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Visually grounded few-shot word learning in
low-resource settings

Leanne Nortje, Dan Oneat,ă, Herman Kamper

Abstract—We propose a visually grounded speech model that
learns new words and their visual depictions from just a few word-
image example pairs. Given a set of test images and a spoken query,
we ask the model which image depicts the query word. Previous
work has simplified this few-shot learning problem by either using
an artificial setting with digit word-image pairs or by using a
large number of examples per class. Moreover, all previous studies
were performed using English speech-image data. We propose
an approach that can work on natural word-image pairs but
with less examples, i.e. fewer shots, and then illustrate how this
approach can be applied for multimodal few-shot learning in a
real low-resource language, Yorùbá. Our approach involves using
the given word-image example pairs to mine new unsupervised
word-image training pairs from large collections of unlabelled
speech and images. Additionally, we use a word-to-image attention
mechanism to determine word-image similarity. With this new
model, we achieve better performance with fewer shots than
previous approaches on an existing English benchmark. Many of
the model’s mistakes are due to confusion between visual concepts
co-occurring in similar contexts. The experiments on Yorùbá show
the benefit of transferring knowledge from a multimodal model
trained on a larger set of English speech-image data.1

Index Terms—few-shot learning, multimodal modelling, visually
grounded speech models, word acquisition, low-resource language

I. INTRODUCTION

Speech recognition for low-resource languages faces a major
obstacle: it requires large amounts of transcribed data for
development [1]. In some extreme cases, it might even be
impossible to get any labelled data, e.g. when dealing with
an unwritten language. This is in stark contrast to infants that
learn words without access to any transcriptions [2]–[6]. This
is one motivation for recent studies into multimodal few-shot
learning [7]–[9]: learning new concepts from a few examples,
where each example consists of instances of the same concept
but from different modalities. E.g., imagine a robot seeing a
picture of a zebra, kite and sheep while also hearing the spoken
word for each concept. After seeing this small set of examples
(called a support set) the robot is prompted to identify which
image in an unseen set corresponds to the word “zebra”.
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Building off of a growing number of studies in visually
grounded speech modelling [10]–[16], we consider this mul-
timodal problem of learning the spoken form of a word
and its visual depiction from only a few paired word-image
examples. Multimodal few-shot speech-image learning was
first introduced in [7] and then extended in [8] and [9]. But
these studies were performed in an artificial setting where
spoken isolated digits were paired with MNIST images of
digits. This shortcoming was recently addressed by Miller and
Harwath [17], who considered multimodal few-shot learning on
isolated words paired with natural images. Their specific focus
was on learning a new concept while not forgetting previously
learned concepts, i.e. dealing with the problem of catastrophic
forgetting. (We do not explicitly focus on the catastrophic
forgetting problem here, although we do evaluate using the
same setup as [17].) While their methods performed well in
a few-shot retrieval task with five classes, they required a
relatively large number of samples per class, i.e. many “shots”.
Our first overarching aim is to do visually grounded multimodal
few-shot learning on natural images with fewer shots. All
previous studies also performed experiments using English
speech-image data. Our second goal, therefore, is to present a
few-shot evaluation on a real low-resource language.

Our new multimodal few-shot approach combines two core
ideas. Firstly, we use the support set to “mine” new noisy
word-image pairs from unlabelled speech and image collections.
Concretely, each spoken word example in the support set is
compared to each utterance in an unlabelled speech corpus;
we use a new query-by-example approach to identify segments
in the search utterances that match the word in the support set.
We follow a similar approach for mining additional images
from the few-shot classes by using cosine distance between
pretrained image embeddings. The mined words and images
are then paired up, thereby artificially increasing the size of
our support set in an unsupervised way. This mining scheme is
very similar to that followed in [9], where it was used on digit
image-speech data with simpler within-modality comparisons.
Secondly, our new approach is based on a model with a word-to-
image attention mechanism. This multimodal attention network
(MATTNET), takes a single word embedding and calculates
its correspondence to each pixel embedding to learn how the
word is depicted within an image. This is similar to the vision
attention part of the model from [18], where the goal was to
localise visual keywords in speech (not in a few-shot setting).

Using the English SpokenCOCO speech-image dataset [19],
two evaluation settings are considered. We first evaluate our
approach on the few-shot retrieval task also used in [17]. We
show that MATTNET achieves higher retrieval scores for fewer
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shots than [17]’s models. Secondly, we evaluate our approach
in a more conventional few-shot classification task where it
only needs to correctly distinguish between classes seen in the
support set. We show that we can achieve five-way accuracies
higher than 80% with as little as five shots.

Still using the English SpokenCOCO models, we then
perform an exhaustive analysis to understand the parts of our
approach that are most essential, the characteristics of mistakes,
and how performance differs across keywords. This includes
qualitative results showing that the few-shot model can localise
objects in images given a spoken word query.

To address our second overarching goal, we finally do
multimodal few-shot learning using a Yorùbá speech-image
dataset [20], illustrating for the first time that these few-shot
approaches can be applied to a real low-resource language.

This work is an extension of the conference paper [21],
where the main results on the SpokenCOCO benchmark were
presented (a slightly improved model is used here). The current
paper extends this work with a thorough analysis, ablation
experiments, and the application of the model to a low-resource
language. To summarise, we make the following contributions:
(1) we introduce a new mining scheme operating on natural
images and speech, (2) we introduce a new attention-based
model for multimodal few-shot learning, (3) we give a thorough
analysis of the proposed approach, and (4) apply the approach in
a new low-resource multimodal few-shot learning benchmark.

II. VISUALLY GROUNDED FEW-SHOT LEARNING AND
EVALUATION

We train a model on a few spoken word-image examples.
The set of K examples per class is called the support set S.
Each pair in S consists of an isolated spoken word aj and
a corresponding image vj . For the one-shot case shown in
the top part of Fig. 1, S consists of one word-image example
pair for each of the L classes. For the L-way K-shot task, the
support set S = {aj ,vj}L×K

j=1 contains K word-image example
pairs for each of the L classes. In this work, we use a few-shot
model for two tasks, as we describe next.

A. Visually grounded few-shot word classification

In this task, illustrated in the middle and bottom of Fig. 1,
we are given an unseen isolated spoken word query a and
prompted to identify the corresponding image in a matching
set M = {vi}L

i=1 of unseen test images. M contains one image
depicting each of the L classes. Neither the test-time speech
query a nor any images in M occur in the support set. This
image-speech task was considered in [7]–[9], but here, for the
first time, we use natural images instead of isolated digit images.
In contrast to the task described next, this is conventional few-
shot classification where the model only needs to correctly
distinguish between classes seen in the support set, i.e. there
are no other background or imposter classes.

B. Visually grounded few-shot retrieval

In contrast, in this task the goal is to test whether a model can
search through a large collection of images and retrieve those
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Question: In which picture does the spoken keyword  occur?
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Fig. 1. Given the few examples in the support set S, the multimodal few-shot
classification task is to e.g. identify the image depicting the word “zebra” from
a set of unseen images.

that depict a few-shot speech query, i.e. the matching set M in
this case contains images that depict the L few-shot classes but
also images that depict other classes. These additional images
might contain completely unseen classes, or background classes
potentially seen during pretraining of the few-shot model. The
model is penalised if it retrieves one of these imposter images.
This few-shot retrieval task was proposed in [17]. Their interest
was specifically in measuring catastrophic forgetting. Since
their task requires a model to distinguish between few-shot
classes and other classes, it can be used to not only determine
whether models can be updated to learn new classes from
only a few examples, but also how well the model remembers
previously learned (background) classes. We do not explicitly
focus on the catastrophic forgetting problem, but we want to
compare to [17]. Therefore, we also consider this retrieval task.

For both tasks we need a distance metric DS(a,v) between
instances from the speech and vision modalities. Next we
describe the model that we use to compute this distance metric.

III. MULTIMODAL FEW-SHOT ATTENTION

Our approach for determining DS(a,v) relies on two
core components: a model with a word-to-image attention
mechanism and a method to mine pairs using a few ground
truth word-image examples (given in the support set).

A. Word-to-image attention mechanism

Our model is shown in Fig. 2 and we call it MATTNET

(Multimodal ATTention NETwork). We adapt the multimodal
localising attention model of [18] that consists of an audio and a
vision branch. For the vision branch, we replace ResNet50 [22]
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Fig. 2. MATTNET consists of (c) a vision and an audio network. The audio network consists of (a + b) an acoustic context network and a BiLSTM network.
The audio and vision networks are connected with a word-to-image attention mechanism.

with an adaption of AlexNet [23] to encode an image input v
into a sequence of embeddings yv. Originally [21], additional
linear layers were used after the image embeddings, but
removing these did not impact performance. For the audio
branch, we use the same audio subnetwork as [18] that consists
of an acoustic network f acoustic which extracts speech features
from a spoken input a. However, [18] takes an entire spoken
utterance as a, whereas we use a single isolated spoken word.
We also add a few linear layers to the BiLSTM network
fBiLSTM to encode the speech features into a single audio
embedding ya, similar to acoustic word embeddings [24]–[27].
We connect the vision and audio branches with a multimodal
attention mechanism to compare the word embedding ya to
each embedding in yv.

To get this word-to-image attention mechanism, we take the
keyword localising attention mechanism of [18] which detects
whether certain keywords occur in both spoken utterances
and images. However, we aim to only detect whether a single
isolated spoken word occurs somewhere within an image. More
specifically, we calculate attention weights over the image
embeddings by calculating the dot product between ya and each
embedding in yv. By taking the maximum over the attention
scores, we get a similarity score S. The higher S, the more
probable it is that the spoken word corresponds to one or more
objects in the image. If S is low, it is less probable that any
object in the image corresponds to the spoken word.

We train MATTNET with a contrastive loss:

l = MSE (S(a,v), 100) +

Npos∑
i=1

MSE

([
S(a,v

+
i ), S(a

+
i ,v)

]
, 100

)

+

Nneg∑
i=1

MSE

([
S
(
a
−
i ,v), S(a,v

−
i ), S(a,v

bg
i )
]
, 0

)
,

(1)

where S is calculated with MATTNET and we limit S ∈ [0, 100].
Intuitively this loss should push a, v and the positive examples
a+i and v+

i closer together using a mean square error (MSE)
that pushes the list of similarities to 100. At the same time
the loss should push the negative examples a−i , v−

i and vbg
i

away from these positives (through the MSE to 0). But before

we can do this, we need positive (a+i , v+
i ), negative (a−i , v−

i ,
vbg
i ) and anchor (a, v) pairs.

B. Few-shot pair mining

For few-shot training, we only have the small number of
ground truth examples in the support set S . This would not be
sufficient to train the model. To overcome this, [9] proposed
a pair mining scheme: use the audio examples in S and
compare each example to each utterance in a large collection of
unlabelled audio utterances, and similarly for the images. The
mined items can then be used to construct more word-image
pairs for training. While in [9] the unlabelled collection of
audio consisted of isolated spoken words (which was artificially
segmented), here we consider an unlabelled collection of audio
consisting of full spoken utterances (a more realistic scenario).

The simple isolated-word comparison approach used in [9] is
not adequate for this setting. We employ another approach. We
have a spoken word in our support set that we want to match to
unlabelled unsegmented utterances in a large audio collection.
This is similar to fuzzy string search, i.e. finding a set of
strings that approximately match a given pattern. However,
algorithms from string search are not directly applicable to
speech since they operate on a discrete alphabet. We therefore
use QbERT (query-by-example with HuBERT). The idea is to
encode speech as a set of discrete units that approximate phones.
Then we can apply standard string search algorithms to find
examples that match a given query word. We use HuBERT [28]
to map input speech into discrete units. Concretely, we use layer
seven of HuBERT-Base for K-means quantisation with 100
clusters. Then we divide the units into variable-duration phone-
like segments following [29]. Finally, we search the dataset
by aligning the query to each utterance using the Needleman-
Wunsch algorithm [30]. An alternative to QbERT would have
been to use dynamic time warping (DTW), as is done in [9].
However, in a developmental experiment we found that DTW
achieves an isolated word retrieval F1 score of 76.8% while
QbERT achieves 98.7%.
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Fig. 3. The SpokenCOCO data splits used to train and evaluate the MATTNET model. The background data (blue background) consists of spoken audio
utterances and images belonging to concepts not present in the support set. The mining splits consist of single-modality audio and image samples from which
the training data is artificially extended, and include both background samples and samples belonging to the few-shot classes (green).

Using QbERT, we compare each spoken utterance in an
unlabelled collection of audio utterances to each spoken word
example in S. For each utterance, we take the highest score
across the K word examples per class and rank the utterances
from highest to lowest for each class. The first n utterances
with the highest scores for a class are predicted to contain
the spoken form of the word. Additionally, we use QbERT’s
predicted word segments to isolate matched words. To mine
image pairs, we follow the same steps, but instead we use
AlexNet [23] to extract a single embedding for each image
and use cosine distance to compare image embeddings to one
another. To get word-image pairs, we mine an image from the
same predicted class as a segmented word. Negative pairs are
taken from the positive pairs of other classes. We also mine an
extra negative image vbg

i from a set known to not contain any
of the few-shot classes (referred to as the background data, see
below). Therefore, during the few-shot retrieval task, images
containing few-shot classes can be distinguished from images
that depicts none of the few-shot classes.

IV. ENGLISH FEW-SHOT SPEECH-IMAGE EXPERIMENTS

Before we get to an actual low-resource setting, we do
experiments and perform analyses on an English benchmark.

A. Experimental setup

1) Data: For our English experiments, we use the Spo-
kenCOCO Corpus [19] which consists of the MSCOCO [31]
images with recorded spoken captions corresponding to the
MSCOCO textual captions. Fig. 3 shows how we partition
the dataset. Firstly, we use the setup of [17] to divide the
SpokenCOCO dataset into a few-shot set (green) and a
background set not containing any of the few-shot classes
(blue).2 We use the same few-shot classes as [17]: brocolli, fire
hydrant, kite, sheep and zebra. The background data is used
to pretrain MATTNET(§IV-A2).

For the few-shot set, we further divide it into training and
testing according to the splits used by [17]. We use this testing

2 [17] refers to classes occurring in the background data as base classes.

set to sample isolated spoken word queries and matching
images for testing. For the few-shot classification task (§II-A),
we sample images only from the few-shot test set. Since the
few-shot retrieval task (§II-B) requires a single large image
matching set, we take all of the images in the few-shot test set
as well as the images in the background test set. We sample
the support set S from the few-shot training set (§II), using
the Montreal forced aligner [32] to isolate the few-shot words.
To mine pairs (§III-B), we need both an unlabelled audio and
image dataset to mine pairs from; for this we use the remainder
of the few-shot training data that does not include the support
set as well as the background training data, shown in the left
half of Fig. 3. From these unlabelled collections, we mine
pairs: the n = 600 highest ranking examples per class (§III-B).
Lastly, these pairs are split into training and validation pairs.

Utterances are parametrised as mel-spectograms with a hop
length of 10 ms, a window of 25 ms and 40 mel bins. These are
truncated or zero-padded to 1024 frames. Images are resized
to 224×224 pixels and normalised with means and variances
calculated on ImageNet [33].

2) Models: Fig. 2 illustrates our model, MATTNET (§III-A).
For the image branch, we use an adaption of AlexNet [23] to get
image embeddings. This image branch is also initialised using
the pretrained convolutional encoder (before the classification
network) of AlexNet. We use an adaption of [18]’s audio net-
work for the audio branch. This acoustic network is pretrained
on LibriSpeech [34] and the multilingual (English and Hindi)
Places dataset [35] using a self-supervised contrastive predictive
coding task [36]. While there are more modern alternatives
for the vision and audio networks, we chose these particular
variants to limit computational requirements. After initialisation,
the combined MATTNET model is pretrained on the background
data (blue, Fig. 3) using the contrastive speech-image retrieval
loss of [37]. This is then the starting point for the model that
we update using mining.

During training on the SpokenCOCO mined pairs, we take
Npos = 5 and Nneg = 11 in (1). These values were fine-tuned
on the validation pairs. We train all models with Adam [38]
for 100 epochs using a validation task for early stopping. For
the validation task, we use the validation set to get one positive
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TABLE I
THE SETUP FOR EACH MATTNET VARIANT.

Model Pretrain Mine training pairs Fine-tune

MATTNET ✓ ✓ ✓
MATTNET, no mining ✓ ✗ ✓
MATTNET, no fine-tuned ✓ ✗ ✗

image v+ and one negative image v− for each validation
word-image (a, v) pair. The validation task measures whether
the model will place v and v+ closer to a than it would v−.

To understand the models we discuss in the following section,
we give the model names and their setup in Table I. Our
full model is referred to as “MATTNET”; it is pretrained on
background data and then fine-tuned on the mined pairs. For
the “MATTNET, no mining” model, instead of training on the
mined pairs, we only update the model on the samples in the
support set. The “MATTNET, no fine-tuned” model consists of
only the pretrained model; it is not updated with the few-shot
classes in any way. To do the few-shot tasks with this model,
we use the indirect few-shot method of [7], [8]: each a is
compared to each aj in S to find the audio example closest
to the query. The image vj corresponding to the closest aj is
then used to calculate the similarity to each image vi in M.
This model can thus be seen as evaluating the quality of the
embedding spaces obtained through pertaining when data from
unseen classes are presented to the model.

3) Few-shot evaluation tasks: We evaluate our approach
on two tasks (as explained in §II): a traditional few-shot
classification task and a few-shot retrieval task. For both tasks,
the K-shot L-way support set S contains K ground truth
spoken word-image pairs for each of the L = 5 classes and
is used to mine pairs for training and validation. In the few-
shot classification task, we sample 1000 episodes where each
episode contains L spoken word queries a, one for each class,
and a matching set M which contains one image vi for each
class. In the few-shot retrieval task, instead of having one
image per class, M consists of 5000 images vi where some
depict a few-shot class and others do not. Here, 20 query words
are taken per class and averaged to get a. For each of the L
queries a, these 5000 images are ranked from highest to lowest
similarity. The precision at N (P@N ) score is the proportion
of images in the top N highest ranking images that are from
the same class as a. N is the actual number of images in M
that depicts the word class.

B. Experimental results
We start by comparing to two of [17]’s models on the

few-shot retrieval task. The first is their naive model, which
is pretrained on background classes and then fine-tuned on
K = 100 examples for each of the L = 5 classes. The second
is an oracle masking model in which the contrastive loss used
during fine-tuning ensures that a negative image does not
contain any instance of the anchor few-shot class. The results
are given in Table II.3 (Not all settings considered here were
evaluated in [17], so these are indicated with dashes.)

3These scores are slightly different from those in [21] because we do not
apply linear layers over the image encodings (§III-A).

Our full MATTNET model outperforms the oracle model
across all values of K. Neither MATTNET nor the oracle
masking works as well as the naive fine-tuned approach for
a high number of shots (line 1, K = 100). In the forth line
we see that our no mining approach, which is equivalent to
naive fine-tuning, does worse than the naive model from [17]
at K = 100. It is important to note that we use a different
architecture. We can, however, conclude that direct fine-tuning
only works with a large number of shots; as the number of
shots increases, we get closer to a standard supervised learning
setting, and it is therefore unsurprising that at some point naive
fine-tuning starts to outperform few-shot methods. But, taking
all this together, it is clear that our approach outperforms the
existing methods with fewer shots.

To determine the contribution of both mining and fine-tuning,
we do an experiment where we do not update MATTNET on
the few-shot classes after pretraining it on the background data
(“MATTNET, no fine-tuned”). We see that these two components
improve the scores by roughly 20% in absolute performance
when comparing lines 3 and 5 in Table II.

To further analyse the performance gains from mining, we
now consider the conventional few-shot word classification task
(§II-A). This task wasn’t used in [17]. Table III shows that the
few-shot classification scores increase as K increases when
we use mined pairs. For the no fine-tuning method, the scores
are lower than that of MATTNET and decrease slightly as K
increases. The no mining approach in which we only update
the model on the support set samples has a steep increase
in scores from K = 5 to K = 10, after which the scores
overtake MATTNET. Again, this makes sense as the amount of
training data (K) increases. Again, these results illustrate the
effectiveness of MATTNET when we have fewer shots.

Altogether, we set a competitive multimodal baseline for
both few-shot retrieval and word classification in settings where
the number of shots is small. However, the results do raise
some questions, including the following: why do the retrieval

TABLE II
P@N FEW-SHOT RETRIEVAL SCORES (%) ON THE FIVE FEW-SHOT CLASSES.

K IS THE NUMBER OF SUPPORT-SET EXAMPLES PER CLASS.

Model K

5 10 50 100

Naive fine-tuned [17] – – – 52.5
Oracle masking [17] – 8.4±0.0 24.0±0.1 35.5±0.2

MATTNET 40.3±0.1 44.2±0.1 41.7±0.2 43.7±0.1
MATTNET, no mining 13.2±0.6 34.8±0.7 40.9±0.3 40.5±0.5
MATTNET, no fine-tuned 22.0±0.4 24.1±0.8 22.7±0.5 23.2±1.1

TABLE III
FEW-SHOT WORD CLASSIFICATION ACCURACY (%) WHEN VARYING THE

NUMBER OF SHOTS PER CLASS K .

Model K

5 10 50 100

MATTNET 80.1 81.1 88.5 93.2
MATTNET, no mining 53.1 79.4 93.3 95.5
MATTNET, no fine-tuned 50.4 48.0 48.5 47.7
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query: fire hydrant query: kite

task: few-shot retrieval task: few-shot retrieval
rank: 1 · ✓ rank: 2 · ✗ rank: 3 · ✗ rank: 4 · ✗ rank: 5 · ✗ rank: 1 · ✓ rank: 2 · ✗ rank: 3 · ✗ rank: 4 · ✓ rank: 5 · ✓

score: 94.0 score: 80.7 score: 77.0 score: 74.0 score: 72.2 score: 103.8 score: 99.2 score: 95.2 score: 95.2 score: 91.8

task: few-shot classification task: few-shot classification
broccoli zebra fire hydrant sheep kite broccoli zebra fire hydrant sheep kite

score: 1.2 score: −0.4 score: 15.5 score: 2.4 score: 7.0 score: −6.4 score: −0.5 score: 10.2 score: 7.7 score: 12.2

Fig. 4. Examples of retrieval and few-shot classification for two queries using the K = 100 MATTNET model. Concepts that associate strongly with context,
such as fire hydrant which often appears in urban environments, are more challenging to retrieve than to classify.

scores for MATTNET plateau (Table II) but the classification
scores increase (Table III) as K increases? We unpack this as
part of the analysis in the next section.

V. FURTHER ANALYSIS OF ENGLISH

In this section we investigate the retrieval performance
plateau we encountered in the previous section. We also
present a finer-grained analysis looking into various aspects
that contribute to our approach’s performance.

A. Qualitative error analysis

We start with a qualitative analysis to compare the few-
shot classification and retrieval tasks. Fig. 4 shows the five
matching set images for classification and the five images that
the model retrieves when given the spoken queries “fire hydrant”
and “kite”. The analysis suggests that for some classes the
model depends on the contextual information to identify the
class. Since the few-shot image classes and their contexts are
quite distinct from one another, it does not have a significant
influence on the classification task (bottom, Fig. 4). However,
this has a more significant effect on retrieval since contextual
information may overlap more between the few-shot images
and background images (top). E.g. there might be multiple
images containing streets, but only some of them contain fire
hydrants. For classification, this learned association actually
helps since none of the other few-shot classes involves streets.

B. Per-keyword analysis

Table IV presents the individual retrieval performance for
each of the five few-shot keywords. (In §IV-B, specifically
Table II, retrieval scores were aggregated over the keyword
types.) We observe a large variance in performance across
the concepts: fire hydrant is the most challenging keyword
to retrieve (with a performance as low as 4.8% in P@N ),
while zebra is the easiest (over 85% when K = 10). The
differences between keywords could be due to a number of

factors, object size and word frequency probably being among
the most important ones, as suggested by [17, Table 4].

Interestingly, if we look at how the performance varies with
the number of shots K, we get a more nuanced picture than
the one provided by the aggregated results (in Table II). While
we previously observed the aggregated performance staying
approximately the same with larger K, here we instead see
that there are variations in both directions depending on the
keyword: the retrieval scores improve with K for sheep and
broccoli, but degrade for fire hydrant and fluctuates for kite and
zebra. We speculate that as K increases for classes that have
low retrieval scores (fire hydrant, kite), the model becomes more
dependent on the recurring contextual (background) features,
which are especially difficult to disentangle for the objects that
occupy only a small part of the image. I.e. when the few-shot
object is small, the model struggles to focus on the few-shot
object and therefore depends on the contextual data to learn the
class. Therefore, increasing K does not help. We have already
seen this to some degree in the examples of Fig. 4; next we
investigate this by analysing the model’s localisations.

C. Localisation visualisation

Where does MATTNET focus in an image when given an audio
query? We make use of the implicit localisation capabilities
provided by our model. More precisely, since MATTNET projects

TABLE IV
P@N FEW-SHOT RETRIEVAL SCORES (%) FOR EACH OF THE FIVE

FEW-SHOT CLASSES. K IS THE NUMBER OF SUPPORT-SET EXAMPLES PER
CLASS. THE NUMBER OF EXAMPLES PRESENT IN THE MATCHING SET M

FOR EACH CLASS, N , IS GIVEN IN BRACKETS.

broccoli fire hydrant kite sheep zebra
K (57) (62) (91) (63) (90)

5 40.4 11.3 27.5 33.3 77.8
10 49.1 9.7 30.8 33.3 85.6
50 50.9 8.1 20.9 36.5 82.2
100 52.6 4.8 33.0 38.1 80.0
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broccoli zebra fire hydrant sheep kite

IOU: 19.3% IOU: 35.3% IOU: 0.2% IOU: 12.6% IOU: 0.5%
rank: 1 · is correct: ✗ rank: 1 · is correct: ✓ rank: 1 · is correct: ✓ rank: 1 · is correct: ✗ rank: 1 · is correct: ✓

rank: 2 · is correct: ✓ rank: 2 · is correct: ✓ rank: 2 · is correct: ✗ rank: 2 · is correct: ✗ rank: 2 · is correct: ✗

rank: 3 · is correct: ✗ rank: 3 · is correct: ✓ rank: 3 · is correct: ✗ rank: 3 · is correct: ✓ rank: 3 · is correct: ✗

rank: 4 · is correct: ✗ rank: 4 · is correct: ✓ rank: 4 · is correct: ✗ rank: 4 · is correct: ✗ rank: 4 · is correct: ✓

rank: 5 · is correct: ✓ rank: 5 · is correct: ✓ rank: 5 · is correct: ✗ rank: 5 · is correct: ✗ rank: 5 · is correct: ✓

Fig. 5. The top five ranked samples for audio query corresponding to each of the five concepts using the K = 100 MATTNET model. For each image, we show
whether it is correct (if it contains the query concept) and the attention explanation (red indicating the input regions relevant for the given audio query). The
IOU values give the quantitative localisation performance of the attention explanations: the intersection over union of the binarised attentions with the ground
truth annotations averaged over all images that contain a given concept.

the image features to attention scores (based on the audio
feature, §III-A), we first reshape the 49-dimensional attention
vector to a 7× 7 matrix, which we then resize with bilinear
interpolation to the original image size. The resulting map
reveals the importance of the input regions: the closer the
attention score is to 100, the more likely it is relevant to the
input audio query. Fig. 5 shows the top five retrieved images
together with their attention maps for each of the five keywords.

These visualisations are useful for performing implicit
localisation of the spoken concepts in the input images, but,
perhaps more importantly, they allow us to better understand
the model. We observe that for “broccoli” the model selects the
green food in an image; the “fire hydrant” queries are associated
with urban scenes (streets and cars); and the keyword “kite”
is linked to the seaside or fields. While all these associations
are useful proxies for identifying the spoken keywords, they
also indicate that the model tends to learn correlations with
the context or other spurious features. A quantitative analysis
in terms of the intersection over union (IOU) with ground
truth annotations supports these findings, as shown at the top
of Fig. 5. This effect is not surprising given that the model
learns in a weakly-supervised manner (the training is done on
full images with no explicit localisation information) and with
noisy data (the mined samples are not always accurate).

With the analyses up to this point we can explain the
discrepancies seen at the end of §IV. Concretely, we conclude

TABLE V
PRECISION (%) OF THE AUDIO AND IMAGE PAIRS MINED FROM THE K

FEW-SHOT EXAMPLES IN S .

K Audio pairs Image pairs

5 81.1 43.9
10 83.0 47.5
50 85.4 48.0

100 87.6 51.5

that the plateau seen in the retrieval scores (Table II) is due to
the model associating contextual information or other spurious
features with a few-shot class. E.g. associating anything green
with broccoli, urban areas or vertical pole-like objects with
fire hydrant, and people in fields with kite. This aids few-shot
classification since the context or faulty features might help to
distinguish the few-shot classes. However, this hurts few-shot
retrieval since the model will return green objects (field or
grass) when prompted with “broccoli”.

D. Accuracy of the mining pairs

In §III-B we describe the method we use to mine training
pairs from only the few ground truth word-image pairs in the
support set S: to find audio matches for each spoken keyword
in S from a large collection of unlabelled speech, we use
QbERT to extract possible word matches. Similarly, we use
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AlexNet to find image matches for each image class in S . This
means that the audio and image pairs we use for training are
not 100% correct. In order to evaluate the effect that the mined
pairs have on MATTNET’s performance, we report the precision
of these pairs in Table V. For both the audio and image pairs,
the precision increases as K increases.

E. Importance of the background data

Ideally, the usage of background negative images should
force the model to throw away more contextual information
and focus more on learning the few-shot objects, since the
background negatives might have similar contexts to some of
the few-shot cases. But since we see that contextual information
is not completely ignored in the above analyses, we do the
analysis in Tables VI and VII: In the second line of both
tables, we have a model which is not pretrained at all and
also uses no image negatives during fine-tuning on the mined
pairs (§III-B), i.e. background data (§IV-A1) is not used at
all. By comparing lines 1 and 2 of Table VI, we see that
retrieval scores drops substantially. We can therefore conclude
that adding the background information does remove some
contextual information, but not all of it.

Interestingly, we see that the classification scores also
decrease (lines 1 and 2 of Table VII) when we remove all
background data. But this is mainly due to the effect of
pretraining. To see this, we look at the contribution of the
background image negatives: we train a MATTNET using the
pretrained network but leave out the negative background
images when fine-tuning. This model is listed in the third
row of the two tables. For classification (Table VII), we
see that this approach actually improves performance over
MATTNET (line 1). This makes sense since the model is now
fine-tuned exclusively on (mined) few-shot classes. But it also
illustrates that pretraining on background data is essential. For
retrieval (Table VI), we see an expected drop in performance
comparing lines 1 and 3, because the latter model is not trained
to distinguish between few-shot and non-few-shot classes.

TABLE VI
FEW-SHOT RETRIEVAL SCORES (%) OBTAINED FROM MATTNET TRAINED

WITH AND WITHOUT NEGATIVE BACKGROUND IMAGES.

Model K

5 10 50 100

MATTNET 40.3±0.1 44.2±0.1 41.7±0.2 43.7±0.1
MATTNET, no background data 18.1±1.0 23.6±1.5 26.1±0.2 23.1±0.5
MATTNET, no background im-
age negatives

29.9±0.1 31.4±0.2 32.2±0.2 32.1±0.1

TABLE VII
FEW-SHOT CLASSIFICATION ACCURACY (%) OBTAINED FROM MATTNET

TRAINED WITH AND WITHOUT NEGATIVE BACKGROUND IMAGES.

Model K

5 10 50 100

MATTNET 80.1 81.1 88.5 93.2
MATTNET, no background data 65.1 64.7 75.3 77.5
MATTNET, no background image negatives 88.0 90.1 94.8 95.3

F. Adding more keywords

Can we use our model to deal with more than five classes?
We leave an exhaustive investigation of this question for future
work, but present some initial experiments here. Concretely,
we do a test on 40 classes, which we manually select from the
dataset. When training MATTNET on the 40 classes, performance
on the same few-shot retrieval task for the original five classes
drops marginally from 40.3% to 37.1%. This shows that, despite
being trained on more classes, the model still retains most of
its retrieval performance. Similarly, classification performance
on the original five classes drops from 80.1% to 74.3%. When
doing 40-way few-shot classification, we achieve a performance
of 23.8% (this is a much more difficult task than the five-way
setting).

To see what happens on the per-keyword level when
MATTNET is trained and tested on 40 few-shot classes, Fig. 6
shows the individual scores. With 40 classes, there is more
room for error. We also see a larger distribution of few-shot
classes that the model struggles to learn. Future work will look
into improving the mined image pairs specifically (since the
audio pairs are more accurate).

VI. ACTUAL LOW-RESOURCE FEW-SHOT SPEECH-IMAGE
EXPERIMENTS

Our ultimate goal is to do multimodal few-shot word
acquisition on actual low-resource languages. To showcase our
model’s capabilities in this regard, we perform multimodal few-
shot experiments on Yorùbá, a low-resource language spoken in
Nigeria by roughly 44 million people. We apply MATTNET (§III)
to the Yorùbá Flickr Audio Caption Corpus (YFACC) [20].
Because the dataset is small, we consider only the case with
five shots per class (K = 5). We also train an English version
of our model using a similarly sized dataset for comparison.

A. Experimental setup

1) Data: YFACC is an extension of the original English
Flickr image-text captioning corpus [39], [40]. Concretely,
for each of the 8k Flickr images, one English text caption

water
bench

girl
dog

table
camera

fence
umbrella

chair
woman

street
boy

skateboard
grass

sidewalk
tower

surfboard
fire hydrant

luggage
oven
kite

clock
laptop

computer
frisbee

horse
snow

airplane
refrigerator

sink
mountain

skis
sandwich

sheep
toilet

elephant
pizza

motorcycle
broccoli

zebra

1.30
1.90
2.20
2.30
2.30
3.10

5.30
6.80

9.10
9.40

12.50
12.60

13.60
14.10
14.10

15.40
15.60

17.30
19.10
20.00

21.60
22.10
22.30

23.50
25.30

26.40
26.70

28.20
28.80

31.10
32.10
32.80
33.50

41.30
47.60
47.70

54.00
60.90

73.40
75.10

Fig. 6. The per-keyword classification scores for the 40 few-shot classes.
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was translated into Yorùbá and then recorded by a single
speaker. The YFACC paper [20] looked specifically at a
keyword spotting task for 67 Yorùbá keywords (matching the
English keywords from [41]). The YFACC test set therefore
contains 500 spoken captions with manual alignments where
each caption contains at least one of their 67 keywords. Since
not all our original few-shot classes occur in this set (§IV-A),
we choose five new classes from their 67 keywords. The Yorùbá
keywords with their English translations are given in Table VIII.

Since only the test set contains alignments for the keywords,
we have to sample the support set from the test set and use
the remaining examples to sample episodes for the few-shot
classification task. For the support set images, we crop the
images to only contain a single few-shot class since the new
classes frequently co-occur within images (unlike the setting
for the English experiments in §IV). We stress that none of the
examples in the support set occurs in the few-shot episodes’
matching sets or queries. We sample the episodes for the new
Flickr keywords in the same manner as in §IV-A3.

As a baseline, we also train an English system on very
similar data. For this, we use the English Flickr Audio Captions
Corpus (FACC) [42] which preceded and inspired YFACC. We
follow the same setup as for the Yorùbá model, but replace
the Yorùbá utterances from YFACC with the corresponding
English utterances from FACC.

2) Models: Using the sampled support set, we mine image
and audio pairs in the same way as in §V-D, with the only
difference that we take the n = 100 highest ranking examples
per class because the dataset is smaller. For mining audio
pairs in Yorùbá, we still use the QbERT approach, based on
an English-trained HuBERT model (§III-B), even though we
are searching through unlabelled Yorùbá audio. I.e. we apply
QbERT cross-lingually. For the English model, we do not use
weights pretrained on the MSCOCO background data as we did
before, since this data might contain paired instances of our few-
shot classes. There is therefore no background speech-image
pretraining. However, we use the pretrained convolutional part
of AlexNet, as well as the pretrained acoustic network of [21]
for initialisation (§IV-A2). The rest of the implementations
remain the same as set out in §IV-A.

3) Few-shot evaluation: For evaluation, we only consider
the few-shot classification task. We report performance over
1000 episodes, each episode consisting of five spoken query
words (one for each of the few-shot classes) and five images
(also one for each of the few-shot classes) in the matching
set. In contrast to the English experiments in §IV and §V,
each matching image can potentially belong to more than one

TABLE VIII
THE FIVE NEW FEW-SHOT CLASSES FOR THE ENGLISH AND YORÙBÁ

FLICKR EXPERIMENTS.

English Yorùbá

boy o. mo.kùnrin
dogs àwo. n ajá
grass korı́ko
rock àpáta
water omi

few-shot class. The reason for this is that the few-shot classes
frequently co-occur within Flickr images. To determine whether
a particular image contains one of the few-shot classes, we use
the ground truth text transcriptions available with the Flickr
data (five text captions per image for English and one per
image for Yorùbá). We mark a prediction as correct when the
query audio word matches any of the words in a transcript.

B. Experimental results

The multimodal few-shot classification results are given in
Table IX. Line 2 represents the first time that multimodal few-
shot word classification is performed on a real low-resource
language, Yorùbá. We see that the performance of the Yorùbá
model on this task (36.3%) is worse compared to the English
baseline (59.4%), trained and evaluated using a similar setup.

We didn’t initialise the English baseline model here by
pertaining it on the background SpokenCOCO data as we did
before (§IV-A) because this background data might contain
paired English instances of the few-shot classes that we
are using here. However, it is a fair experiment to use the
SpokenCOCO English data to initialise a Yorùbá MATTNET,
i.e. we use the available resources from a well-resourced
language to transfer knowledge to a low-resourced setting.
The results for this approach are given in line 3 of Table IX.
This Yorùbá MATTNET model outperforms both the English
and Yorùbá model without pretraining in terms of overall
accuracy. Per-keyword classification scores are also given
in Table IX. The English-pretrained Yorùbá model gives
substantial improvements over the non-pretrained model across
all five keyword classes, and also outperforms the English
model on three of the few-shot classes.

Fig. 7 shows qualitative examples on the first episode for
the English model and the Yorùbá model with pretraining. We
observe that many of the predictions are accurate. Some that
are deemed to be wrong could in fact be considered correct. As
a reminder, our evaluation is based on the captions associated
with each image, and in some cases the captions might omit a
keyword even though it is actually present in the image [43].
E.g. “grass” is not mentioned in relation to the image with the
boy jumping in the pool, but grass does occur in the image, and
the model selects this image. So even though it is marked as
a mistake in our evaluation protocol, it is actually correct. The
figure also shows that the pretrained Yorùbá model seems more
confident—the attention scores are higher for a given audio
keyword—than the English one, showing that the pretraining

TABLE IX
FEW-SHOT CLASSIFICATION ACCURACY (%) ON THE FLICKR DATA WITH
ENGLISH AND THREE YORÙBÁ VERSIONS OF MATTNET. THE YORÙBÁ PT

MODEL IS A YORÙBÁ MODEL INITIALISED WITH THE WEIGHTS OF THE
PRETRAINED SPOKENCOCO ENGLISH MODEL FROM §IV-A2.

Average boy dogs grass rock water
Model Mine accuracy o. mo. kùnrin àwo. n ajá korı́ko àpáta omi

Eng. ✓ 59.4 56.9 28.9 64.3 78.4 68.3

Yor. ✓ 36.3 18.8 23.2 35.4 49.8 54.5
Yor. pt ✓ 62.0 66.9 37.4 56.6 78.0 71.3
Yor. pt ✗ 29.4 47.1 30.7 29.7 21.1 18.2
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ENGLISH
matching set & annotations

boy dogs dogs, grass rock boy, water

audio queries
boy dogs grass rock water

predicted images with attention, scores & correctness

12.3 · ✓ 23.3 · ✓ 64.7 · ✗ 41.1 · ✓ 51.8 · ✗

YORÙBÁ
matching set & annotations

àwo. n ajá
o. mo. kùnrin àwo. n ajá korı́ko àpáta omi

audio queries
o. mo. kùnrin àwo. n ajá korı́ko àpáta omi

predicted images with attention, scores & correctness

29.0 · ✗ 25.3 · ✓ 72.6 · ✗ 112.5 · ✓ 108.2 · ✓

Fig. 7. Qualitative results showing the first few-shot classification episode
on Flickr for English and Yorùbá. For Yorùbá we are showing results using
the model with pretraining on background SpokenCOCO data. The labels are
selected based on the text captions. We show attention weights overlaid on
top of the images, with blue indicating the lowest scores and red the highest.

TABLE X
PRECISION SCORES (%) OF THE MINED ENGLISH AND YORÙBÁ FLICKR

PAIRS, FOR IMAGE AND AUDIO MINING.

boy dogs grass rock water
Modality o.mo.kùnrin àwo.n ajá korı́ko àpáta omi

Images 38 46 62 19 80
English audio 95 45 87 49 97
Yorùbá audio 70 42 58 57 84

improved not only the overall performance but also the attention
explanations.

Altogether, the experiments on Yorùbá shows that MATTNET

can be applied to learn word-image classes from a few examples
in a low-resource language when we also take advantage of
a well-resourced language like English. This is similar to the
findings of [44], [45].

C. Mining performance across languages

The last question that remains is: what is the effect of
using an English speech system, QbERT, to mine Yorùbá audio

pairs? Here we investigate the mining performance of the
audio segments. In Table X we show the precision of the
mined audio pairs for the two languages and five keywords. To
get the precision scores, a mined audio segment is considered
correct if the query keyword appears anywhere in the caption
(that is, we do not take the temporal alignments of the mined
segment into consideration).4

We observe that for English three keywords (boy, grass
and water) obtain excellent results (around 90% precision),
while the other two are performing more modestly (around
50% precision). To understand these results we find the
most common mistakes for each of these three keywords;
unsurprisingly, these mistakes are phonetically similar words:
“dogs” is confused with “dog” (51 times out of the 100 mined
samples) and “dock” (1), while “rock” is confused with “dog”
(20) and “rocky” (13). For Yorùbá the performance across
keywords has a more uniform spread and, while the top
performance is lower than what we obtain on English, many
of the keywords still obtain a reasonable precision.

Interestingly, the performance on the mined audio segments
does not seem to necessarily correlate with the final perfor-
mance. E.g. while the mined audio pairs of rock are among
the worst, its downstream performance is the best for both
the English and the Yorùbá pretrained models. A similar
observation can be made for boy, which is accurately mined,
but whose few-shot classification are poor compared to the
other keywords. One reason for this might be that the accuracy
of the mined image pairs for boy is low, as indicated in the
first line of Table X which shows the precision of the mined
image pairs (which is the same for both languages).

To quantify the effect of mining on classification perfor-
mance, we report results for the “Yorùbá pt, no mining” model
on each of the five keywords (Table IX, row 4). Comparing
this to when mining is used (Table IX, row 3), we see that
mining is beneficial even for keywords with modest mining
performance. This suggests that more positive samples, even
noisy ones, are better than fewer clean ones.

VII. CONCLUSION

Our goal was to do multimodal few-shot learning of natural
images and spoken words. We proposed a novel few-shot pair
mining method which we use in a new multimodal word-to-
image attention model. For the scenario where the number
of “shots” is small, our new model achieves higher few-shot
retrieval scores than an existing model on a few-shot benchmark
where an English query is used to retrieve images. We also set
a competitive baseline for natural visually grounded few-shot
word classification using English data.

In further analyses, we showed that a few-shot model can
be used to locate occurrences of an object in an image given a
spoken query, and that many of the model’s mistakes are due
to associating contextual information with a few-shot class, e.g.
fire-hydrant often co-occurring with street views.

4For English, the differences between this metric and its stricter variant that
also checks that the temporal alignments of the mined segment agree with the
spoken word are minute: less than 2% absolute.
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To showcase that our model can also be applied to a real
low-resource language, we performed—for the first time—
multimodal few-shot learning on a real low-resource language,
Yorùbá. We showed that a multimodal Yorùbá few-shot model
can benefit substantially from being initialised on a more
substantial amount of English speech-image data.

Future work will look into extending low-resource few-shot
word classification to even more classes. On both English and
Yorùbá data, our analysis also revealed that the image matching
step in the mining scheme might, in particular, be limiting
performance. Future work should therefore use recent advances
from the vision community to improve image mining.
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