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Early morning hour and evening 
usage habits increase 
misinformation‑spread
Elisabeth Stockinger 1*, Riccardo Gallotti 2 & Carina I. Hausladen 1

Social media manipulation poses a significant threat to cognitive autonomy and unbiased opinion 
formation. Prior literature explored the relationship between online activity and emotional state, 
cognitive resources, sunlight and weather. However, a limited understanding exists regarding the role 
of time of day in content spread and the impact of user activity patterns on susceptibility to mis- and 
disinformation. This work uncovers a strong correlation between user activity time patterns and the 
tendency to spread potentially disinformative content. Through quantitative analysis of Twitter (now 
X) data, we examine how user activity throughout the day aligns with diurnal behavioural archetypes. 
Evening types exhibit a significantly higher inclination towards spreading potentially disinformative 
content, which is more likely at night-time. This knowledge can become crucial for developing 
targeted interventions and strategies that mitigate misinformation spread by addressing vulnerable 
periods and user groups more susceptible to manipulation.

Keywords  Human behaviour, Misinformation spread, Diurnal patterns, Social media, Computational social 
science

Collective intelligence and democracy rest on the shoulders of public free access to unbiased and diverse 
information1,2. Social media blurs the borders between news creation, consumption, and distribution3, as well 
as between personal communication, announcements from individuals, fiction, and advertisement. Along with 
the optimization criteria employed in recommendation algorithms4,5 and network structures, this contributes to 
the creation and spread of mis- and disinformation online3, to political manipulation6–10, a collapse of content 
diversity11–13 and political polarisation14.

This leaves the responsibility to distinguish between the content types and discern truth from deception 
to the user. However, our ability to scrutinise new information for its reliability depends on the individual’s 
internal state. Cognitive resources and one’s thinking style15–27,27–31, as well as emotional state19,32–35, have been 
explored extensively in this regard with diverging results. Other influential factors include cognitive biases and 
prior beliefs3,27,36–40.

These factors are not constant but exhibit regular cyclical behaviours with periods ranging from hours 
to seasons41–45 and depend on external factors such as light exposure46–48, atmospheric conditions49,50, social 
interactions48, or the device used to access social media51–54. These external or environmental factors act as zeit-
gebers, entraining or synchronising the human biological rhythm. Inter-individual differences affect circadian 
process timings as well. A process is referred to as circadian if it recurs endogenously on a twenty-four-hour 
cycle, and as diurnal if there is a recurrence which may or may not be endogenous. These inter-individual differ-
ences include diverging phase preferences known as chronotypes55. In the absence of disruptions to one’s natural 
rhythms, chronotypes perform better at their optimal times with “evening types” (or “night owls”) achieving bet-
ter results in the evening, and “morning types” (or “early birds”) in the morning56. Depending on environmental 
or social constraints, sleep and activity timings may be out of phase with one’s internal circadian time, leading 
to deterioration in cognitive performance such as attention, memory, or decision-making capacity56 as well as 
reflective thinking57. Finally, sleep loss itself has long-reaching effects such as reductions in altruistic behaviour58.

In an additional layer of complexity, social media are dynamic: They follow human circadian or diurnal 
rhythms,59,60 or the weekday-weekend rhythms41,61. The timing of a Twitter (now X) post is an essential factor 
in its spread and popularity45. Clock time and sunrise/sunset hours have distinct impact on tweeting activity41.
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Despite all efforts to mitigate mis- and disinformation62–65, the problem is even rising in importance with 
geopolitical e.g.66 and epidemiological developments e.g.22. Especially the global COVID-19 pandemic has invited 
a new wave of conspiracy theories22, with up to a third of the population believing COVID-19 to have been 
bio-engineered22. As an event with drastic and synchronous impact across a major part of the population, the 
pandemic may have contributed fundamentally to polarisation67.

These developments may have cascading effects: higher exposure to COVID-19 misinformation has been 
linked to increased mistrust in information and to lower confidence in judging its veracity68. Similarly, the use of 
social media for news consumption can increase the accuracy one attributes to misinformation69. These effects 
may lead to a feedback loop eroding the users’ ability to critically judge new information.

We contribute to this literature by investigating mis- and disinformation on social media70 with an analysis of 
the interaction effects between temporal rhythms of disinformative content and social media usage in the context 
of COVID-19. Specifically, we aim to answer the research question of how the spread of mis- and disinformation 
on Twitter varies throughout the day. We use the terms “Twitter” and “Tweet” in this paper as our data was col-
lected before the rebranding into X. Additionally, we explore whether there are individual differences in users’ 
propensity to spread mis- and disinformation on Twitter based on their typical diurnal activity patterns, both 
during the day and as a general inclination. Figure 1 visualises these connections.

Results
We analysed a secondary Twitter dataset71 relating to the COVID-19 pandemic. Only tweets containing a link 
to another website were included in the dataset and classified into nine categories, also called content types, 
according to an expert rating of the reliability of the link’s domain (see “Diurnal cluster activity” for details). 
Content that is politically biased (aiming to build a consensus on a polarised position by omission, manipulation 
and distortion of information), fake or hoax (entirely fabricated or manipulated content that aims to be perceived 
as realistic and reliable) or conspiracy or junk science (strongly ideological, inflammatory content alternative or 
oppositional to tested and accountable knowledge and information, with the intent of building echo chambers) 
may have been (but need not be) designed with the purpose of manipulation or affectation. We therefore consider 
these content types to be “potentially disinformative”. This group stands against the other six categories of Science, 
Mainstream media, Satire, Clickbait, Other, and Shadow. While Satire and Clickbait are not dependable sources of 
information, they usually are easily identified and are not likely to have the intention of manipulating opinions. 
The category Other collects content which is not easily classifiable, while Shadow includes anonymized links that 
were not possible to expand. We merged Other and Shadow in this paper, the reliability of both is unknown. The 
categories alongside their user activity statistics are described in Supplementary Table S1.

Four archetypical activity patterns
Our analysis focuses on the individual usage patterns on Twitter and their daily fluctuations. To that end, we 
first compute the average posting activity of each user over the day, including Tweets, Retweets, and Replies. 
We then use k-means clustering to group the average posting activity curves. The analysis reveals the presence 
of three distinct clusters with unique patterns of posting activity. Users with low post rates ( < 240 posts across 
the time span under analysis) are separated into a fourth cluster. While this paper focuses on Tweets originating 
from Italy, we conducted the same analysis for Tweets originating from Germany and found these prototypical 
activity patterns to hold across the two countries (Supplementary Note A).

Figure 2a illustrates the activity patterns of the four clusters throughout the day. Each dot shows how much 
of the cluster’s posting activity occurs during the given time interval. The curves indicate the smoothed posting 
activity for each cluster over the day, where the two largest peaks are annotated (given in detail in Supplementary 
Table S2). We refer to the clusters as morning, evening, and intermediate type posters, named after their respec-
tive peak activity times, as well as infrequent type posters (Fig. 2a). While the chosen cluster names are com-
monly used to refer to chronotypes, we here use them figuratively and without a claim to reflect underlying traits.

Figure 1.   Factors influencing the spread of mis- and disinformation, containing daylight, time of day, human 
diurnal activity, (pseudo) chronotype, and the COVID-19 pandemic. We use the term (pseudo) chronotype to 
refer to user archetypes based on diurnal tweeting activity.
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Generally, user activity follows a bimodal distribution (Supplementary Table S3 shows the Dip-test results 
rejecting single-modality). The purple curve represents morning types, with the curve reaching its maximum in 
the morning at 9:30 am at around twice the average value. In contrast, evening types, displayed in red, exhibit 
their highest activity at around 11:15 pm. Intermediate types, represented by the green curve, feature two nearly 
identical peaks in size, with the highest peak occurring around noon. The infrequent posters group, represented 
by the blue curve, shows consistent activity levels throughout the day. This cluster groups users who have con-
tributed only a few posts to the dataset, irrespective of activity distribution throughout the day. As a result, the 
cluster likely includes users with heterogeneous tweeting behaviours. Their activity patterns may average out 
over the course of the day, resulting in a relatively flat curve.

We extrapolate from the users’ diurnal activity patterns on Twitter to sleeping and waking cycles, which have 
previously been linked in literature e.g.41,42. These cycles can vary significantly between clusters. We consider the 
16 continuous hours of highest aggregated activity a coarse proxy for user’s average waking time. Consequently, 
we consider activity outside of this interval to represent prolonged wakefulness, where the user is active despite 
it being a time of habitual rest. A formal definition is given in Eq. (11). Onset and end values of increased activity 
for each cluster are listed in Supplementary Table S3 (“heightened activity”).

Figure 2b aligns the clusters’ activity by inferred waking time. From this perspective, the diurnal activity 
curves for each cluster show remarkable similarities. The peaks for all clusters fall within a distinct time window 
(shaded in grey in the figure). The first peak of activity occurs within 3 h 15 min and 5 h 15 min after inferred 
awakening within a window of 2 h. The second peak occurs within a window of 1 h 15 min starting at 9 h 45 min 
after inferred awakening. The sizes of the peaks in activity seem to be as much of a differentiating characteristic 
for each cluster as the time of occurrence of peak activity. The activity valleys across clusters are similarly close, 
occurring around 3 h before inferred awakening (Supplementary Table S2).

Figure 2.   Smoothed diurnal activity ((a) and (b), see “Diurnal cluster activity”) as well as the ratio of potentially 
disinformative content posted per cluster ((c) and (d), see “Content type ratios”). For each cluster, the one (or 
two) highest peaks of activity and ratio are annotated with their time of occurrence. The shaded area in panel (b) 
stresses the closeness of peak activity after inferred awakening across the clusters.
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Evening types spread most potentially disinformative content, infrequent posters the least
The clusters show distinct features beyond their typical activity patterns. In particular, we find a significant asso-
ciation between potentially disinformative content type and cluster affiliation ( χ2 = 28, 860.01 , p-value< 0.001).

Figure 2c shows the diurnal fluctuation of the ratio of potentially disinformative content. Each dot indicates 
how much of all content with known reliability ratings published within the given time interval was potentially 
disinformative. The curves represent the smoothed trends of potentially disinformative content ratios (see Con-
tent type ratios) throughout the day. Notably, ratios for evening types, ranging between 0.27 and 0.37, are consist-
ently higher than for the other clusters (see Table 1 for statistical significance and Supplementary Table S1 for 
the distinct variation in ratios of content types spread by cluster). Infrequent posters exhibit the lowest ratios of 
potentially disinformative content overall (Table 1). This can again be explained by the definition of this cluster 
as grouping users with few posts in the dataset, as there is a positive correlation between the amount of posts per 
user in the dataset and the ratio of potentially disinformative content across all users ( ρ = 0.200 , p-value< 0.001 ) 
as well as within each cluster (Table 2a).

Potentially disinformative content spreads at night
While the total number of posts per user is positively correlated with an increased ratio of potentially disin-
formative content, heightened activity at a given time of day is negatively correlated with spreading potentially 
disinformative content at that time ( ρ = −0.369 , p-value< 0.001 , Table 2b). This correlation is significant for 

Table 1.   One-side d Mann-Whitney U test indicating whether the distribution of ratios of potentially 
disinformative content throughout the day (see Fig. 2c or 2d) underlying one cluster (rows) is smaller than that 
of another cluster (columns). Significant values (p-value < 0.05) are in [bold].

Morning Intermediate Evening

U p-value U p-value U p-value

Coarse

Infrequent 1419 6.1e−17 1818 2.2e−13 9 3.5e−33

Morning – – 6499 1.0e+00 25 5.7e−33

Intermediate – – – – 51 1.3e−32

Smooth

Infrequent 1507 4.0e−16 1873 6.1e−13 0 2.6e−33

Morning – – 6875 1.0e+00 0 2.6e−33

Intermediate – – – – 0 2.6e−33

Table 2.   Correlation tables in between diurnal and total posting activity and potentially disinformative 
content activity. Significant values (p-value < 0.05) are in [bold].

(a) Spearman’s rank correlation coefficient and corresponding p-value correlating a user’s total number of posts with ratios of potentially disinformative content

Spearman’s ρ p-value

Infrequent 0.162  1.2e−02

Morning 0.179  5.0e−09

Intermediate 0.125  2.8e−06

Evening 0.134  1.4e−05

Total 0.200  2.3e−22

(b) Spearman’s rank correlation coefficient and corresponding p-value correlating a user’s (a) aggregated activity level without Fourier smoothing (Equation 2, “coarse”) 
and (b) the smoothed set of diurnal user activity (see “Diurnal cluster activity”, “smooth”) at different time points in a day with the averaged user ratios of politically biased 
information, fake or hoax news, and conspiracy or junk science as well as all potentially disinformative content (Eq. 13). In row “smooth”, the smoothed set of potentially 
disinformative content (see “Content type ratios”) was used to compute the correlation coefficient

Potentially disinformative Politically biased Fake or hoax Conspiracy & junk science

Spearman’s ρ p-value Spearman’s ρ p-value Spearman’s ρ p-value Spearman’s ρ p-value

coarse

Infrequent − 0.324  1.3e−03 − 0.303  2.7e−03 − 0.534  2.2e−08 0.524  4.2e-08

Morning − 0.272  7.4e−03 − 0.326  1.2e−03 − 0.105 3.1e−01 0.097 3.5e−01

Intermediate − 0.446  5.1e−06 − 0.713  3.7e−16 − 0.081 4.3e−01 0.012 9.1e−01

Evening 0.135 1.9e−01 0.302  2.8e−03 -0.019 8.6e−01 − 0.194 5.9e−02

Total − 0.369  2.1e−04 − 0.398  5.9e−05 − 0.459  2.6e−06 0.614  3.0e−11

smooth

Infrequent − 0.402  5.0e−05 − 0.321 1.4e−03 − 0.593  1.9e−10 0.512  9.5e−08

Morning − 0.432  1.1e−05 − 0.308  2.2e−03 − 0.104 3.1e−01 0.097 3.4e−01

Intermediate − 0.646  1.2e−12 − 0.670  8.5e−14 − 0.091 3.8e−01 0.064 5.4e−01

Evening 0.261  1.0e−02 0.306  2.4e−03 0.008 9.4e−01 − 0.197 5.4e−02

Total − 0.441  7.0e−06 − 0.410  3.3e−05 − 0.501  2.0e−07 0.611  3.8e−11
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all clusters except for evening types, and significant for all clusters when considering smoothed content type 
ratios only.

One’s tendency to spread potentially disinformative content shows temporal patterns beyond correlations with 
activity across the day. We analyse three distinct time periods: daytime and nighttime as defined by the clock, 
by the presence of daylight, as well as by inferred time of regular waking. Figure 3 visually represents these day 
and night periods for each cluster.

We consider a day by clock to occur between 6:30 am and 6:45 pm, the averages of sunrise and sunset through-
out the year rounded to the closest quarter hour. These times are marked by connected dashed vertical lines. 
Many people’s routines and schedules are defined by clock time and therefore consistent throughout the year. 
Daylight, the time period between sunrise and sunset, each represented by hatched curves, varies across the year 
and across geographic locations. We calculate these times at a monthly granularity at the average locations of 
the users in our dataset within Italy (sunset and sunrise times differ by less than an hour between any points on 
the map). Sunlight impacts many physiological and cognitive processes46,48, synchronising the human biological 
rhythm across the population group. Inferred waking time, also indicated by dashed vertical lines, is defined per 
cluster and represents the 16 continuous hours of highest aggregated activity. Activity outside regular waking 
hours may represent times of impaired cognitive capacity e.g.72. In our statistical analysis, we compare the time 
periods “within” these borders with those “outside” them.

Figure 3.   The ratio of potentially disinformative content over time of day on the x-axis, and year and month on 
the y-axis. The darker red a square, the higher the ratio of potentially disinformative content. The hatched curves 
indicate the average sunrise and sunset times within a given month. The dashed lines represent the active times 
per cluster, and the times of day as defined by the clock. Missing values are presented in grey.
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We find particularly strong and regular distinctions between daytime and nighttime activity levels with respect 
to the spreading of potentially disinformative content and the congruent content types (Table 3).

There is a statistically significant increase in the proportion of potentially disinformative content shared 
between 6:45 pm and 6:30 am as well as outside daylight hours for all clusters except for morning types ( p
-value< 0.001 for other clusters). During prolonged wakefulness, only infrequent posters publish a significantly 
higher share of potentially disinformative content ( p-value< 0.001 ). By contrast, the other clusters exhibit a 
significant reduction in potentially disinformative content spreading in this time frame ( p-value= 0.039 for 
morning types and < 0.001 , for intermediate and evening types).

Rhythms of potentially disinformative content
The ratio of potentially disinformative content for morning types is highest in the late evening at 9:45 pm. For 
the other clusters, peak times fall in the early morning between 3:15 am and 4:15 am (Fig. 2c). When aligned 
by inferred waking time (Fig. 2d) the peak times of potentially disinformative content are spread more evenly 
and across a wider time span, occurring between 14 h 15 min and 20 h 15 min after inferred awakening (Sup-
plementary Table S2).

The amount of data available differs significantly between clusters and times of the day. Especially morning and 
intermediate types do not post much in the early morning hours in general, resulting in large variance between 
consecutive points (see Supplementary Fig. S2). While the peaks of potentially disinformative content fall into 
time frames of generally low variance for morning, evening and infrequent type users, the peak for intermediate 
type may be caused by low amounts of data.

The peak of potentially disinformative content ratios in the early morning for infrequent posters (consisting of 
users with few posts in the dataset, regardless of their activity rhythms) may be explained on the user level, with 
users of different activity habits predominating the cluster’s expression at different times. In particular, evening 
type users generally show higher ratios of potentially disinformative content and post more in the early morning. 
Users whose behavior is akin to evening types but who were assigned to the cluster of infrequent posters may be 
responsible for most posts within the cluster in the early morning.

When considering the peaks of potentially disinformative content ratios for morning and evening type users, 
we find highest potentially disinformative content ratios at 15 h 45 min and 14 h 15 min after inferred awakening, 

Table 3.   Mann-Whitney U test comparing the distributions of content type ratios (see Eqs. 13 and 15) during 
different definitions of daytime: the day by clock, a day as the time between sunrise and sunset, as well as 
inferred waking time. We account for a safety margin of s = 1 h before and after each border value. The p
-values shown are for one-tailed Mann-Whitney U tests of the distributions of content type ratios during day 
and night, if significantly different from one another as indicated in the columns. The smaller distribution is 
indicated in column “Less”. If there is no significant difference between distributions, the p-value of two-tailed 
Mann-Whitney U test is given.  Significant values ( p-value < 0.05 ) are in [bold]. 1 compares the distribution 
of ratios r(t, c, f) for t ∈ [7:30 am− 5:45 pm) (“day”) with those for t ∈ [7:45 pm− 5:30 am) (“night”), 
considering the safety margin. 2 compares the distribution of ratios between sunrise and sunset (“day”) with 
those between sunset and sunrise (“night”). The sunrise and sunset times are calculated geometrically using 
Python’s suntime library https://​github.​com/​SatAg​ro/​sunti​me for the first day of each month. The locations 
are calculated at the average location of posts per user and time period in our dataset on the granularity 
of provinces and cities (territorial units of level 3 as defined by Eurostat73). 3 compares the distributions of 
ratios within [i(g(c, n), s), i(g(c, n), n− s)) (“day”) with those of the interval [i(g(c, n), n+ s), i(g(c, n),−s)) 
(“night”) for n = 16 . i(t, n) and g(c, n) are defined in Eqs. (9) and (11), respectively.

6:30 am–6:45 pm1 sunrise–sunset2 waking–bedtime3

U p-value Less U p-value Less U p-value Less

Potentially disinformative

Infrequent 434,354  5.6e−67 Day 463,293  7.1e−55 Day 440,930  7.7e−27 Day

Morning 698,385 1.1e−01 – 701,103 1.5e−01 – 629,323  3.9e−02 Night

Intermediate 647,216  8.1e−06 Day 657,414  9.3e−05 Day 646,818  1.7e−04 Night

Evening 604,870  1.6e−13 Day 605,991  2.7e−13 Day 696,449  5.3e−09 Night

Political

Infrequent 431,886  4.5e−68 Day 450,722  5.8e−60 Day 451,253  7.4e−24 Day

Morning 709,811 3.4e−01 – 712,093 4.2e−01 – 615,595 3.8e−01 –

Intermediate 696,713 1.6e−01 – 696,426 1.5e−01 – 647,006  1.5e−04 night

Evening 572,944  3.0e−20 Day 593,292  9.0e−16 Day 758,212  2.0e−22 Night

Fake or hoax

Infrequent 683,876  3.3e−03 Day 678,212  1.2e−03 Day 546,086  3.9e−05 Day

Morning 872,521  2.9e−18 Night 874,363  1.1e−18 Night 748,896  9.8e−22 Night

Intermediate 829,162  6.7e−11 Night 844,240  1.7e−13 Night 830,793  2.5e−55 Night

Evening 642,890  2.0e−07 Day 648,988  1.2e−06 Day 699,848  1.4e−09 Night

Conspiracy & junk science

Infrequent 791,785  1.7e−04 night 781,833  1.3e−03 Night 770,504  1.1e−25 Night

Morning 814,498  1.1e−07 Night 798,242  1.1e−05 Night 762,932  1.7e−25 Night

Intermediate 770,202  1.7e−03 Night 770,883  1.6e−03 Night 798,392  1.3e−41 Night

Evening 776,472  3.2e−03 Night 745,406 3.6e−01 – 552,002  2.2e−04 Day

https://github.com/SatAgro/suntime
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towards the end of regular waking times. The distance of curves of potentially disinformative content ratios 
decrease across several metrics when aligning the curves of potentially disinformative content ratios by waking 
time as opposed to time of day, but increase in others (Supplementary Table S4a).

Content ratios only point to the relationship between potentially disinformative and overall content, not to 
the behaviour of users spreading potentially disinformative content itself. Therefore, the prevalence of potentially 
disinformative content during the night hours may be explained by a decreased presence of reliable content, for 
example due to the reduction of posts by news outlets. Supplementary Fig. S1 shows the potentially disinforma-
tive activity curves throughout the day. Qualitatively, these curves and their peak and trough times are similar 
to those of overall activity (Fig. 2a and b).

Content type preference is linked to archetypical diurnal tweeting behaviour
We have so far analysed the binary categories of content that is potentially disinformative, and content that is 
unlikely to be so. There are, however, also interesting observations within the individual content types.

The coloured areas of Fig. 4 represent the activity of all user clusters and individual content types around a 
24-hour clock. Morning and evening types show a particular tendency towards conspiracy theories and junk sci-
ence, especially as compared to infrequent types, who show the strongest inclination towards scientific content 
of all clusters. Only intermediate types spread even more conspiracy and junk science than politically biased 
content (Supplementary Table S1). However, mainstream media reassuringly make up the vast majority of con-
tent spread by all clusters.

The red lines in Fig. 4 represent the cumulative ratios of potentially disinformative content types. Notably, the 
ratio of conspiracy and junk science increases noticeably during the nighttime when ratios of fake or hoax content 
and of politically biased content are lowered. The positive correlation of conspiracy theories and junk science 
with activity throughout the day is, however, only significant for infrequent posters ( ρ = 0.524 , p-value> 0.001 , 
Table 2b). This relationship is reversed for evening type users, who show a significant positive correlation between 
activity and politically biased content ( ρ = −0.398 , p-value> 0.001).

Figure 4 also shows the times where one’s tendency to spread potentially disinformative content is in the top 
quartile ( Q3 in a 4-quantile) as red arcs along the graph’s edges. The inner grey arcs represent the time of pro-
longed wakefulness for each cluster (see also Supplementary Table S3). Infrequent posters experience the onset 
of increased spreading of potentially disinformative content at 12:15 pm, close to their inferred bedtime at 12:45 
am and only shortly before evening type individuals. Evening types, however, only enter prolonged wakefulness at 
5:30 am. For morning and intermediate types, the times of increased tendency to spread potentially disinformative 
content is split across the day, partly within and partly outside of inferred prolonged wakefulness. For morning 
types, part of this quartile of increased spreading of potentially disinformative content falls between 8:15 pm 
and 11:15 pm, earlier than any other cluster. Intermediate type users show an increase from 9:45 pm to midnight 
and from 2:30 am to 5:45 am.

The impact of the lockdown
As our dataset collects content related to the COVID-19 pandemic, we must consider the impact of non-phar-
maceutical interventions, such as home office or curfews, on daily rhythms, as well as potential changes in the 
macroscopic informational landscape of Twitter74. We specifically consider the time period of Italy’s first lock-
down from March 9th to May 18th, 2020. The lockdown lead to significant changes in posting activity (potentially 
disinformative post counts are from different populations, χ2 = 1343.13 , p-value< .001 ). From the entire span 
covered by the dataset to this time, all clusters except for intermediate type users tweeted more potentially dis-
informative posts per day and user during the lockdown (e.g. 72.4 % for evening types, Table 4). The increase 
of overall posting activity is even higher (74.9% for evening types). In other words, while users tweeted more 
during the lockdown, the relative increase in potentially disinformative posts was lower than other types of 
content (− 6.7% for evening types). The reduction of potentially disinformative content ratios during lockdown 
can likely be attributed to an increase in other content types, likely including a surge of informational coverage 
driven by mainstream and state media71.

Discussion
Propaganda campaigns and targeted manipulation continue to endanger our cognitive autonomy and unham-
pered opinion formation6. Diurnal variations in one’s reaction are not commonly discussed and may be abused 
by those purposefully spreading mis- and disinformation, be it explicitly or as a latent factor. A deeper scientific 
understanding of user response to potentially disinformative content can, however, also aid in the prevention of 
an unwitting contribution to such campaigns.

Specifically, we extrapolate two main takeaways from our study: Firstly, user activity on social media through-
out the day can be mapped to pseudo-chronotypes on the morningness-eveningness continuum. We find these 
activity patterns to be a predictor of one’s propensity to spread potentially disinformative content and the con-
stituent content types. Evening types have the highest inclination towards spreading potentially disinformative 
content, infrequent posters the lowest. Secondly, the spread of potentially disinformative content is negatively 
correlated with diurnal activity.

Generally, our findings are in line with previous literature detailing the link between cyclical behavioural 
patterns and Twitter use41,59–61 as well as with findings associating sunlight with cognitive function (and by 
extension critical thinking)46 and with activity on Twitter45,47. Similar patterns of diurnal activity archetypes have 
been identified in other studies. Piccardi et al.75, using principal component analysis (PCA) Wikipedia consump-
tion patterns, found four principal components akin to our four behavioral clusters. Their PC2 had the largest 
weight in the morning (similar to our morning type), and PC4 had the largest weight in the evening (similar to 



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:20233  | https://doi.org/10.1038/s41598-024-69447-8

www.nature.com/scientificreports/

Figure 4.   Each panel displays per cluster: the cumulative number of posts with known reliability classification 
throughout the day (coloured areas), the cumulative ratios of potentially disinformative content types (red 
lines), the user’s 8 least active hours (inferred prolonged wakefulness, grey inner arc), and the times with the 
highest quartile of potentially disinformative posts (red outer arcs). The axis scales are shared between panels.

Table 4.   This table shows the percentage of change from the time outside of the first lockdown period in Italy 
to the lockdown period for overall and potentially disinformative posts per day and user as well as the average 
ratio of potentially disinformative content posted by users in a cluster (Eq. 15).

Infrequent Morning Intermediate Evening

Posts per day and user 148.1% 94.7% 50.4% 74.9%

potentially disinformative posts per day and user 110.4% 45.7% − 2.3% 72.4%

average ratio of potentially disinformative posts per user in cluster − 16.5% − 20.2% − 26.8% − 6.7%
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our evening type). They also found one principal component with bimodal peaks (PC3, our intermediate type) 
and one with relatively flat behavior (PC1, our infrequent posters). The same study analyzed typical access times 
for topics. Some topic peak average times fall the identified interval of 3:15 am and 4:15 am, where ratios of 
potentially disinformative content peaks for intermediate and evening types as well as for infrequent posters. These 
topics include space, software, internet and culture, military and war, and society (see their Figure 9)75. Around 
9:45 pm, the peak times of potentially disinformative content of morning types, topics are more media-centric 
including television, radio and literature75.

These results have implications for (a) our understanding of user responses to potentially disinformative 
information in relation to user activity and time of day, and (b) the design of interventions to prevent the spread 
of mis- and disinformation on social media.

There are two main theoretical explanations for susceptibility to mis- and disinformation. The first is the 
“inattention account”, which argues that people aim to share accurate content but are distracted from accuracy-
focused decisions by the context of social media. The inattention account draws from dual-process theories of 
cognition. In contrast, the “motivated cognition” or “identity-protective account” posits that people consider not 
just accuracy of new information but also the goals served by accepting it as true. Both accounts face significant 
critiques and limitations, such as failed replication of supportive results. For an in-depth review, we refer to76. 
Some evidence for the inattention account points to cognitive functions that might show circadian variation77,78. 
Motivated cognition, on the other hand, may be shaped by political identities or underlying values. Some stud-
ies have linked political ideology to diurnal variations79,80, and sleep loss to reduced altruistic behavior58. Some 
cognitive control processes which may be involved in the ability to override pre-existing identities or values 
when evaluating new information fluctuate across the day. For example, self-monitoring of executive functions 
shows circadian variations81. Overall, both theories are based on thinking processes that are subject to diurnal 
variation. The evidence is more ample and robust for analytical thinking than for motivated reasoning, though. 
Our findings on the spread of misinformation being subject to diurnal variation can therefore be interpreted 
through the lens of either theory.

We found that potentially disinformative content is most likely to be spread around inferred bedtime, at 9:45 
pm for morning type users and between 3:15 and 4:15 am for other users. This falls towards the end and after 
inferred waking time for all clusters. This variation is inline with the inattention account, assuming that morning 
type users would deplete their cognitive resources earlier in the night. The overall higher ratios of potentially 
disinformative content in evening type users can be contrasted with previous findings of reduced positive affect 
and social jetlag82. The peaks in the early morning may also stem from the fact that professional news outlets 
are usually not active during this time, reducing the portion of reliable content. Further research is needed to 
investigate the causes of the high share of potentially disinformative content during these times.

Our research may inform the timing of interventions against mis- and disinformation, and concentrate 
efforts on limited time frames. Continuously deploying interventions may be more costly for the implementer 
and may overload the user’s attentional capacity and patience. Shorter exposition may be more resource-effective 
and less intrusive. As a concrete example, social media companies could time interventions such as increasing 
communication friction (making it harder to react to posts without due thought83) or even throttling posting 
rates during those time ranges where users are particularly likely to spread misinformation (around 9:45 am for 
morning types and between 3:15 and 4:15 for other clusters). Similarly, the peak activity times of those users could 
be used to time preactive (inoculation, targeting the source of disinformation, and spreading truthful informa-
tion in areas at risk of disinformation campaigns) or proactive (equipping members of the public with the skills 
to critically analyze and identify new information) interventions6 for greater reach in particular to those users 
most susceptible to potentially disinformative content (such as around 10:15 pm to target individuals with an 
evening preference). The potential of our findings to inform the design of protective measures is all the more 
relevant in light of the rising trend in cyber operations and information warfare6,84.

More specifically, in the context of COVID-19, the non-pharmaceutical interventions imposed by many 
countries, such as lockdowns, curfews and home office, have disrupted many peoples’ daily rhythms, plausi-
bly giving rise to interaction effects between circadian mismatch and the course of the pandemic85 as well as 
aiding the spread of conspiracy theories22,38. Although potentially disinformative content posted per day and 
user increased for all clusters from the period outside of the lockdown to that within, the ratio of potentially 
disinformative content decreased. This can likely be attributed to a rise in reliable content due to increased 
informational coverage by mainstream and state media as well as by scientific research. Therefore, although we 
do not find evidence supporting that non-pharmaceutical interventions were followed by the increase in one’s 
propensity to spread mis- and disinformation, we cannot reject the possibility. We therefore continue to advice 
that future policy interventions consider their possible impact on human circadian activity to limit the risk of 
concomitant increases in mis- and disinformation71.

While a social media study allows the analysis of social dynamics at an unprecedented scale, it also comes with 
a set of limitations. In particular, using a dataset collected entirely from Twitter biases the reference population 
towards being more highly educated, working age, and male. The dataset, alongside its limitations, is discussed 
in detail in Gallotti et al.71. Our study is restricted to the context of Italy. Although we cross-reference with tweets 
originating from Germany (Supplementary Note A), our findings cannot be generalized further.

In terms of analysis, we use a set of proxy metrics: the ratio of potentially disinformative content (as a proxy 
for susceptibility to mis- and disinformation), activity patterns on Twitter (as a proxy for the user’s diurnal 
behavioural archetype), and average times of sunset and sunrise (as a proxy for sunlight exposure). These are 
computationally viable options allowing the large-scale analysis of behavioural phenomena but cannot measure 
the phenomena directly. However, social media data have a limited capacity to examine the underlying cogni-
tive processes related to information spreading. Controlled behavioural experiments would allow a more direct 
measure of underlying cognitive processes.
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Similarly, causality is yet to be established for the impact of time of day, diurnal tweeting behaviour, and 
non-pharmaceutical interventions against COVID-19 on one’s susceptibility to mis- and disinformation. Fur-
ther challenges include an extension and comparison across countries, languages, platforms, and representative 
user groups. On a larger scale, we hope for further research into how knowledge of the diurnal patterns of our 
reaction to mis- and disinformation can effectively be leveraged and integrated into the design of interventions 
against large-scale manipulation. Temporality, along with other factors impacting our susceptibility to mis- and 
disinformation, is likely already modeled in the latent space of deep learning systems. An analytic understanding 
can aid us in maintaining integrity of mind and autonomy of thought.

Methods
Data
We consider a Twitter dataset71 collected through the Twitter Filter API based on a set of hashtags and keywords 
surrounding the Covid-19 pandemic, specifically coronavirus, ncov, #Wuhan, covid19, covid-19, sarscov2, covid. 
Analysis was limited to the time span of January 22, 2020, when more than 6000 cases were reported in China, up 
to August 1st 2022. Twitter restrictions limit collection to no more than 4.5 million messages per day, on average. 
9128 tweets collected between January and February 2021 were not associated with a tweet type on collection 
and were excluded from analysis. After removal of duplicates and posts by users identified as bots, our body of 
analysis encompassed 18,148,913 tweets, retweets or replies, of which 1,001,045 are assigned a known reliability.

Source reliability mapping
Tweets were assigned a source reliability rating by the dataset authors71 based on web domains, manually classi-
fied by experts, listed in multiple public databases, including journalistic and scientific sources86–94. From these 
sources, the authors created a database of 3892 domains after cleaning and processing. These different sources 
have been aligned by Gallotti et al.71 to a common classification scheme based on a Harm Score (HS), an ordinal 
classification of sources in terms of their potential contribution to manipulative and misinformative informa-
tion spreading. Generally, a high Harm Sore indicated a more systematic and intentionally harmful knowledge 
manipulation and data fabrication. The news media web domains listed were divided into nine different categories 
of increasing Harm Score: 

1.	 Scientific,
2.	 Mainstream Media,
3.	 Satire,
4.	 Clickbait,
5.	 Other,
6.	 Shadow,
7.	 Political,
8.	 Fake and Hoax,
9.	 Conspiracy and Junk Science.

The categories of Shadow and Other were merged in this paper. Tweets containing a link are compared to domains 
in the database and classified according to domain reliability. The categories were adapted to fit the project focus 
and are detailed in Supplementary Table S1. In this work, we identify as potentially disinformative content mes-
sages sharing web domains with Harm Score ≥ 7.

Geographic and time zone mapping
Geocoding and geodata cleaning was conducted by the dataset authors71 based on the user’s self-declared location 
field ArcGIS API. Mapping errors (based, for example, on non-toponymous entries or website URLs) entries were 
removed by isolating single locations associated with many different unique location strings and data restricted 
to country-based granularity. Within this study, we use exclusively the data found to originate from Italy. By 
extension, we ported the time zone of content returned by the Twitter API to Central European Summer or 
Winter Time, respectively.

For the calculation of sunrise and sunset time, we relied on the latitude and longitude of location strings. For 
users who only listed “Italy” as their location, the coordinates are approximated around the geographical centre 
of the peninsula. To preserve user anonymity, these strings were mapped the centroids of the 2021 territorial 
units of level 3 released by Eurostat73, defining provinces and metropolitan cities. For locations outside of level 3 
provinces in Italy, we used the centroid of the closest territory. For locations equidistant from multiple territories, 
we chose the midpoint of these centroids.

Clustering
Let T = {[t, t + 1

4
) | 4t ∈ N ∧ 0 ≤ t < 24} be the set of 15 minute intervals within a day given in hours, F the set 

of content types and I the set of users authoring content. We will subsequently use t to refer to one such interval 
[t, t + 1

4
) ∈ T for simplicity. Let then {P(t,i,f )}(t,i,f )∈T×I×F be the set of posts of content type f ∈ F authored dur-

ing interval t ∈ T by user i ∈ I , indexed by a surjective function from T × I × F onto P.
We define a user’s activity level during a time interval t ∈ T as the proportion of posts authored during this 

time interval as compared to the sum of posts authored overall.
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The activity levels were smoothed using a rolling average over a 90 minute Gaussian window with σ = 3 (looping 
the values around midnight) and used for subsequent clustering. Six cluster performance indicators (specifically, 
Context-Independent Optimality95, Caliñski-Harabasz96, Davies-Boulin97, generalised Dunn98 and Silhouette99) 
informed our choice of cluster method and number of clusters. The indicators showed highest scores for k-means 
clustering with 3 distinct clusters with unique patterns of posting activity (morning, intermediate and evening type 
posters). Users with low post rates ( < 240 posts) are separated into a fourth cluster (infrequent type posters). We 
receive similar clusters when considering only posts by unverified users (Supplementary Note B).

Inter- and intra-cluster distances are detailed in Supplementary Table S4a, general information about the 
clusters is given in Supplementary Table S4b.

Diurnal cluster activity
Let C be the set of all clusters where c ∈ C is a subset of I. Function

calculates the activity levels during an interval t by cluster c where each user’s activity level carries the same 
weight. To denoise and compare the cluster activity curves, we transform them from the time domain into the 
frequency domain using the discrete Fourier transform:

where ac,n = ac(tk) and tk = k� . Equation 3 yields a sequence of complex numbers {Xc
k} = Xc

0,X
c
1, . . . ,X

c
N−1 

which describe amplitude and phase of sinusoidal functions. On summation, the sequence produces the original 
discrete signal. In particular, the kth Fourier coefficient provides information about the sinusoid that has k cycles 
over the given number of samples.

We then identified the coefficients with the greatest amplitude. Let {Ac} = {Ac
1,A

c
2, . . . ,A

c
N−1} be the set of 

all amplitudes of the constituent sinusoidal functions for frequencies 0, 1, . . . ,N , and let {A(c,m)} ⊂ {Ac} be the 
set of m largest amplitudes.

The signal is then recombined as follows to contain only the harmonics with m greatest amplitudes:

where h(n, t) describes the nth harmonic of the Fourier series. Pc is the period of function a(t, c), Ac
n , ϕc

n and nPc  
are amplitude, phase and frequency of harmonic hc(n, t) respectively, and Sc,mN (t) approximates the recomposed 
signal at time point t.

We used the value for m where the change in distance to the next larger value grew smaller for each clus-
ter. If two values are supported by an equal number of indicators, we chose the smaller one. Let {U} be a set 
of 7 distance metrics, specifically Partial Curve Mapping100, the area method101, discrete Frechet distance102, 
curve length103, Dynamic Time Warping104 as well as mean absolute error and mean squared error. Let then 
{Dm

u } =
∑

t∈T u(S
(c,m)
N (t), ac(t)) describe the distances between the original signal and the reconstruction (see 

Equation 1 and Equation 5, respectively) for a given value of m and a distance metric u ∈ U  . For a cluster c, we 
find the value of m as:

where argmin
m∈M

h(m) = {m | h(x) ≥ h(m) ∀x ∈ M} returns the set of points m for which a function h(m) returns 

the function’s smallest value, if it exists. The mode operation returns the set of most common elements, and min 
finds the minimum element of a set. We accordingly used m = 3 for all clusters.

Recomposing the signal ac(t) (Eq. 2) in this manner leaves us with the set of smoothed diurnal cluster activity 
values {S(t,c)}(t,c)∈TxC.

Details on the maxima and minima are found in Supplementary Table S2.
Potentially disinformative cluster activity as shown in Supplementary Fig S1 is calculated following the same 

process as described for overall diurnal activity, restricting the considered content types to potentially disin-
formative ones.

Let FH denote the set of potentially disinformative content types, consisting of conspiracy or junk science, 
fake or hoax news, and politically biased news.

(1)a(t, i) =

∑

f ∈F

|P(i,t,f )|

∑

s∈T , f ∈F

|P(s,i,f )|

(2)ac(t) =
1

|c|

∑

i∈c

a(t, i)

(3)Xc
k =

N−1
∑

n=0

ac,ne
− i2π

N kn k ∈ [0,N − 1]

(4)hc(n, t) = Ac
n cos

2π

Pc
nt − ϕc

n

(5)Sc,mN (t) ≈
Ac
0

2
+

N
∑

n=1

{

hc(n, t) if Ac
n ∈ {A(c,m)}

0 otherwise

(6)mc = min{mode{argmin
m∈[1,4]

(D(c,m)
u ,D(c,m−1)

u )}}
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Then, aHc (t) is then:

To find the smoothed set of potentially disinformative diurnal cluster activity {SH(t,c)}(t,c)∈TxC , a rolling average 
over a 90 minute Gaussian window ( σ = 6 ) was applied to this signal, looping the values around midnight. The 
process described in Eqs. (3)–(6) is then applied to the activity levels defined in Eq. (7) with m = 4 for inter-
mediate type users and m = 3 for all other clusters, resulting in the set of smoothed potentially disinformative 
diurnal cluster activity {SH(t,c)}(t,c)∈TxC.

Periods of heightened activity and prolonged wakefulness
To find the periods of heightened activity, let

return the time of day n hours past t where mod refers to the modulo operator. Then, let

indicate whether a time point s occurs within n hours past t. Then, the onset of heightened activity for cluster c 
and for n = 16 is found by:

Analogously to the argmin operation, the set of points t for which a function h(t) returns the function’s largest 
value, if it exists, is found as:

The end of the period of heightened activity is then i(g(c, n), n). Supplementary Table S3 lists these times for each 
cluster. We refer to the period after the end but before the onset of heightened activity as prolonged wakefulness.

Content type ratios
We calculate the ratio of a given content type without including the category “Other”, which is not easily clas-
sifiable, makes up the vast majority of content in our dataset, and could possibly obstruct patterns in the data.

Let FK be the subset of F without “Other”. The ratio for content type f ∈ FK , cluster c and 15 minute time 
interval within a day t is the average user ratio of that content type within a cluster:

The ratio of potentially disinformative content is then:

where FH is again the set of potentially disinformative content types, consisting of conspiracy or junk science, 
fake or hoax news, and politically biased news, and is a subset of FK.

We applied the process described by Eqs. (1)–(6) also to the diurnal pattern of ratios of potentially disin-
formative content. Given the noisy nature of the ratio curves, we applied a round of rolling Gaussian smoothing 
( window = 6, σ = 3 ) to the curves rH (t, i) before further processing. On these curves, the values of m for Eq. (5) 
preceding the lowest change in distance metrics were m = 4 for intermediate type users, and m = 3 for all other 
types. We refer to the set of smoothed diurnal ratios of potentially disinformative content as {R(t,c)}(t,c)∈TxC . We 
consider a time span t to reflect an increased susceptibility to spreading potentially disinformative content for a 

(7)aH (t, i) =

∑

f ∈FH
|P(i,t,f )|

∑

s∈T , f ∈FH
|P(s,i,f )|

(8)aHc (t) =
1

|c|

∑

i∈c

aH (t, i)

(9)i(t, n) = (t + n)(mod 24)

(10)j(t, s, n) =

{

t < s ∧ s < i(t, n) if t < i(t, n)
s > t ∨ s < i(t, n) otherwise

(11)g(c, n) = argmax
t∈T

∑

s∈T∧j(s,t,n)

A(s,c)

(12)argmax
t∈T

h(t) = {t | h(x) ≤ h(t) ∀x ∈ T}

(13)r(t, i, f ) =
|P(t,i,f )|

∑

g∈FK |P(t, i, g)|

(14)r(t, c, f ) =
1

|c|

∑

i∈c

r(t, i, f )

(15)rH (t, i) =

∑

f ∈FH |P(t,i,f )|
∑

f ∈FK |P(t, i, f )|

(16)rH (t, c) =
1

|c|

∑

i∈c

rH (t, i)
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given cluster if the smoothed ratio R(t,c) is greater than the third quartile. So t is a time of increased susceptibility 
for cluster c if Pr[{R(s,c)|s ∈ T} < R(t,c)] ≤ 3/4 , where Pr refers to the probability of an occurrence.

Statistics
χ2-test was used for comparison of nominal variables, i.e. the relationship in between times of lockdown and 
potentially disinformative content and in between content type and cluster affiliation. We used the Dip Test 
of Unimodality105 to test unimodality of distributions of diurnal activity for each cluster. Unimodality could 
be rejected for all clusters both for the smoothed diurnal activity curves of set {A(t,c)}(t,c)∈TxC and for the raw 
activity aggregations over the day described by Eq. (2). See Supplementary Table S3 for the Dip statistic and p
-values per cluster.

While we assume a monotonic relationship between the number of posts per user and the ratio of potentially 
disinformative content, we do not assume a linear one. Therefore, we use Spearman’s ρ to describe correlation 
between these variables (Table 2a). The same is true for correlation of user activity throughout the day with ratio 
of potentially disinformative content throughout the day. Table 2b shows the correlation coefficient and p-value 
for the raw activity aggregations over the day and for the smoothed activity curves.

Neither diurnal activity nor diurnal ratio of potentially disinformative content types are normally distributed 
(Shapiro-Wilk W = 0.875 , p-value> 0.001 and W = 0.886 , p-value> 0.001 , respectively). Therefore, we used the 
nonparametric Mann-Whitney U test to assess the difference in distributions of ratios of potentially disinforma-
tive content throughout the day by cluster (Table 1) and between day and nighttimes (table 3).

Data availability
This paper uses data generated by Gallotti et al. 71 available from the second author on reasonable request. The 
derived aggregated and anonymized data as well as the analysis supporting the findings of this study are openly 
available at: https://​github.​com/​ethz-​coss/​diurn​al-​misin​forma​tion.
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