
the expected level of quality of the dataset. For this calculation, the
six dimensions (accuracy, completeness, timeliness, validity, unique-
ness, and consistency) of the base datasets used for the merger will
be considered.

Each quality dimension will have a formula capable of predicting
that dimension in the target dataset, this calculation is explained
in Section 6. By computing this in advance, the system obtains the
following attributes:

• Problem identification: centralized quality metrics can help
identify specific issues within the dataset. This allows ad-
dressing these problems before using the data in analyzes or
models.

• Informed decision making: with established quality metrics,
professionals can make more informed decisions about how
to approach the creation of new datasets with the available
sources in the system.

• Efficiency in the collection and preprocessing: by establish-
ing quality metrics from the beginning, you can optimize
data collection and preprocessing processes. This can save
time and resources by avoiding the need to correct data
quality issues later in the workflow.

• Ease of collaboration: having objective and quantifiable met-
rics facilitates communication and collaboration between
teams working with the data. Everyone shares a common
understanding of data quality, reducing misunderstandings.

• Resource savings: identifying and addressing data quality
issues from the beginning can save resources in the long
term. Avoiding quality problems before they impact decision-
making processes and analysis can reduce costs and time.

6 Mathematical Computing for Purity
Dimension

This section offers an overview of the new quality dimension that is
explained in this paper, coined purity. The focus will be on exploring
the various mathematical formulations that make up the different
indicators of the dimension.

6.1 Centrality Formulas
This subsection contains the mathematical formulation of the cen-
trality of a single node of the network. Let V be a set of objects
connected together by links, where |𝑉 | > 0 and given n nodes, each
node i ∈ V. In said set, three centrality indicators can be calculated:
degree, betweenness and closenesss. Degree centrality can be cal-
culated with the following formula 1. Let 𝑁𝑖 be a set composed of
neighbors of node i.

𝐷𝑒𝑔𝑟𝑒𝑒𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 (𝑖) = |𝑁𝑖 | (1)
In the case of calculating the betweenness centrality indicator

for the node i two new variables need to be instantiated. Let 𝜎𝑢𝑣 =
𝜎𝑣𝑢 be the number of shortest paths between nodes u and v, where
𝜎𝑢𝑢=1 and u ≠ i ≠ v ∈ V. And let 𝜎𝑢𝑣 (𝑖) be the number of shortest
paths between nodes u and v that pass through node i [9, 36].

𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 (𝑖) =
∑︁

𝑢≠𝑖≠𝑣∈𝑉

𝜎𝑢𝑣 (𝑖)
𝜎𝑢𝑣

(2)

For determining closeness centrality, let 𝑑𝑖 𝑗 be the geodesic dis-
tance between nodes i and j, the minimum length of any path
between vertices i and j. By definition, 𝑑 𝑗 𝑗 = 0 for every j ∈ V and
𝑑𝑖 𝑗 = 𝑑 𝑗𝑖 for i, j ∈ V [9, 15, 36].

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 (𝑖) = 1∑
𝑗∈𝑉 𝑑𝑖 𝑗

(3)

High centrality scores indicate that a node can reach to other
nodes on more optimized paths. Improving the efficiency of com-
munication in the transmission of data. These values will grant
how pure each dataset is in the network, specifying the importance
of the dataset for the company its selves.

6.2 Centralized Quality Formulas
To perform centralized quality analysis, an indicator has been cre-
ated for each of the dimensions analyzed in the previous quality
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section (Accuracy, Completeness, Consistency, Timeliness, Unique-
ness, and Validity).

Once analyzed the six dimensions of the data quality, a series of
similarities can be observed among them. One of these similarities
is found in the dimensions of timeliness and uniqueness, which
validate groups of values in the datasets, they measure the quality
of rows instead of unique values. The other similarity could be
found in the accuracy, completeness, consistency, and validity di-
mensions, that they quantify the quality of individual values of the
datasets. With the division of these groups, a formula has been cre-
ated for each one to predict the corresponding dimension with the
least possible error. These formulas are explained in Sections 6.2.1
and 6.2.2.

6.2.1 Timeliness and Uniqueness. Equation 4 calculates the overall
quality of a dataset in the dimensions of timeliness and uniqueness
by averaging the quality of each individual dataset. However, it
gives more weight to datasets that have more rows in the intersec-
tion of the datasets, because in the dimensions that operate with
rows, the more rows a dataset has in the join, the greater its weight
will be in terms of quality regarding the outcome.

Let’s n be the total number of datasets that are going to be
merged, being 𝑄𝑖 the quality of each dataset and 𝑟𝑜𝑤𝑖 the number
of rows of the dataset itself. Let 𝑟𝑜𝑤𝑡𝑜𝑡𝑎𝑙 be the number of rows
the final dataset will have after the join. Let 𝑟𝑜𝑤∩ be the number
of rows in the intersection of the datasets. This is formalized as
follows.

𝑃𝑟𝑒𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
1

row𝑡𝑜𝑡𝑎𝑙

·
𝑛∑︁
𝑖=1

𝑄𝑖

(
row𝑖 −

𝑟𝑜𝑤∩
𝑛

)
(4)

6.2.2 Accuracy, Completeness, Consistency, and Validity. The fol-
lowing formula calculates the overall quality of a dataset in the
dimensions of accuracy, completeness, consistency, and validity
by calculating the number of erroneous values in a column of the
dataset after the join. After predicting the quality of each column,
the average of all values should be calculated. It is important to
consider not counting repeated columns.

This formula is based on the principle of inclusion-exclusion,
thus allowing the calculation of how many additional errors will be
added to each of the columns in the new dataset. Through this, a
good approximation to the real value in the corresponding quality
dimension of the dataset can be achieved.

The first part of the equation, represented by equation 5, calcu-
lates the number of erroneous values in column i before forming the
join, which is stored in the variable 𝑒𝑟𝑟𝑜𝑟𝑠𝑖 . Then, it iterates over
all of the other dataset’s j and calculates the number of erroneous
values in column i that were introduced by joining dataset.

Once calculated the error for each column in i ∈ 𝑐𝑜𝑙𝑡𝑜𝑡𝑎𝑙 , for get-
ting the final centralized quality value, in the formula 6 is calculated
the mean of all the columns.

𝜖𝑖 = 𝑒𝑟𝑟𝑜𝑟𝑠𝑖 +
∑︁

∅≠𝐽 ⊆{1,...,𝑛}\{𝑖 }
(−1) | 𝐽 |+1

�� (⋂
𝑗∈ 𝐽

𝑟𝑜𝑤 𝑗

)
\𝑟𝑜𝑤𝑖

�� (5)

𝑃𝑟𝑒𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
1

𝑐𝑜𝑙𝑡𝑜𝑡𝑎𝑙

𝑐𝑜𝑙𝑡𝑜𝑡𝑎𝑙∑︁
𝑖=1

(
1 − 𝜖𝑖

𝑟𝑜𝑤𝑡𝑜𝑡𝑎𝑙

)
(6)

Figure 2: Usage example of the purity dimension

CAM

DENMDatex II

Meteo
data

CAM
meteo

Datex
CAM

ITSC data
ITSC

meteo
DENM
meteo

Domain 1
Domain 2
Domain 3

Figure 3: Mobility use case dataset graph

The formula in the image calculates the default quality of a
product. Default quality is a measure of a product’s quality before
any testing or inspection is conducted. It is calculated as the sum
of the expected errors in each feature of the product.

7 Validation Scenario
In this section, we advocate for the use of the new purity dimen-
sion in a use case for the validation of the methodology presented
in Section 4 and the formulas explained in Section 6. Section 7.1
presents the use case scenario, followed by Section 7.2 which shows
the use case’s outcomes.

7.1 Mobility Use Case
As a matter of illustration, we present a mobility use case in the
field of ITS 2. Let’s imagine a company that needs to optimize
its real-time traffic control system using datasets from various
sources. All these data sources are not stored within the company
but are decentralized between the different providers of mobility
sensors. Among these data we have different mobility standards,
such as CAM 3 [8], DENM 4 [37] or Datex II [12], and we also have
meteorological data from the cities.

The objective is to measure the quality of all data before using it
in different artificial intelligence models. However, the challenge
faced is that each data distributor assesses data quality using dif-
ferent standards. Hence, we cannot impose our quality standards

2Intelligent Transportation System
3Cooperative Awareness Messages
4Decentralized Environmental Notification Messages
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Dataset D B C

1 CAM data 0.25 0 0
2 DENM data 0.25 0 0
3 DATEX data 0.12 0 0
4 Meteo data 0.38 0 0
5 CAM meteo 0.25 0 0.25
6 DENM meteo 0.25 0 0.25
7 CAM Datex 0.38 0.07 0.25
8 ITSC data 0.38 0.07 0.33
9 ITSC meteo 0.25 0 0.38
D: Degree, B: Betweenness, C: Closeness

Table 1: Results of centrality indicators

Timeliness F. 4 Completeness F. 5 and 6

Amount of Data Duplicate Rows Real Quality Predicted Quality Real Quality Predicted Quality

500 0 0.5999 0.5999 0.5547 0.5547
500 90 0.5849 0.5554 0.555 0.553
500 180 0.5979 0.5870 0.5602 0.5533
500 300 0.5784 0.5694 0.5604 0.5521
1500 0 0.617 0.617 0.557 0.557
1500 90 0.6158 0.5915 0.5584 0.5536
1500 180 0.624 0.6139 0.5622 0.5544
1500 300 0.6367 0.6144 0.5636 0.5536
3000 0 0.6086 0.6086 0.5544 0.5544
3000 90 0.6103 0.6022 0.555 0.5525
3000 180 0.6286 0.6069 0.5592 0.5529
3000 300 0.6364 0.6154 0.5735 0.5598

Table 2: Result comparison of the centralized quality formulas

on them. Figure 2 illustrates a common example of data decentral-
ization in the cloud. Each domain is formed by a distributor in the
network, and each one will have the corresponding datasets. In
Figure 3 it is shown how all the datasets of the different domains
are related. As can be seen in the image, each dataset forms a node
within the network, and the connection between the nodes is re-
sponsible for representing the relationships between the different
datasets.

In this scenario, the purity dimension gains strength when want-
ing to work with data from other domains. It will allow us to calcu-
late the relevance of each dataset within the network, considering
the significance for the company. This enables us to understand
the potential impact in case of changes to any dataset. Also, the
implementation of the dimension will save cloud resources through
centralized quality prediction. Because the quality of the resulted
dataset could be uncertain in the six data quality dimensions. In
these types of cases, the newly introduced quality dimension in the
document becomes suitable.

7.2 Results
This section presents the main results of the process to validate
the new purity dimension in the mobility use case. To verify the
feasibility of purity dimension as a new beneficial dimension of
data quality in decentralized scenarios, it is relevant to check the
different indicators presented with the data provided in the use
case.

As explained in the use case, we have four datasets from different
domains. These domains initiate requests to integrate their datasets
with those accessible on the network. In Table 1, it can be seen
the results of centrality (degree, betweenness, and closeness) of the
different datasets created with the main four datasets.

As can be observed, there are three different cases. The first one
concerns datasets from which data originates, which have a zero in
fields B and C since they are located at the edge of the graph. On
the other hand, we can see datasets that are in the middle of the
network; these have values in both B and C, indicating that they
depend on another dataset for their creation, and in turn, another
dataset depends on them. Finally, we have datasets that have no
dependent dataset connected to them. These have a zero in B since
they are not in the middle of the network, but they have a non-zero
value in C.

As previously stated, these values represent the node’s relevance
in the graph, the most important datasets are the ones with a zero
in B andC, because they are the origin of the data, and the one with
high values in B and C, because they have more datasets depending
from them. If changes are made to that data, it would affect the
other datasets in the network will greatly be affected.

The implementation of data purity in the use case is also essential
cause the big amount off data that could be stored in each domains.
To avoid processing data with potential poor outcomes in various
quality dimensions, the formulas presented in Section 6.2 have
been tested on the merge of the four datasets of the use case. To
achieve this, tests were performed with varied quantities of data in
each dataset and with different row duplication, allowing us to see
how these factors might affect the formulas performance. We have
tested the formula with varying numbers of rows in the datasets to
observe how this might impact the results, especially when dealing
with large amounts of data. Additionally, we measured the effect
based on the quantity of duplicated rows in each dataset. This
consideration arises because, as formulas evaluate the error for
each column by computing values across rows, repeated values can
influence the final prediction outcome. However, as demonstrated
in the validation scenario of this manuscript, even when duplicating
a substantial number of rows, the result is not significantly affected.
These results can be observed in Table 2, where both the actual and
predicted values of the two measured dimensions (timeliness and
completeness) for the test are displayed. The Mean Squared Error
(MSE) of formula 4 is 1, 26%, while in Formula 5 and 6 is 0, 45%.
Considering the low error in these predictions, it is reasonable to
assume that they perform well.

8 Conclusions and Future Work
In this research, we provide a new dimension for the data quality
known as Purity, which measures the relevance of the datasets in
the network and helps to mitigate unnecessary processing usage
in the cloud. The addition of purity as a component of data quality
offers a more comprehensive view of data quality in complex and
decentralized systems. This technique can be especially useful in
instances where hierarchy and dependency among datasets are
essential components of the decision-making. On one hand, the
new dimension predicts the quality of the future data before it is
merged with the six dimensions of data quality, so the data manager
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can decide whether to compute the merger or not. On the other
hand, three indicators of data centrality have been implemented
to determine the importance of each of the datasets, taking into
account how close it is to the rest of the data, how many nodes
are connected to it, and how central a node is in the communica-
tion between others. Purity dimension has been analyzed through
the mobility use case presented in the Section 7. In it, the proper
functioning of the formulas presented in the manuscript has been
demonstrated for different mobility domains.

Given our findings on cloud quality measurement, it is clear that
a more effective approach is to assess quality from the outset at the
edge. Therefore, our future research will focus on advancing edge
quality measurement and addressing the rise of decentralized com-
puting and reliance on edge devices. We aim to contribute insights
by exploring innovative methodologies for quality assessment and
enhancing the performance of distributed systems. Investigating
quality metrics and monitoring mechanisms at the edge is crucial,
providing potential for optimizing service and application delivery
in our evolving technological landscape.
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