

Root phenotyping toolbox for more resilient crops

ARVALIS

Katia BEAUCHÊNE

August 29th, 2024, Rennes FRANCE

Funded by the European Union

Root2Res Mid term symposium

Phenotyping toolbox Context, project description

01

03

07/7

Root phenotyping methods 02 CE Review

Field root phenotyping Evaluation of different methods

> **Next steps** Update SOP for breeding

Root2Res Mid term conference

Phenotyping toolbox

Context, project description

01

ESA, 29/08/2024 – Rennes FRANCE

Root2Res « Phenotyping toolbox»

Define and provide a complete set of tools to consider root traits

Aims:

Evaluate and improve innovative tools to characterize morphological root traits, microbiome and envirotyping to find useful proxies or methods and bridge the gap between field and controlled environment. => IMPROVE methods

WP2 will also coordinate the phenotyping activities of the project to be sure that all trial and data will be available for project analysis.

=> APPLY methods for other WP

Characterize rhizosphere traits focusing on root exudation & associated rhizosphere microbiome

=> DEVELOP methods for rhizosphere traits

Zasks

Phenotyping toolbox for morphological traits (ARVALIS)

 Field and Controlled conditions

 Phenotyping toolbox for root and related rhizosphere traits (BOKU)

- Controlled conditions

Envirotyping coordination (ADAS)

- Field and Controlled conditions

Protocols for each crop

- ✓ Design trial, varieties, seeds, measurement (abg part, roots, environment)...
- ✓ List of mandatory or optional measurement in <u>ProtocolTraits.xlsx</u>
- ✓ TRAINING
- ✓ Sum / overview via some slides
- ✓ Data set format : <u>WP2.1_XXX_23_FP_XXX_1DataTemplate.xlsx</u>
- ✓ First analyses per trial (partner)
- ✓ Share results during 3 crops meetings (cereals, potato, legumes) Field and CE
- \checkmark Check and clean data

	to do as		Mr. real	*			Lands Provide	and the second second		
3) Agronom	aic data	-		4) 201	1.41	10		1	-	9
No yield differe between variet differences for traits	nces les but other	1 1 1 1 1	'	Ę	÷	1		-	4	
		1	-	with	· (****	-		*****	188.00	
Tait	listi	Min	Max	Mediane	Residual standard error	Post hos:	significance	*****		antiage
Trait Plant donaity	linti Nojim ^a	Min 236.4	Max 305.6	Mediana 226.4	Residual standard ampr 24,9	Post hos text Takey	significance Na	*****	188.0	-
Trait Flant density 25: Carbalt emerged	linti No/tr ⁴ Degree days	Min 236.4 3045	Max 105.6 1115	Mediane 226.4 1083	Residuel standard error 24.5 10.767	Post hoc text Takey Takey	Ngrifficance Na	*****		Billion
Trait Flarit density 235 : Ear holf emerged Harvested grain weight	linn No/er ^s Degree days d	Min 225.4 3045 9.85	Max 305.5 1115 12.4	Mediana 206,4 1083 11.2	Residuel standard error 24.9 10.757 0.436	Post ho; text Takey Takey Takey	significance No * Hs			attar
Trait Flant density ZIS: Ear holf emerged Harvested goain weight 480 on teart at harvest	Unit No/m² Degree days d N	Min 238.4 1045 9.85 10.8	Max 305.5 1115 12.4 11.2	Mediana 226.4 1083 11.2 11.2	Residual standard ampr 24.9 10.757 0.436 0.12	Post hor: test Takey Takey Takey Takey	significance Ns • Ns •	10000 B	188	and 4 apr
Tast Plant density 235 : Ear holf emerged Howested grain weight 190 context at harvest Yield at 15%	linti No/m² Degree daya A S S	Min 228.4 1045 9.85 10.3 86.26	Max 305.5 1115 12.4 11.2 308.59	Meclana 226.4 1003 11.2 11.2 95.75	Residual stantard ampr 24.9 10.767 0.436 0.12 3.65	Post ho; test Takey Takey Takey Takey Takey Takey	significance Ns • Ns • Ns			and a spe
Tast Plant density 255: Carholf emerged Harvested goan weight 180 ontest at harvest Nield at 15% Protain content	Unti No/m² Degree days d % a/h Si	Min 231.4 1045 9.85 10.3 86.26 5.4	Mas 105.6 1125 12,4 11,2 103.59 13,4	Mediane 28.4 1001 11.2 11.2 95.75 11.25	Realidual standard empr 24.3 10.767 0.436 0.436 0.436 0.436 1.023	Post hos: test Takey Takey Takey Takey Takey Takey	significance Ns Ns Ns Ns Ns Ns	an an a	188.0	gen d ager
Thait Flant domity 255 : Ear haft ennerged Revested gain weight 800 ontest at harvest Yield at 15% Pestain content Enein specific weight	linii Nojer ⁴ Degree days d S S S S S S	Min 238.4 1045 9.85 10.8 86.26 5.4 65.3	Max 105.5 1115 12.4 11.2 103.59 13.4 10	Mediane 28.4 1083 11.2 11.2 95.75 11.25 67.85	Ranickad standard antor 24.3 10.767 0.436 0.12 3.65 1.033 0.455	Post hos: test Takey Takey Takey Takey Takey Takey Takey	Ngrificance Na Na Na Na Na Na Na Na Na Na	antari p	188.0	

Summary of the Root2Res trial network

				2023 Network					
Location	ACZ	Partner	WPs	Cer	eals	Pot	ato		
				Barley	Durum Wheat	Potato	Sweet Potato	Faba Bean	
UK (England)	1	ADAS	WP2	ν Δ				-	
France	1	ARVALIS	WP2	V		2 x √			
UK (Scotland)	1	JHI, BOKU, UNIDUN	WP2-WP5	Δ		Δ	Δ	Δ	
UK (Scotland)	1	JHI	WP2			√ ∆			
Ireland	1	TEAGASC							
Slovenia	2	KIS	WP2	٧		٧		V	
Germany	2	UFZ	WP5	Δ				Δ	
Morocco	3	ICARDA	WP2	V	V	-		V	
Italy	3	CNR	WP2	-				-	
Spain	3	IRTA	WP2		-				
Spain	3	UVIGO	WP2	Δ				Δ	
France	3	ARVALIS	WP2		V				
South Africa	3	ARC	WP2				V		
Italy	3	UNIVPM	WP2					Δ	
Austria	2	BOKU							
Austria	2	BOKU							

			2024 1	Network	Δ Controlled Environment	
WPs	Cereals		Potato			√ Field
	Barley	Durum Wheat	Potato	Sweet Potato	Faba Bean	
WP2	νΔ				2×√ ∆	
WP4	٧					V deno
WP2	V		V			
WP4	V					experi
WP2						and Δ
WP2			V			experi
WP2			V			Cores
WP2	V		V		V	showr
WP4	٧					
WP2						
WP2	VΔ	VΔ	V		V	Δ Lysimeter
WP4	٧					_
WP2	Δ				Δ	_
WP4	٧					_
WP2	Δ				Δ	-
WP2		٧				-
WP2				V		
WP2						
WP5	Δ					
WP5					Δ	

√ denotes **field** experiments and ∆ **controlled** experiments. Core sites are shown in bold.

Barley: RGT PLANET, LAUREATE, FAIRYTALE and KWS IRINA Potato: CARA, DESIREE, INNOVATOR and EERSTELING Faba bean: LYNX, ZORAN, ASCOT and ELISAR

Root2Res mid term symposium

Root phenotyping methods 02 CE Review

ESA, 29/08/2024 – Rennes FRANCE

Root phenotyping methods

Facilities : how plants are growing ?

Data processing : which traits could be measured?

ADAS (UK), Seedling Root Screen

Facility description

- Seedling root screen (SRS)
 - Cereals and OSR
 - Plants grown for 2-3 weeks
 - 400 seedling capacity

Specific equipment for root measure

- High quality camera and imaging stand
- Images analysed using RootNav software

Traits measured with specific equipment

- Total root length
- Root length primary & lateral
- Number of roots primary & lateral
- Root tip angle primary & lateral
- Emergence angle primary & lateral
- Root system width & depth
- Convex hull (Root system area)
- Tortuosity (waviness of growth pattern)

Trials

WP2 2023 CE:

- Spring barley: Seedling root screen (8 var x 20 rep)
- Spring beans TBC: Seedling root screen (8 var x 20 rep)

CNR (ALSIA – Metaponto, MT, Italy)

Institute for Sustainable Plant Protection

Raffaella BALESTRINI

Facility description

High-throughput Plant Phenotyping platform (Southern Italy)

Specific equipment for root measure

Long glass tubes (50 cm)

Traits / Specific equipment

Belowground measure

- Computer vision software pipeline for the analysis of the roots system of a plant
- Multiple shots of a rotating cylindrical rhizotron
- Stitched panorama image
- **Roots segmentation**

Aboveground measure (if needed)

RGB, NIR, Fluorescence (top and side)

Trials

Core : Faba bean, controlled conditions WP2-2023 Methodology 4 genotype x 4 rep (x2 pots for destructive measures) x IRR/N Long tubes, 6 weeks of growth

UVIGO (Spain)

Adela Sánchez-Moreiras

Phytotron and Greenhouse

Facility description

- Phytotron and greenhouse for controlled and semi-controlled conditions
- Cereals and legumes
- Never less than 8 replicates
- 2 and 5 L Pots

Specific equipment for root measure

- Scanner EPSON v850 using the Rhizovision software
- Microscopic tools
- Root exudates extraction pump and HPLC and GC-MS tools
- Chlorophyll a imaging PAM

Traits measured with specific equipment

- Belowground: specific root length (SRL), specific root surface area (SSA), root diameter, root density, root hairs, number of root tips per root system length, xylem diameter, aerenchyma formation, root exudates.
- Aboveground: ratio of root to leave surface area, leaf length, specific leaf area (SLA), relative water content (RWC), ratio of shoot dry to fresh weight, root:shoot dry mass ratio, chlorophyll *a* fluorescence

ICARDA (Morocco) PPWP at SEA combines above ground physiology, above ground HTP and below ground traits

Andrea Visioni

Adult plant root system studies

Merchuk-Ovnat et al., 2017; https://doi.org/10.3389/fpls.2017.00703

HTP system bridge

423 cm 230 cm

System components:

- A 2 pairs of RG8 cameras Sony 24MP (4 cameras)
- B Industrial Tablet

Fully Automated Control System

different sectors to apply different water regimes/stress levels and or running multiple experiments at the

the facility can also be split in

same time

C - Control panel + battery

This system is designed to be easily upgradeable with other sensors (thermal camera, multispectral camera, etc.).

« Phenotyping toolbox» for root architecture traits in controlled conditions

Next steps for controlled environment

- Clean and share data
- Compare each facilities
- Compare root architectural traits with field environment
- □ Meta analyses : network, root / aerial part

Root2Res Mid term symposium

Field root phenotyping Evaluation of different methods

ESA, 29/08/2024 – Rennes FRANCE

Field capacities for root phenotyping

ADAS JHI (excavation) ARVALIS KIS IRTA ICARDA ARC

ADAS ARVALIS KIS (ICARDA)

<u>Minirhizotron</u>

ARVALIS ARC (pot)

ARVALIS

Agroclimate Zones (ACZ) (based on Köppen-Geiger classification) Oceanic climate (ACZ 1) Humid continental climate (ACZ 2) Mediterranean climate (ACZ 3) Subtropical climate Semi-arid climate Desert climate

Core sites

O Satelite sites

Shovelomic

% Root2Res

Share and evaluate root phenotyping methods : Shovelomic

Spade sampling Different architectural traits for each crop

Cereals

Faba bean

Funded by the European Union

Potato

Arvalis shovelomics protocol for potato

Traits (for 1 plant) :

- Plantlet No
 Stolon No per plant
- Stolon lenghts (for main stem only)
- Basal root No/max lenght per plant
- Total tuber No
- Tuber No > 15mm
- Root scanning with winrhizo

Biomass assessment (for 4 plants, fresh and dry weights) :

- Stolons
- Underground white stems
- Total root weight
- Mother tubers
- New tubers

Share and evaluate root phenotyping methods : Shovelomic for potato

Excavation : Extraction of whole potato plants from the field

Time consuming

Share and evaluate root phenotyping methods : Shovelomic for potato

Easier to carry out the field Not taking all roots...

Share and evaluate root phenotyping methods : Shovelomic for potato

Classifying, counting and measuring above and below ground plant

Wishart J et al. 2012

Traits (for 1 plant) :

- Plantlet No per plant
- Stolon No per plant
- Stolon lenghts (for main stem only)
- Stolon roots No/max length per plant
- Basal root No/max length per plant
- Total tuber No
- Tuber No > 15mm, <15 mm
- Root scanning with winrhizo

Biomass assessment (for 4 plants, dry weights) :

- Underground white stems
- Mother tuber
- New tubers (fresh and dry weight)
- Stolons
- Total root

Share and evaluate root phenotyping methods : Shovelomic

Root analysis using WinRHIZO Total root length, root diameter

Duration

Potato: 1 Sample = 5 plants Sampling + Cleaning: 2h30 Measure + scanner: 3h15 TOTAL

TOTAL for 5 plants = 6-7h

/!\ too much roots

Share and evaluate root phenotyping methods : Shovelomic for cereals

"Phenotyping toolbox" Field methods

Share and evaluate root phenotyping methods : Soil coring

Sample soil volume !

Root analysis using WinRHIZO

Scanning :

- Total root length
- Root diameter average
- Root length density (cm/cm3)
- Root biomass

Duration

Minirhizotron

Share and evaluate root phenotyping methods : Minirhizotron

<u>Video</u> sept 2023

Share and evaluate root phenotyping methods : Minirhizotron

Results from 2023 field barley ARVALIS

Duration

Trait measured : Root lenght density (mm/cm²)

High variability

Devellopment stages

Genotype

Fairytale

Laureate

RGT Planet

KWS Irina

Z30 Ear at 1 cm

Z55 Ear emergence

No differences between varieties

Share and evaluate root phenotyping methods : Soil Pit

ARVALIS-Soil pit-Protocol

- Dig the pit with a backhoe
- Finish the hole with a shovel and prepare the observation face
- Observe the rooting with a grid (e.g. 80*80 cm) with 2 cm square mesh and record it on a sheet

Duration

I Sample = 80*80 cm 0.64m ² Dig the pit : 1h Preparation + Measure : 3h	TOTAL for 1 grid (1 plot) = 4h
--	-----------------------------------

Results for "Field methods evaluation"

	Cereals Shovelomic	Fababean Shovelomic	Potato Shovelomic	PotatoExcavation	Soil coring	Minirhizotron	Soil Pit
Methods	© ARVALIS	© ADAS	O ARVALIS	IHL ®	© ARVALIS	© ARVALIS	O ARVALIS
Sample	5 plants	5 plants	5 plants	5 plants	850 cm3 per core	600 cm2	10 000 cm2
Depth	0-25 cm	0-25 cm	0-25 cm	0-25 cm	0-80 cm	30-100 cm	0-100 cm
Time per sample	1h30	1h	7 h	39 h	4 h / core	20 min / date	4 h
Cost (invest)	40€ shovel (7 000€ Winrhizo)	40€ shovel (7 000€ Winrhizo)	40€ shovel (7 000 € Winrhizo)	40€ shovel (7 000 € Winrhizo)	36 500 € soil corer 7 000 € Winrhizo	22 000 € rotative scanner	Excavator rental
Main Traits	Root number, angle, lenght, surface area and diameter Root branching index	Root number, angle, lenght, surface area and diameter Root branching index	Root and stolons : biomass, length, surface area and diameter Root branching index	Biomass, length, surface area, diameter and root branching index for stolons, stolon roots, node roots de stolons and mother tuber roots	Root biomass, length, surface area and diameter	Dynamic root length density (cm.cm²) and dynamic avreage of root diameter	Root density (presence/absence of roots per cm²)
Disadvantages	First horizon sampling	First horizon sampling	First horizon sampling	Extremely time consuming	Time consuming	Not available on the first horizon (0-30 cm)	Very destructive, once
Advantages	Easy, quick	Easy, quick	Easy to apply 3D architecture, main biomass	Comprehensive measurement of all roots in the ridge	Deep rooting, root biomass all over 80 cm depth	Non destructive ! Dynamic measurements on deep rooting	Wide and deep field of view

Results for "Field methods evaluation"

From data available in april 2024

Funded by the European Union

	Cereals Shovelomic	Soil coring	Minirhizotron	Soil Pit	
Methods	© ARVALIS	C ARVALIS	© ARVALIS	O ARVALIS	
Sample	5 plants	850 cm3 per core	600 cm2	10 000 cm2	
Depth	0-25 cm	0-80 cm	30-100 cm	0-100 cm	
Time per sample	1h30	4 h / core	20 min / date	4 h	
Cost (invest)	40€ shovel (7 000€ Winrhizo)	36 500 € soil corer 7 000 € Winrhizo	22 000 € rotative scanner	Excavator rental	
Main Traits	Root number, angle, lenght, surface area and diameter Root branching index	Root biomass, length, surface area and diameter	Dynamic root length density (cm.cm²) and dynamic avreage of root diameter	Root density (presence/absence of roots per cm²)	
Disadvantages	First horizon sampling	Time consuming	Not available on the first horizon (0-30 cm)	Very destructive, once	
Advantages	Easy, quick	Deep rooting, root biomass all over 80 cm depth	Non destructive ! Dynamic measurements on deep rooting	Wide and deep field of view	2Res

Field methods to identify and validate ideotype traits

	Traits	Shovelomic	Soil coring	Minirhizotron	Soil pit
ental	Greater root dry weight	✓ for 0-20 cm depth	✓ for 0-80 cm depth	-	-
al/developm«	Deeper rooting	- Root angle ?	\checkmark	\checkmark	✓
	Increased lateral root number	\checkmark	-	-	-
ctur	Early root vigour	~	-	\checkmark	-
Traits – Archite	Increased distribution of roots at depth	-	✓	\checkmark	✓
	Root surface area	✓ Possible for 0-20 cm depth	\checkmark	- (dev possible)	-
Root	Increased root length density	-	✓ cm/cm3	✓ mm/ cm2	-

ROOT2RES "Phenotyping toolbox" Deliverables

Standard Operating Procedure, video and practice abstracts

- Shovelomic
- Soil coring
- Minirhizotron
- Soil pit

@ARVALIS D2.1 Phenotyping toolboxarchitectural traits August 2023 D2.3 Phenotyping toolbox-rhizosphere September 2023 Barley Faba bean D2.2 Phenotyping workshop Sweet potato Febuary 2024 ACZ1: 29/06/23 Northern France, Field potato ACZ2: 05-06/02/24 Julich Germany, CE Funded by

ACZ3: 29/02/24 Morocco, Field cereals

the European Union

Root2Res Mid term conference

Next steps Update SOP for breeding

Envirotyping

- Specific meeting with soil specialist (WP2 site and WP5) => 24/02/23 to define data needed for envirotyping work <u>ProtocolTraits.xlsx</u>
- Collecting data from ARVALIS Still on going, **difficult to have soil data from each location before or during the trial**

Meetings on CHN and irriguide models and input to run them

Next steps

- Collect soil data and weather data from each trial site
- Choose envitotyping traits
- Take these input to run envirotyping models
- Classify each trial

Root phenotyping methods : next steps

- Compare root traits measured with different methods at the network level : in field, in controlled conditions and both !
- Compare root growth and above ground development
- Search yield correlation with a root system characterization
- Update field methods to be able to apply new version of standard operating procedure on "big" panel

Thanks

BEAUCHENE Katia ARVALIS

<u>k.beauchene@arvalis.fr</u>

Project funded by

Schweizerische Eidgenossensch Confédération suitse Confederation suitse Confederation suitsa Federal Department of Contomic Attain Education and Research EAER State Secretariat for Education, Research and Innovation SERI

Swiss Confederation