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Abstract

This paper describes our team’s collaborative efforts in par-
ticipating in the Track 1 for Speaker Diarization of the Diariza-
tion of Speaker and Language in Conversational Environments
(DISPLACE) Challenge 2024. Our submission focuses on cre-
ating a diarization system that is robust to noisy conditions, as
well as high amounts of overlapped speech. We conduct an
exhaustive study on each component of a hybrid system using
techniques such as semi-supervised learning, ensemble of sev-
eral systems and experiment with both a neural overlap detec-
tion module, as well as a post-processing technique using an
external overlap detection system. Our final system achieves
a diarization error rate (DER) of 28.04% on Phase 1 Eval set,
representing a relative improvement of 19.33% compared to the
baseline DER of 34.76%.

Index Terms: speaker diarization, DISPLACE challenge, voice
activity detection, overlap detection, DOVER-Lap

1. Introduction

Speaker Diarization represents the process of identifying indi-
vidual speakers in an audio stream, trying to answer the ques-
tion “who spoke when”. Even though great progress was made
in recent years, with diarization systems achieving good per-
formances in difficult scenarios with multiple speakers, noisy
speech and overlapped speech still pose a great challenge for
these systems. Several challenges throughout the years have
tackled different aspects of the diarization problem: DiHARD
[1], CHIME [2], AVA-AVD [3], Ego4D [4]. One of the chal-
lenges from recent years is the DISPLACE 2023 challenge [5],
that focuses on speaker diarization in multilingual and multi-
speaker conversational environments, presenting noisy speech
conditions, such as outside corridor noise or background voices,
and a high 14% overlapped speech ratio.

The 2023 edition of this challenge highlighted a multi-
tude of approaches across the primary components of a diariza-
tion system: (i) speech/voice activity detector, (ii) speaker em-
beddings extractor and (iii) clustering module. In the domain
of Voice Activity Detection (VAD), approaches like the Silero
VAD [6], Pyannote’s VAD [7], and the Multilingual VAD from
NeMo [8] employing MarbleNet [9] were preferred. Speaker
embeddings extraction was predominantly explored using x-
vectors [10], along with alternatives like the ECAPA-TDNN
[11] model, TitaNet-L [12] model, Pyannote’s [7] segmenta-
tion module, RawNet [13] and ResNet backbones. Clustering
methods varied, including Agglomerative Hierarchical Cluster-
ing (AHC), Spectral Clustering (SC), as well as the VBx al-
gorithm [14], illustrating the breadth of strategies employed
in tackling speaker diarization challenges. The insights drawn
from the preceding round have revealed that a notable contribu-

tor to the rise in DER was the occurrence of overlap errors.

Our current approach entails an exhaustive study of all com-
ponents. We integrate both supervised and semi-supervised
learning for Speech Activity Detection (SAD) and an ensemble
of several systems. Various backbone architectures were ex-
plored for multi-scale embedding extraction, as well as investi-
gating a neural method for overlapped speech detection together
with a post-processing greedy technique based on overlap de-
tection from an external system. For clustering, we used the
Normalized Maximum Eigengap Spectral Clustering technique,
given last year’s results and the baseline system, as well as the
advantage of not requiring parameter tuning on the development
set. The systems described in this paper were constructed using
various components from the NeMo Conversational Toolkit [8]
and the Pyannote.audio Diarization Toolkit [7], as well as the
BUT VBx implementation [14].

The paper is organized as follows. Section 2 presents the
data resources and the methodology we used. Section 3 sum-
marizes our experimental results, while Section 4 is reserved
for conclusions.

2. Methodology

2.1. Data resources

In comparison with the DISPLACE 2023 dataset, we see an in-
crease of over 4 hours of development annotated data through
the addition of 8 new annotated audios, totalling 19.75 hours,
which we will call dev. Furthermore, for this edition, the orga-
nizers also provide a substantial amount of unsupervised devel-
opment data from a similar distribution as the rest of the dataset,
more exactly 121.6 hours. Throughout the paper, this subset
will be called dev_unsup. Besides the DISPLACE develop-
ment data, we also used the AMI Corpus Microphone Array
[15] train and validation split from the setup used in [14]. For
evaluation, the organizers provided 17.93 hours of recordings,
called eval. Lastly, noise and background recordings from the
MUSAN [16] and RIR [17] datasets are also used for data aug-
mentation and speech-background dataset balancing.

2.2. Voice Activity Detection
2.2.1. Preliminary Systems and Automatic Annotations

Taking in consideration the analysis of results in the DISPLACE
2023 challenge [5], all teams struggled to alleviate the prob-
lem of missed speech, due to noisy conditions and high over-
lap percentages. Therefore, we explore several Voice Activity
Detection (VAD) solutions and evaluate their performance af-
ter fine-tuning the post-processing parameters on the develop-
ment set. The goal of this evaluation is to use an ensemble of
these systems in order to automatically annotate the unsuper-
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Table 1: Preliminary VAD results reported on the development
set. Systems from I to 5 were not fine-tuned, they only had their
post-processing parameters tuned on the development set. Sys-
tem 6 was used in order to automatically annotate the 121 hours
of unsupervised data provided by the challenge’s organizers.
”Seg” represents the [21] segmentation model and ”Seg3.0”
represents the [22] segmentation model, both of them used for
the VAD task.

Sys. VAD System FA MISS DetER
1 MarbleNet [19] 927 138 10.66
2 Silero v4 th=0.25 925 129 10.55
3 ASR combined 11.51 11.33 22.00
4  Seg 6.73 218 891
5  Seg3.0 546 280 8.26
6 Ensemble Sys. 2+4+5 472 395 8.67

vised data for later fine-tuning, as explored in several studies
of semi-supervised learning [18]. In order to have as few an-
notation errors as possible in the resulting dataset, the goal of
the ensemble system is to reduce the False Alarm Error (FA)
through majority voting over the speech segment boundaries.

Table 1 presents the five preliminary systems investigated
and the final ensemble system used for automatic annotations,
alongside their Detection Error Rates (DetER) on the dev
subset. (i) The first system reproduces the Multilingual
MarbleNet network fine-tuned in [19] on the DISPLACE
2023 development subset. (ii) For the second system, we an-
alyzed the VAD implemented by the 15 place team of DIS-
PLACE 2023, respectively the pretrained Silero V4, whose
threshold is tuned on the development subset to 0.25. (iii)
For the third system, we explore the use of Automatic Speech
Recognition (ASR) for Voice Activity Detection, using the
estimated timestamps of the transcribed words as speech re-
gions. Given the multi-lingual aspect of the dataset, we com-
bine the Whisper v3 Small Hindi and Whisper v3
Small English [20] models’ outputs on dev and filter
the resulted transcription with a confidence threshold for the
predicted words of 0.3. (iv-v) For the last two systems, we
explore the pretrained pyannote-audio/segmentation
[21] and pyannote-audio/segmentation-3.0 [22]
models for the Voice Activity Detection task, as the later one
is also used as the baseline system’s VAD. Out of these prelimi-
nary systems, only the Marblenet model and Pyannote segmen-
tation models are trainable.

Using the above mentioned modules,
several ensembles on the dev dataset. The sixth sys-
tem obtained the smallest FA error through major-
ity voting of the speech intervals using the pretrained
Silero V4, pyannote-audio/segmentation and
pyannote-audio/segmentation-3.0 systems. Using
this system for automatic annotations, we obtain 116.96 hours
of speech from the dev_unsup subset.

we explored

2.2.2. Multilingual MarbleNet Fine-tuning

In order to leverage the 141 hours of development data, we
use the manually and automatically annotated audios, as well
as background sounds extracted from the MUSAN dataset, to
fine-tune the segment-based Multilingual MarbleNet model [9].
We expect an improvement in results compared to the system
fine-tuned in [19], due to the new automatically annotated data
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Table 2: VAD systems that will be used on the eval dataset.
Results reported on dev dataset. The systems with ** notation
had their weights fine-tuned on dev subsets. The rest of the
systems are assumed to be pretrained.

Sys. VAD System FA MISS DetER
1 MarbleNet** 623 201 824
2 Seg3.0%* 440 192 6.32
3 Seg+ Seg3.0 + MarbleNet** 7.33 0.82  8.15

provided by the challenge’s organizers. In addition, we add
RIR online noise with a probability of 0.3 and noise sourced
from MUSAN freesound subset. We follow the setting of Jia
et al. [9], using a window of 0.63s, but we use a 0.3, 0.02
and 0.1 stride for speech, background and noise respectively.
We obtain through this setting 979K, 114K and 57K segments
for speech, background and noise respectively. In order to bal-
ance the speech and non-speech, we use over-sampling on the
background segments. We split these final speech-background
segments in a 85-10-5 split for train-validation-test.

We fine-tune the weights of the model for 150 epochs, with
a configuration similar to the one used in [19], but we also use
checkpoint averaging on the best 10 checkpoints saved based
on the validation loss. Lastly, we also tune the model’s post-
processing parameters on the development set, obtaining the
lowest DetER for an onset of 0.1, offset of 0.15, shift
length of 0.1 and the rest of parameters equal to 0.

2.2.3. Pyannote Powerset Segmentation Fine-tuning

The powerset multi-class segmentation approach pre-
sented the best VAD results on the development
set, among the preliminary systems, through the

pyannote—audio/segmentation-3.0 model. There-
fore, we decide to adapt the above mentioned segmentation
module on the 19.75 hours of supervised diarization labels,
expecting an improvement in VAD performance too. The
dataset is split in 80% training and 20% validation. We train
the end-to-end model in the powerset multi-class mode, with a
maximum of 2 speakers per frame and 3 speakers per chunk,
for 150 epochs with the Adam optimizer, a learning rate
of 1072 and cosine annealing scheduler with warm restarts
[23]. Lastly, we perform checkpoint averaging on the best 10
validation checkpoints. It is worth mentioning that we will also
use this fine-tuned model for overlapping speech detection.

2.2.4. Final VAD systems

In Table 2 we present the results on the 35 supervised develop-
ment audios. Both fine-tuned VAD systems show enhancements
compared to their initial versions from Table 1. Notably, the
fine-tuned pyannote-audio/segmentation-3.0 mod-
ule exhibits an approximately 2% decrease in DetER. Further-
more, we explore several ensembles with both pretrained and
fine-tuned systems, the best one consisting in the ensemble
of the pretrained pyannote-audio/segmentation, the
pretrained pyannote-audio/segmentation-3.0 and
the fine-tuned MarbleNet model. The three systems listed above
will undergo evaluation using the eval dataset. It is important
to note that these systems were trained on various subsets of the
development data, possibly biasing the results.



2.3. Embeddings Extraction and Clustering

In our exploration of the speaker embeddings module, we pri-
oritize the multi-scale diarization approach [24], assessing var-
ious architectures and scale configurations. This approach, in-
troduced by Park et al., mitigates the trade-off between speaker
representation quality and temporal resolution. For cluster-
ing speaker features, we use the auto-tuning NME Spectral
Clustering algorithm [25]. We investigate three pretrained ar-
chitectures for the multi-scale extractor: ECAPA-TDNN [26],
Titanet-S [27], and Titanet-L. Across each architecture, we ex-
periment with scale numbers ranging from 3 to 8, equal scale
weights, 50% scale overlap and scale sizes spanning from 0.5
to 4 seconds. Our top-performing system utilizes the pretrained
Titanet-L model from the NeMo Toolkit , employing 6 scales
with sizes: [0.5, 1, 1.5, 2, 2.5, 3]. Additionally,
we explore the VBx diarization system that leverages a pre-
trained ResNet101 backbone to extract x-vectors, followed by
the initial Agglomerative Hierarchical Clustering step and the
final variational Bayes HMM clustering.

2.4. Overlap Detection

The second significant challenge that the DISPLACE dataset
presents is the high percentage of overlapped speech. There
is approximately 16% overlapped speech present in the dev
dataset. One of the biggest limitations of clustering-based di-
arization systems is the inability to detect more than one label
per timestamp, meaning they are not overlap-aware. In order
to reduce this significant error, we explore both a multi-scale
neural overlapping speech detection (OSD) system, as well as
a greedy post-processing technique using the overlap detection
outputs of an external system.

2.4.1. Training the Multi-Scale Diarization Decoder

Following [19], we train from scratch a neural multi-scale di-
arization decoder (MSDD) [24] for overlap detection. For
training, we used both the dev dataset, as well as the AMI
Microphone Array dataset. We performed an 80/20 train-
validation split on the dev dataset and then combined the result-
ing subsets with the AMT dataset. Furthermore, we process the
pair-wise speakers files with a step of 20. Finally, we trained the
model in a 6-scale configuration, as mentioned in Section 2.3,
with the speaker model frozen, for 30 epochs with the Adam op-
timizer, a learning rate of 10~ and the cosine annealing sched-
uler. We will use the MSDD module with a sigmoid threshold of
0.5, tuned on the validation split. A smaller sigmoid threshold
results in a higher number of overlap segments, which can be
beneficial in systems fusion with Dover-Lap [28], even though
it might lead to worse results when the neural diarizer mod-
ule is evaluated alone. This module also takes in consideration
speaker embeddings when assigning overlap speaker labels.

2.4.2. External Overlap Post-Processing

In addition to the MSDD module, we also eval-
uvate the performance of both the  pretrained
pyannote—audio/segmentation-3.0, as well as

the fine-tuned powerset multi-class segmentation model in
Section 2.2.3, for the OSD task. In Table 3 we present the
detection error rate of overlapping speech for the pyannote
OSD systems on the validation split used in Section 2.2.3, using
amin_duration_on and min_duration_off equal to 0
for both systems. A substantial amount of overlapping speech
is detected by both systems, seeing a slight improvement with
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Table 3: DetER of overlapping speech on the validation split
used in Section 2.2.3. The ** notation denotes the system was
fine-tuned.

Sys. OVL System  FA MISS DetER
1 Seg3.0 13.14  65.26 78.98
2 Seg3.0%* 12.82 60.61 73.45

the fine-tuned system. However, these overlap detections
cannot be integrated directly with the multi-scale approach in
order to obtain speaker labels, as they do not use the speaker
features extracted by the Titanet-L model.

Even though several studies on overlap-aware diarization
have been conducted in recent years [29, 30], we opt for a sim-
pler method that still yields a substantial decrease in DER. Fol-
lowing the techniques used in [31] and [32], we utilize a greedy
post-processing technique for adding the overlapping speech
predictions of an OSD, to a non-overlap aware diarization sys-
tem. In Fig. 1, we present the pipeline for adding external
overlap detections to a non-overlap aware system through the
proposed algorithm. Firstly, we extract the overlapped speech
segments separately with the OSD system and filter them using
the speech segments predicted by the VAD module, in order to
avoid an increase in FA error. Secondly, we split the overlap
segments using the speaker change frontiers, in case the end of
the previous segment is equal to the start of the next one. Lastly,
we assign the label to the overlap segment by computing the dis-
tance from the center of each overlap segment, to the center of
the closest speaker that is different than the current speaker. We
call this method ”greedy”, because we make the assumption that
nearby speakers are more probable to speak simultaneously and
we do not take in consideration the speaker features in the over-
lapping regions. Another limitation of this system is that we
cannot return more than two overlapping speakers per frame.

Figure 1: Greedy overlap post-processing algorithm for non-
overlap aware diarization systems.

: Speaker 1 : Speaker2 == : Overlapped Speech
) o
: L <
_._.____._; <
[ S
3. C @
—_— &



Table 4: DER vresults on dev and eval subsets,
pyannote-audio/segmentation model.

with no collar and overlap error included.
Seg3.0 represents the pyannote—audio/segmentation-3.0 model.

Seqg represents the

Multiscale and VBx represent the embeddings extraction and clustering approaches explained in Section 2.3. For the OSD sys-
tems, the MSDD module is the neural diarizer from Section 2.4.1 and the other OSD systems are used in conjunction with the greedy
post-processing technique. The last 3 lines represent the DOVER-Lap fusion of several overlap-aware diarization systems. Modules
followed by the ** notation are either trained or fine-tuned on the dev set, while the other modules are assumed to be pretrained.

System VAD Embs. Extractor+Clustering OSDh d DER
ev eval
Baseline - - - 29.16  34.76
Pyannote Diarization 3.1 Seg3.0 Ecapa-TDNN+AHC Seg3.0 29.53  34.96
- MarbleNet [19] Multiscale No 32.01 34.62
- MarbleNet** Multiscale No 29.48 33.23
- Seg Multiscale No - 33.32
- Seg3.0 Multiscale No 29.05 32.14
- Seg3.0%* Multiscale No 27.10 31.04
MarbleNet** + Seg + Seg3.0 VBx No 29.71 -
- MarbleNet** + Seg + Seg3.0 Multiscale No 29.58 31.47
1 MarbleNet** + Seg + Seg3.0 VBx Seg3.0%* 25.51 3232
2 MarbleNet** + Seg + Seg3.0 Multiscale Seg3.0 27.66 29.85
3 MarbleNet** + Seg + Seg3.0 Multiscale Seg3.0%* 25.64 29.23
4 Seg3.0%** Multiscale MSDD** 0.5th. 29.06  30.90
5 Seg3.0%* Multiscale Seg3.0%** 22.77 28.49
24+3+5 - - - 25.99 2895
1+42+3+5 - - - 26.37 28.66
1+2+3+4+5 - - - 26.37 28.04

3. Final Results

In Table 4 we present several configurations that were evalu-
ated on the dev and eval datasets. We perform an analysis
using both non-overlap and overlap aware systems, in order to
highlight the impact of both the VAD and OSD modules. In
the first section, we present the baseline and 2 pretrained sys-
tems that were not adapted on the new development data. In
the second section, we observe the impact of the VAD modules
through the non-overlap aware systems’ results, seeing a ma-
jor improvement with both the VAD ensemble, as well as the
fine-tuned pyannote—-audio/segmentation-3.0 mod-
ule. For the embeddings extraction and clustering modules, we
explore the VBx and Multiscale approaches.

Systems 1 to 5 are overlap-aware, with systems 3 and 5
achieving the lowest DER, as expected from the non-overlap
aware results, with the best single system achieving 28.49%
DER on the eval dataset. The other overlap-aware systems
are mainly used in order to diversify the input systems for the
system fusion step. Finally, we use the DOVER-Lap technique
[33] with the greedy fusion algorithm and present our final sub-
mission using the fusion of 5 overlap-aware systems, achieving
the lowest DER on the eval dataset of 28.04%.

We can make a few observations from the results presented
above: (i) there is a slight mismatch between the results on the
dev set and eval set, that can be caused either by an overfit
on the dev set or a slight data distribution mismatch between
the subsets; (i) we can observe an improvement between the
MarbleNet model trained in Section 2.2.2 and the model trained
in [19], concluding that the automatically annotated recordings
can also improve speech detection; (iii) the single fine-tuned
powerset multi-class segmentation module greatly outperforms
any other VAD module, even the ensembles; (iv) our greedy
post-processing technique greatly improves the results of non-
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overlap aware diarization systems; (v) DOVER-Lap fusion ben-
efits from diverse overlap-aware input systems, even if the input
systems’ performances greatly vary.

4. Conclusions

In this paper we propose a speaker diarization solution for
the DISPLACE 2024 challenge. We conduct a comprehensive
study for each module of a hybrid-diarization system, explor-
ing semi-supervised learning techniques, ensemble of systems,
neural overlap detection, as well as an overlap detection post-
processing technique for non-overlap aware systems.

We would like to highlight the impact of the overlap post-
processing technique on the final results, and conclude that a
technique that would also take in consideration speaker features
and more than 2 speakers per frame, when assigning labels, may
further improve the results. However, it is also important to
note that OSD systems still struggle to accurately detect over-
lapping speech, as the fine-tuned powerset multi-class segmen-
tation module still had an overlapping speech detection error of
over 73% on the dev set.

Finally, our best independent system consists in a fine-tuned
pyannote—audio/segmentation-3.0 model used for
the VAD and OSD tasks, with a multi-scale embeddings extrac-
tor using the Titanet-L. model and auto-tuning NME Spectral
Clustering. The overlapped speech detections from the OSD
are added through a greedy post-processing technique. This
system achieves a DER of 28.49% on eval dataset, a rela-
tive improvement of 18.04% compared to the baseline. The
best fusion of systems and our final submission on the Evalua-
tion Phase 1 Track for Speaker Diarization achieves a DER of
28.04% with a relative improvement of 19.33% compared to
the baseline.
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