
Univus
Cross-University Social Timetabling

Table of Contents

Table of Contents... 2
Introduction.. 3

Background Research on Functionality... 3
University Context..4
University Courses Attributes and Classification... 4
Technical Architecture Brief... 5

Completed Features.. 6
Mandatory Features...6
Extra Features... 6
Additional Incomplete Features... 7

Design...8
Technical Design (Architecture) Examples.. 8

Setup (Expo Go + Firebase Emulators)...12
Database Design... 13
UI/UX - Comparable Systems..17

X (Formerly Twitter)... 18
Threads..19
Notion...20
NILE...21

UI/UX - Figma Wireframes...22
Implementation.. 23
Testing (+ Mandatory Feature Evidence + ALL DESIGNS).. 28

React Native (iOS)...28
Testing Conclusions...68

Conclusion... 68
References Used...69

Introduction
Brandon Haynes
22410811

"Univus" is a new mobile app being developed for the University of GraceTech, as requested
by Vice Chancellor Kwame Yeboah mentioned in the brief. The app's main goal is to make it
easy for students to mark their attendance in lectures and to let them interact with each other
on social media, posting comments on different timelines (course, global). Using React Native
with Expo and Firebase, "Univus" is designed to be a helpful tool for both students and the
university.

A special feature of "Univus" is that it works for many universities, not just one. This is
possible because of the advanced data aggregation done with Python. However, this brings
challenges, like managing different user accounts for different universities, and making sure
the app works well for everyone. Lecturers, Students and Universities). The app needs a
strong system to handle these different needs.

For the app's design, ideas are taken from apps like Twitter, Threads, and NILE, as well as
some imagination. The aim is to make "Univus" easy to use for students, and innovative to
handle the management side of things for lecturers and universities. Handling how the app
keeps track of user information is important too. Redux (global state management for React)
will used for this to make sure the app runs smoothly.

Another important part is getting "Univus" ready for real users. This means making sure the
app works well in real situations and not just in testing. Dev Expo Go builds, and Production
builds), such as using Firebase emulators locally for testing, and real world firebase for
production. The app will have different versions for testing and for when it's actually used by
people.

In short, "Univus" is being made to be a useful and nice-looking app for universities. It's being
built to meet the specific needs of the University of GraceTech, but also to be flexible for other
universities. The journey of making "Univus" involves solving different technical and design
problems to make an app that is both useful and attractive to its users.

Background Research on Functionality

University Context
In UK universities, they all have something called a UKPRN UK Register of Learning
Providers) ID. This ID is important because it gives each university a unique number. This
makes it easier to tell them apart and is really useful for apps like "Univus" that work with
different universities. Uni owners can search based on this ID as well.

When setting up Univus so that universities can join nd signup, it's important to make sure
that only real universities can sign up. This is done by using special email addresses that
belong to the university staff, not students. These email addresses help prove that the
university (the proposed person signing up) is real. To get these email addresses, information
from a website ('https://register-api.officeforstudents.org.uk/api/Download/') was put
together and aggregated using an advanced Python script. If some email addresses were
missing, extra research was done to find them. This way, Univus makes sure that only real
universities can use the app.

The UKPRN ID is also helpful because it connects to other things like courses. This is good for
the app because it lets it link courses to the right universities. This helps make the app work
better and be more useful for students and universities.

University Courses Attributes and Classification
A collection of current courses from every university in the UK was obtained. This data was
sourced from "https://www.hesa.ac.uk/support/tools-and-downloads/unistats." Each course
in this dataset is identified by a unique KISCODE, which acts as an ID for the course. These
courses are then connected to their respective universities using the UKPRN, the unique
identifier for universities. This linkage here is crucial as it enables clear identification of which
university offers which courses.

To manage and utilise this very very large extensive dataset effectively, a custom Python
script was developed. This script's primary function was to aggregate all the course data,
initially in an Excel file format, into a more manageable JSON file. This JSON file is then used
to upload both course and university data to Firebase through a Firebase Function.

In a strategic move to minimise the Read/Write costs associated with Firestore, the data
architecture was designed to include a separate JSON file for each university. Each of these
files contains the specific data for courses and university details, ensuring that only relevant
data is accessed for each institution. This approach not only optimises Firestore usage but
also enhances the efficiency and speed of data retrieval within the app.

Technical Architecture Brief
Univus is built on the React Native framework, chosen for its ability to create mobile apps
using JavaScript (looking back, typescript would have been more professional to use). What
makes React Native special is its cross-platform capability, allowing a single codebase to
function on both Android and iOS devices. This feature simplifies the development process
and ensures a consistent user experience across different platforms. Complementing React
Native, Expo is used as a really nice framework and platform for universal React-based apps.
Expo brings tools and services that make it easier to build, deploy, nd update iOS, Android,
and web apps quickly from the same codebase.

The application also heavily relies on the Firebase Suite for various functionalities. Firestore, a
NoSQL database from Firebase, plays a very crucial role in storing and syncing data between
users and the cloud. This allows real-time updates, which are essential for features like
attendance tracking and social media interactions. Firebase Auth is another component used
in Univus, providing a comprehensive identity solution. A custom, well-thought-out user
signup flow was implemented using a combination of Realtime Database (storing temporary
students until they sign up themselves, as well as to save on read and write costs), Firestore
for storing users after signup, and Auth, for linking the two. It supports different forms of
authentication, which is crucial for managing user authentication across different universities.
The Realtime Database, another Firebase service, is similar to Firestore but caters more
towards applications trying to save on read and write costs, which we do. Think about the
amount of students there are in every single university, for example. This problem was solved
to a good degree by using Firestore and Realtime DB as a hybrid. Storage in Firebase is used
for holding user-generated content like images (profile pics), enhancing the social media
aspect of the app. Firebase Functions, which are serverless, are used for backend operations
like data aggregation and processing functions that have a complicated flow, like checking
username validation server-side, ensuring efficient backend management.

Python plays an absolutely massive role in data aggregation for Univus. It's used for gathering
university and course data from various sources and aggregating that data in to a format best
for uploading to Firebase in a firebase function. Python is a versatile language, and its
extensive library ecosystem makes it ideal for handling and processing large datasets. With
past experience in crypto-related jobs, the skills involved to make this work were incredibly
valuable.

Given the complexity of Univus, Redux is incorporated for global state management. Redux is
valuable in large applications for maintaining consistency across different components and
user interactions. It helps manage the app's state effectively, ensuring a smooth user
experience.

Completed Features
Every feature has been developed to an extremely high standard, even though the time spent
to develop the features was incredibly limited (for an app of this scale handling multiple
universities).

Mandatory Features
Below I have highlighted the MANDATORY features that have to be completed as referenced in
the assignment brief.

Admin Privileges 100%
Enrol a new student 100%
Enrol a student on a course 100%
Delete a new student 100%
Update student details 100%
Read student details 100%

Student Privileges 100%
Update their profile details 100%
Post comments on the course timeline or global timeline 100%

Other Assumed, Mandatory Privileges (based on as2 brief paragraph) 100%
Allow university owners to create courses 100%
Allow university owners to create modules 100%
Allow lecturers to create lessons 100%
Allow lecturers to manage attendance for lessons 100%
Allow students to register attendance without lecturers 100%
Beautiful GUI / Design 100%

Extra Features
Functionality appropriate for a production-level application!
Custom

QR Code Attendance Functionality
CustomWebsite for Attendance built with Next.js & Vercel (https://univus.co)
Dark Mode / Light Mode functionality (app & site)
CROSSUNIVERSITY TIMELINE for Social Media Posts
3Role system Lecturers, Students, Universities)
REALLIFE COURSES FROM REAL UNIVERSITIES
Advanced Custom User Flow (with Firebase Functions)
Expo Environment support Firebase Emulators for Expo Go)
Custom-Made Logo

https://univus.co

Timeline Posts Scroll-to-Refresh + Pagination
Advanced, Optimised Splash Screen to load data in background
Custom animations
Global State Management for Scalability Purposes
Manual Student Attendance feature
Tested for Production Build Expo
Read/Write Firestore Costs optimised

Additional Incomplete Features
Due to time constraints, these features could not be implemented in time. They were
planned from the very beginning.
Incomplete

Dynamic, Fast-Expiring, User-Specific Attendance QR Codes to prevent attendance
fraud. Decided to just generate one for time-sake.
“Devicesˮ screen for students, in which they can only register attendance on one
device, until 30 days have passed, then they can change the device they register
attendance on. This was to prevent students giving their phone to a friend in class to
sign in for them (or login on another device). In combination with QR Codes, this would
most likely 99% prevent fraudulent attendance marking.
Replies on posts Would have done a recursive firestore document structure)
Likes on Posts (denormalised. A counter, and an array of users for seeing who liked
the post, with pagination)
Go to any profile via post (one line could have added this in, but couldnʼt be bothered
as it was not a necessity at the time in comparison to attendance features)
Edit / Delete Modules
Edit / Delete Lessons
Haptic Feedback support
NOTIFICATIONS :/
CRON JOBS for deleting non-verified accounts.
Production Security Rules - This is a huge weakness. Used Firebase Functions for
most backend logic though.
Trigger Functions for Updates
Forgot Password

Design
During the development of the application, the design, especially the UI/UX, turned out to be
the toughest and most time-consuming part. The application has become one of the most
detailed in terms of design. For ideas, there was a look at well-known social media websites
and apps, as well as attendance apps like NILE, with a goal to make the mobile app (and
additional website) just as easy to use. The technical architecture also had its challenges, at a
much trickier difficulty due to the multi-university setup.

Technical Design Architecture) Examples
Below are some prime examples of the complicated architecture of the app, going through
Firebase Authentication, Functions, Realtime Databaase, Firestore, Blocking Auth Functions,
etc.

Diagrams on Next Page

Setup Expo Go + Firebase Emulators)
Install Expo: Run npm install -g expo-cli in your terminal.
Install Firebase Emulators: Run npm install -g firebase-tools and then firebase init emulators in
your terminal.

‘cd in to ‘univus/univusʼ

IF USING FIREBASE EMULATORS, RUN EMULATORS WITH ‘firebase emulators:start .̓ After,
modify the firebaseConfig.js (in univus/univus directory) to connect to the correct ports, etc.
THEN, CHANGE ‘if !__DEV__)ʼ TO ‘if (__DEV__) ,̓ and save.

IF YOU ARE NOT USING EMULATORS YOUʼRE USING ACTUAL, REAL, LIVE, FIREBASE - then
donʼt touch anything if you are running with Expo Go.

Run ‘npm expo start .̓

Open on a device.

Enjoy.

–

(If you are creating a production build of the app, be sure to change ‘if !__DEV__)ʼ TO ‘if
(__DEV__) ,̓ in firebaseConfig.js)

—-

Database Design
The database design involves denormalization, or duplicating data across collections and
documents, to reduce read and write costs. It was very tricky to get this right! This approach
is evident in the structure of the posts, users, and lectures, etc.
The reason both Firestore & Realtime Database were used is to lower read/write costs when
universities enrol students. Since every university is allowed to signup, think about how many
students that is! Students (users) only get created in Firestore properly IF the student signs up
themselves.

One weakness with the denormalisation approach is that, due to time constrains, there was
just not enough time to implement proper trigger functions to update the correct documents
CASCADE.

Below are the attributes for each document in a collection.

/universities collection:

Attribute Type

email String

emailDomain String

legalName String

ukprn String

courses Map{}

synonym String

synonymUppercase String

/universities/courses (itʼs a map, not a subcollection):

Attribute Type

courseId String

title String

/users

Attribute Type

courseID String

courseTitle String

createdAt Timestamp

email String

emailHash String

emailVerified Boolean

fullName String

role String

synonym String

synonymUppercase String

universityDomain String

universityId String

universityLegalNam
e String

updatedAt Timestamp

userId String

username String

usernameUppercase String

/posts

Attribute Type

courseId String

courseTitle String

id String

likes Number

photoURL String

postText String

replyTo Null/String

synonym String

timeline String

timestamp Number

universityId String

universityLegalNam
e String

uppercaseUsernam
e String

userId String

username String

/modules

Attribute Type

courses Array

createdAt Number

createdBy String

id String

lessons Array

name String

universityId String

/lectures

Attribute Type

duration Number

endDate Timestamp

lectureId String

lecturerId String

moduleId String

moduleName String

room String

startDate Timestamp

studentIds Array

students Map

uniqueId String

universityId String

/lectureSecrets

Attribute Type

attendanceLectureCod
e String

attendanceLectureQR String

lectureId String

lecurerId String

secret String

uniqueId String

universityId String

/users REALTIME DATABASE

Attribute Type

course String

createdBy String

email String

emailHash String

fullName String

role String

synonym String

universityDomain String

universityId String

universityName String

uppercaseEmail String

uppercaseSynonym String

userId String

UI/UX - Comparable Systems
For designing Univus, some well-known platforms were used as models. The app's Posts,
Home Screen, and Drawer Designs were inspired by X, which used to be Twitter. A special
feature from X that was really useful was switching between dark and light mode. This makes
the app easier to use in different lights and more comfortable for users.

More design ideas came from Threads, which is like Facebook's version of Twitter/X. Threads
was mainly used for ideas on how to make the profile screen look good and easy to use. Also,
NILE Northampton Integrated Learning Environment) helped shape the design of the "Univus"
attendance website (https://univus.co). To make the website look great and work well,
NextUI's tools and styles were used, and it was built with Next.js. For the Welcome Screen in
the Univus App, the Welcome Screen from Notion was used as a guide. This was to make sure
new users find the app welcoming and easy to understand.

For the logo design, DALLE was used to generate logos based on prompts given, remove the
background using photoshop and clean up the logo by modifying and creating an SVG to
ensure the logo can be used across everywhere.

X Formerly Twitter)

Threads

Notion

NILE

UI/UX - Figma Wireframes
Figma was really important in making Univus. It was used to make detailed wireframes before
starting the actual coding. Figma is great because it lets designers try out different designs
easily. With Figma, it was possible to play around with how the app looks, like changing
layouts and colours, without needing to code anything yet. This method is very useful
because it saves time and makes sure the final design is good for users. It's common to use
Figma like this in app development, to make sure everything looks right before building it.
There is a high quality figma link here:
https://www.figma.com/file/kkasMCifgxoxKMLZa9C0nl/AS2Mobile-%7C22410811?type
=design&node-id=0%3A1&mode=design&t=yajumbLIxUGGzJKG1

https://www.figma.com/file/kkasMCifgxoxKMLZa9C0nl/AS2-Mobile-%7C-22410811?type=design&node-id=0%3A1&mode=design&t=yajumbLIxUGGzJKG-1
https://www.figma.com/file/kkasMCifgxoxKMLZa9C0nl/AS2-Mobile-%7C-22410811?type=design&node-id=0%3A1&mode=design&t=yajumbLIxUGGzJKG-1

Implementation
Root.js, Redux Store & Slices:
In the application, Redux was used to manage the global state, an important part of keeping
track of user information and app behaviour. Redux basically works by using a central store
where the app's state is stored. This store is divided into 'slices', each handling a different
part of the state. For user authentication, a 'userSlice' was created. Actions and reducers
within this slice were used to update the user's login status. Based on the information stored
in the userSlice, the app could then conditionally render the correct screens. Root.js plays a
crucial role by using Redux slices to manage various states, such as loading screens and user
authentication. The appInitSlice is particularly important as it handles the loading of fonts.
When the app starts, Root.js uses this slice to check if the fonts are loaded. Once loaded, it
updates the state, which is tracked in Redux.

The user's login status is managed by another slice, which keeps track of whether a user is
logged in or not. This information is used to decide which screens to display. If the user is
logged in, they see one set of screens, and if not, they see a different set. This is done by
checking the auth status stored in the userSlice.

Overall, Root.js, with the work of (annoyingly tedious to setup) Redux slices like appInitSlice
and the user authentication slice, efficiently manages the app's initial loading screen, font
loading, and user authentication states. This setup ensures that the right screens are
displayed based on the user's login status, enhancing the user experience.

Navigation.js:
Navigation.js plays a crucial role in guiding the user through various screens and
functionalities. It uses createNativeStackNavigator from React Navigation to handle the
navigation stack, ensuring a smooth transition between screens.

The Redux store is ysed to determine the user's auth status. Based on this status, different
navigation stacks are presented. If the user is not logged in (user === null), the AuthStack is
shown, guiding them through the authentication process. Once the user is authenticated (user
! null), and if their email is verified (user.verified), they are directed to the DrawerGroup,
which is the main app interface. If the user is not verified, the VerifyEmailStack is shown to
prompt them for email verification.

Several specific screens like CalendarSelectScreen, ManageStudentsAddSelectScreen, and
others are integrated into the navigation stack too for more specific use cases, ensuring the
right screens are shown where the user shouldnt see drawer or bottom tabs for example.
Each screen is configured with custom navigation options, such as modal presentation and

custom headers. These headers are styled using the useTheme hook, ensuring consistency
with the app's dark mode and light mode.

Navigation.js effectively manages the flow of the application pretty much.

firebaseConfig.js:
In the firebaseConfig.js file, the application's connection to Firebase is configured to adapt
based on the development or production environment. The Firebase application is initialised
with specific settings provided in firebaseConfig, which include keys and identifiers for
Firebase services. Didnʼt put in env file since this can be public as per Firebase
documentation) This initial setup is cruc ial for the application to connect correctly to the
project's Firebase services.

The environment in which the app is running is determined using Expo's Constants. If the app
runs in Expo Go, it's recognized as being in a development environment. In this case, the
script connects the app to Firebase emulators for services like Auth, Firestore, Functions,
Storage, and Database. These emulators are essential for development, allowing for testing of
Firebase functionalities without impacting the production database. The connection to these
emulators is configured based on the runtime environment, defaulting to "localhost" if no
specific setting is found.

For Firebase services such as Firestore, Functions, Storage, and Realtime Database, they are
initialised using the Firebase app instance, enabling various functionalities within the app. This
flexible setup in firebaseConfig.js ensures that you can efficiently work in a development
environment using Firebase emulators and then seamlessly transition to real Firebase services
for production builds.

App.js:
In App.js, the app is set up with important parts for managing state and themes. It uses the
Redux Provider with the app's store for handling the app's state everywhere. The
ThemeProvider makes sure the app looks consistent and can be used from anywhere. Inside
these, the Root component takes care of the main navigation and screens. Also, the splash
screen is set to stay until everything is ready. This makes App.js a key part of putting the app
together, combining state management, theming, and navigation.

WelcomeScreen.js:
In the WelcomeScreen of the app, animations are used to make the screen lively and
engaging. When the screen loads, animations are set up for the logo, welcome text,
description text, and buttons at the bottom. These animations include fading in, making each

component appear in a smooth, staggered manner. This is done using Animated from
react-native, with each element having its own animation controlled by Animated.Value. The
animations start together, but each element appears one after the other, adding a nice effect
to the welcome experience. This screen not only welcomes users but also showcases the
app's interactive and user-friendly design. Pretty nice :)

AttendanceQRScreen:
In the AttendanceQRScreen, a student can sign in to a lesson by scanning a QR code. When
the screen opens, it asks for camera permission to scan QR codes. The QR code scanned is a
special secret (hashed, but completely random) code. After scanning, the app checks if the
code starts with 'lesson_'. If it does, the code is sent to a Firebase function to see if it's a valid
code for attendance.

The app uses the camera to scan the QR code. If the code is right, a message says the
attendance is recorded. If not, it says the attendance is not recorded. The screen uses a timer
to avoid scanning the same code many times quickly. This helps prevent too many requests to
the server. The screen is simple and tells the student to ask the lecturer for the QR code to
scan for attendance.

ManageLecturesAddLectureCreateLessons (+ other ManageLecture screens):
In the ManageLecturesAddLectureCreateLessons screen, lecturers can create lessons for
their courses. This screen includes options to set the start date and time, duration, and room
for the lecture. There's also a feature to make the lecture recurring weekly, with the ability to
choose how many weeks it repeats.

The screen uses the editLecture state from Redux to keep track of the lecture details. This
state helps manage information like the start date, module, and students for the lecture. By
using this state, information can be easily shared and managed across different screens in the
app. When the lecture details are set, a Firebase function is called to create the lesson with
the specified details. This function updates the information in the database, completing the
lecture creation process. The screen is designed to be user-friendly, ensuring lecturers can
easily set up their lectures.

AuthStack
The AuthStack in the app is a group of screens that help users sign up or log in. It starts with a
welcome screen. Then, if a user wants to sign up, they go through different screens to give
their information. This includes choosing the type of account, setting up a username,
password, and email. There are also screens to verify the email and pick a university. There's
a screen for users who already have an account to log in.
The app uses a navigatorr to move between these screens easily. This means users can go
back to a previous screen without losing any information they've already entered. The look of
these screens matches the app's overall style, so everything looks consistent.
In short, the AuthStack is an important part of the app. It makes sure users can sign up or log
in smoothly.

SignUpInstitutionSelect:
In the SignUpInstitutionSelect screen, users can pick their university when signing up. When
the screen opens, it loads a list of universities from the database. While loading, the screen
shows placeholders where the university list will appear. This is done using animations and
skeleton screens to make the loading look nice. Once the list is loaded, users can search for
their university. They can type the name or the UKPRN (a unique number for each university)
in the search bar. When they find their university, they can select it. After selecting, the app
takes them to the next screen to continue signing up. This is specifically for institutions only.
General students wonʼt be using this to sign up.

CreatePostScreen
The CreatePostScreen in the app allows users to craft and share their messages. On this
screen, a text input field is provided where users can type out their post.
At the top of the screen, there's a customizable header component, CustomPostHeader,
which displays the selected timeline for the post. This could be a global timeline, specific to a
university, or related to a course, or, as an extra feature, the Univus timeline, which any
student, from any university can see. Users have the flexibility to choose the appropriate
timeline for their message.

The app includes a validation feature: if a user attempts to post a message that's too short
(less than three characters), a toast notification appears, indicating the requirement for a
longer post. Once the user composes a suitable message, they can submit it. The message is
processed by a Firebase function, which is responsible for posting it to the selected timeline.

EditProfileScreen
The EditProfileScreen in the app lets users update their profile, mainly their profile picture.
When users visit this screen, they can change their profile pic. The screen starts by loading
the user's current profile image from the database. If there's no image, it shows a default one.

Users can tap on the profile image to pick a new one from their phone's gallery. The app uses
the Image Picker to let users choose an image. Once selected, the image is uploaded to
Firebase storage. Then, the app updates the user's profile in Firebase with the new image
URL.

Firebase Functions

In the app, Firebase functions play a crucial role in managing backend operations. These
functions are separate pieces of code that run on Firebase servers. They are triggered by
specific events or requests and handle various tasks, like updating databases, validating data,
or processing user actions.
Data Addition and Validation: Some functions are designed to add data to Firebase's Firestore
database. For example, they can take a list of universities from a file and upload it to the
database. These functions include checks to prevent duplicate entries and ensure that only
authorised requests are processed.
Other functions handle user-related tasks. They can create new user records in Firebase's
Realtime Database, ensuring that user data like email, name, and role are valid and correctly
formatted. They also manage user-specific actions, like setting a username, checking if it's
already in use, and updating it in the database.
These functions are essential for maintaining the security and integrity of the app's data. They
ensure that only valid and authed information is added or modified in the databases. This is
crucial in maintaining a trustworthy and reliable app environment.
By running on Firebase servers, these functions execute automatically in response to specific
triggers, making the backend processes efficient and scalable. They can handle requests
without needing a user interface, making the app more responsive and faster.

And more…
There is a lot more code than these files, but they all share a lot of the similarities of the files
mentioned previously. For example, adding, updating, reading or deleting data from Firebase
via Functions, just with different collections and documents, loading strategies and the
general stuff you see in most screen files, such as using the re-usable components made to
make the design nice, etc.

Testing (+ Mandatory Feature Evidence + ALL DESIGNS

React Native (iOS)
NOTE ANDROID WORKS FOR ALL SCREENS.)
(I mentioned there was a ‘few bugsʼ in Android, but after the video, I fixed it! Android works perfectly!! :))

Test Input / Action Expected Result Actual Result Success
/Fail?

Screenshots

Institution
Signup

GraceTech
UoGT
password69!

University of
GraceTech

support@univus.co

Username and
Synonym should be
checked successfully
to ensure they dont
exist already,

Password validation
should be done client
side to ensure match to
confirm password,

“GraceTeˮ search on
university should show
GraceTech University,

support@univus.co
(widely known
institution email) should
appear,

A verification email
should be sent to the
user, and return to
welcome screen,
indicating verification is
required.

As expected Success

mailto:support@univus.co

Institution
Login after
Email
Verificatio
n

support@univus.co
password69!

It should login and
navigate to Main Stack
Home Screen) and
show Students and
Modules buttons inside
of the Drawer

As expected Success

mailto:support@univus.co

MANDATORY

Enrol a
Student

+

Enrol a
student on
a course

Brandon H
support+brandon@u
nivus.co

Student

Web Tech & Security
Course

Create a temporary
student in the realtime
database (to save on
read/write costs from
firestore) with the data
entered and show a
screen with the user,
with an indicator for
them to manually sign
up

As expected Success

mailto:support+brandon@univus.co
mailto:support+brandon@univus.co

Student
signup
after
enrolled
from
admin

Student

HaynesX

support+brandon@u
nivus.co

password69!

Should create student
(user in firestore, and in
auth, with custom
claims) and send
verification email to
user.

As expected Success

mailto:support+brandon@univus.co
mailto:support+brandon@univus.co

Login as
Student
after
verifying
email

support+brandon@u
nivus.co

password69!

Should login the user,
show all timeline
(course, global and
super global, AKA,
course, my uni, and
univus) and have no
admin related stuff in
the drawer.

On admin screen,
should show they are
signed up.

As expected Success

mailto:support+brandon@univus.co
mailto:support+brandon@univus.co

MANDATO
RY

Student can
update their
profile
details

New profile picture Should upload to
Firebase Storage and
change user profile
picture on user doc and
firebase auth token

As expected success

MANDATO
RY

Admin can
update
student
details

Admin can
read
student
details

STUDENT to
LECTURER

WEB TECH to
BUSINESS
COMPUTING

And can view

Change details and
refresh screen with
new details

As expected success

MANDAT
ORY

Student
can post
on global
and
course
timeline

Student
can also
post on
cross-uni
timeline
(extra
feature)

Course: “Course
timeline post:

Global: “Global
Timeline University)
Postˮ

—--

Univus Cross-Uni):
“Univus post!ˮ

Should post on all
timelines and refresh
automatically

As expected Sucess

Admin -
Create a
Module

Link Courses:

- Computing Web
Tech & Security

- Business
Computing

- Business
Computing (with
Foundation Year)

—

Name of Module:
Mobile App Dev 2

Link multiple courses,
as well as able to show
modal in ‘View all ,̓ and
create module and
show on modules
screen with refresh.

As expected Success

Create
Lessons
Recurring

NOTE IN
THE
VIDEO, I
MENTION
ED
ANDROID
HAD
SOME
BUGS -
THISWAS
IT. I FIXED
IT. IT WAS
A DATE
TIME
ISSUE

:)

28/01/2024 320PM
2 weeks Recurring)

Brandon H Student
added which was in
Web Tech & Security

Mobile App Dev2
Module

Add 2 lessons, each
with their own lecture
link/code

As expected Success

View
Lessons
as Student

View Lesson made
earlier in test,
highlighted purple
border to indicate it is
currently lesson time,
which it was

As expected success

View
Attendanc
e of
Students

WEB
APP

https://univus.co

https://univus.co/lect
ure/5yxl7hvdyfa0ergt
8yue

Copy link, go to site on
website and view
students

As expected Success

https://univus.co
https://univus.co/lecture/5yxl7hvdyfa0ergt8yue
https://univus.co/lecture/5yxl7hvdyfa0ergt8yue
https://univus.co/lecture/5yxl7hvdyfa0ergt8yue

Mark in
and out
students
manually
on
attendanc
e site

Mark in and out
Brandon H

Mark attendance for
brandon to green when
marked in manually,

Mark it grey when
marked out.

As expected Success

Student
takes
attendanc
e without
lecturer
(manual)

Brandon H, Mobile
app dev 2, Manual

It should show an Alert
to say it has been
recorded on the
student phone, and
show itʼs been
recorded on the
lecturer website
attendance screen with
an indication it was
insecure because it
was manually recorded
by the student, instead
of QR Code scan.

As expected Success

Lecturer
can
Create
Attendanc
e QR Code
that
Students
can Scan
to sign
them
selves in
to lesson.

Lecturer should
generate QR Code

Student Scans it on
app.

Should mark student in
without lecturer
warning indication (all
secure) and show alert
on student device

As expected Success

MANDAT
ORY

DELETE
STUDENT

Delete Brandon H
Student

Deletes Student and
removes from
ManageStudents
screen

As expected Success

Testing Conclusions
The testing phase for the app using React Native Expo, Firebase Emulators, and real builds
was a key part of the project. Testing on both Android and iOS devices took a lot of time.
Using Expo and an Apple development subscription helped make test builds for iOS. The main
challenge was making sure the app worked well on both Android and iOS without any
problems.

It took a lot of effort to figure out how to make everything work right on both types of devices.
This process was about solving problems and learning a lot about app development. Testing
wasn't just about finding and fixing issues. It was also about understanding how to make apps
that work well on different devices.

Even though it was tough, testing the app was also fun and a great chance to learn. It was a
big part of getting the app ready for people to use.

Conclusion
In summary, making Univus for the University of GraceTech was a big project. This mobile app
is made with React Native, Expo, and Firebase (and other big tech). It helps students mark
attendance in classes and lets them chat and post on social media. A big thing about Univus is
that it can work for lots of universities, not just one. This was done using Python for gathering
data. But this also made it tricky to handle accounts from different universities.

The design of Univus was inspired by popular social media apps. The goal was to make it
easy and intuitive to use. The technical side of the app uses Firebase for different tasks and
Redux to keep track of what users are doing in the app. Building the app meant solving many
problems, like making sure users could sign in properly and keeping the app running fast and
smooth.

Firebase functions in the app are really important. They do things like checking data,
managing user info, and other big tasks. These functions run on their own on Firebase, which
helps the app respond quickly and work better.

In the end, "Univus" shows how well modern app-making tools work. It combines strong tech
with a focus on making the app easy for users. The whole process was about coming up with
new ideas, fixing problems, and paying attention to design. The result is an app that's not just
right for the University of GraceTech but also flexible for other institutions. Personally (from
author perspective) itʼs an unfinished masterpiece - because there is so much missed due to
time, but, given the time, it would be perfect.

References Used
https://nextui.org/
https://twitter.com/
https://about.fb.com/news/2023/07/introducing-threads-new-app-text-sharing/
https://nile.northampton.ac.uk/?new_loc=%2Fultra%2Fcourse
https://expo.dev/
https://www.npmjs.com/package/@react-native-community/blur
https://docs.expo.dev/versions/latest/sdk/blur-view/
https://www.npmjs.com/package/@react-native-community/datetimepicker
https://www.npmjs.com/package/react-native-toast-message
https://firebase.google.com/docs/web/setup#available-libraries
https://firebase.google.com/docs/functions/config-env?gen=2nd
https://firebase.google.com/docs/database/admin/retrieve-data#node.js
https://stackoverflow.com/questions/46155/how-can-i-validate-an-email-address-in-javascri
pt
https://ui.shadcn.com/
https://nextjs.org/
https://vercel.com/
https://lucide.dev/icons/
https://firebase.google.com/docs/functions
https://stackoverflow.com/questions/76952406/firebase-blocking-function-beforeusercreate
d-to-save-user-record-into-firestor
https://stackoverflow.com/questions/76037951/google-cloud-platform-before-user-created-f
unction-not-showing-up-in-firebase-au
https://github.com/firebase/firebase-tools/issues/6235

https://nextui.org/
https://twitter.com/
https://about.fb.com/news/2023/07/introducing-threads-new-app-text-sharing/
https://nile.northampton.ac.uk/?new_loc=%2Fultra%2Fcourse
https://expo.dev/
https://www.npmjs.com/package/@react-native-community/blur
https://docs.expo.dev/versions/latest/sdk/blur-view/
https://www.npmjs.com/package/@react-native-community/datetimepicker
https://www.npmjs.com/package/react-native-toast-message
https://firebase.google.com/docs/web/setup#available-libraries
https://firebase.google.com/docs/functions/config-env?gen=2nd
https://firebase.google.com/docs/database/admin/retrieve-data#node.js
https://stackoverflow.com/questions/46155/how-can-i-validate-an-email-address-in-javascript
https://stackoverflow.com/questions/46155/how-can-i-validate-an-email-address-in-javascript
https://ui.shadcn.com/
https://nextjs.org/
https://vercel.com/
https://lucide.dev/icons/
https://firebase.google.com/docs/functions
https://stackoverflow.com/questions/76952406/firebase-blocking-function-beforeusercreated-to-save-user-record-into-firestor
https://stackoverflow.com/questions/76952406/firebase-blocking-function-beforeusercreated-to-save-user-record-into-firestor
https://stackoverflow.com/questions/76037951/google-cloud-platform-before-user-created-function-not-showing-up-in-firebase-au
https://stackoverflow.com/questions/76037951/google-cloud-platform-before-user-created-function-not-showing-up-in-firebase-au
https://github.com/firebase/firebase-tools/issues/6235

