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Dimensionality reduction techniques map values from a high dimensional space to one with a lower dimension.

The result is a space which requires less physical memory and has a faster distance calculation. These

techniques are widely used where required properties of the reduced-dimension space give an acceptable

accuracy with respect to the original space.

Many such transforms have been described. They have been classi�ed in two main groups: linear and

topological. Linear methods such as Principal Component Analysis (PCA) and Random Projection (RP)

de�ne matrix-based transforms into a lower dimension of Euclidean space. Topological methods such as

Multidimensional Scaling (MDS) attempt to preserve higher-level aspects such as the nearest-neighbour

relation, and some may be applied to non-Euclidean spaces.

Here, we introduce nSimplex Zen, a novel topological method of reducing dimensionality. Like MDS, it relies

only upon pairwise distances measured in the original space. The use of distances, rather than coordinates,

allows the technique to be applied to both Euclidean and other Hilbert spaces, including those governed by

Cosine, Jensen-Shannon and Quadratic Form distances.

We show that in almost all cases, due to geometric properties of high-dimensional spaces, our new technique

gives better properties than others, especially with reduction to very low dimensions.
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1 INTRODUCTION
The requirement to work with large, high-dimensional metric spaces is a long-standing and

increasingly important requirement across many domains of computation. Typically, each element

of such a space represents some real-world artefact, and the distance between elements gives a

proxy (dis-)similarity function over the real-world domain.

As technology progresses, both the dimension of spaces and the size of collections tend to

increase. These factors increasingly imply that apparently simple calculations, for example to �nd a

few of the most similar elements within a large set, may become intractable. While sub-linear search

times may in some cases be achieved using metric indexing techniques [11, 55], these also become

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1556-4681/2024/1-ART1 $15.00

DOI: 10.1145/3647642

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2024.

http://dx.doi.org/10.1145/3647642


This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive

version was published in ACM Transactions on Knowledge Discovery from Data, http://dx.doi.org/10.1145/3647642.

1:2 Richard Connor and Lucia Vadicamo

ine�ective in high dimensions and it has been shown that even approximate search complexity

often degrades to linear as dimensionality increases [43].

In the domain of image search for example, a collection of a million images would no longer be

considered large, and using modern techniques the dimension of the space used to represent them

is likely to be several thousand. In this case an exhaustive search to �nd the image in the collection

which is most similar to another will require upward of 10
9

numeric comparisons, with 10GBytes

of data passing through main memory. If we consider that the YFCC benchmark image set [47]

contains 10
10

images, and the size of a representation derived from GoogleNet [45] has around

200, 000 dimensions, clearly any such computation is well beyond the scope of most computational

contexts.

The purpose of dimensionality reduction is to reduce the dimension of the space, maintaining as

far as possible the relative distances. This not only implies that less space is required in memory

for the dataset, but also gives a faster distance computation.

There are a number of well-known approaches to dimensionality reduction. The Johnson-

Lindenstrauss lemma shows a surprisingly small lower bound on the degree of distortion which is

necessarily introduced when reducing a high-dimensional Euclidean space to a lower dimension.

This bound may be achievable by using a Random Projection (RP) into the lower dimension, and if

the domain is perfectly uniformly distributed then this may be the best technique that is achievable.

However much data is implicitly non-uniform, for example data deriving from a Convolutional

Neural Network (CNN) typically lies on some complex manifold within the representational space

[8]. In these cases non-random transforms, which take advantage of non-uniformities within the

data, can achieve better results.

Dimensionality reduction mechanisms are often classi�ed in two main groups. Linear transforms,

such as Principal Component Analysis (PCA) [27, 41], apply only to Euclidean spaces and perform

a matrix-based transform derived from properties of the whole space, with the primary goal of

preserving pairwise distances as far as possible. Topological transforms, such as Multidimensional

Scaling (MDS) [21], use the individual pairwise distances of the original space in an attempt

to preserve higher-level relationships, such as the pairwise ordering of distances or the nearest-

neighbour relation. Topological methods may be applicable to non-vector spaces, or even non-metric

spaces with an appropriate dissimilarity function.

In this article we introduce a new mechanism, which has interestingly di�erent properties,

and which can be applied to Euclidean and, more generally, to any space that is isometrically

embeddable in Hilbert space. It is primarily a distance-preservation mechanism, and uses properties

of high-dimensional Euclidean geometry which have not been previously applied in this domain to

preserve distances in the reduced-dimension space.

1.1 Outline of some Dimensionality Reduction mechanisms
We refer to the novel Dimensionality Reduction (DR) transform introduced here as nSimplex Zen.

In this section, by way of motivation, we brie�y contrast it with the three other best-known DR

transform techniques. More detail of the other transforms is given in Section 3, and a full de�nition

of nSimplex Zen in Section 4.

In all cases we consider transforming a given space of n elements, with a dimensionality
1

ofm,

into a Euclidean space with n elements and k dimensions, where k < m.

Random Projection (RP) is applicable only to an m-dimensional Euclidean space, where

m > k . A randomised, orthonormal matrix ofm ×k dimensions is generated, and the n ×m

1
the term dimensionality can be usefully applied to Hilbert spaces, see note in Section 3
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matrix representing the data is transformed by matrix multiplication to an n × k matrix

representing the reduced dimensional space.

Principal Component Analysis (PCA) is also applicable only to an m-dimensional Eu-

clidean space. A matrix of m ×m dimensions representing the principal components is

generated from the original space, and the n×m matrix representing the data is transformed

by matrix multiplication with the most signi�cant k columns of this matrix to yield the

reduced dimensional space.

Multidimensional Scaling (MDS) is applicable to any metric or semi-metric space, and

considers only the distances among the n elements of the input space. An n × n (upper

triangular) matrix of pairwise distances is taken as input, and the output is an n × k matrix,

representing a Euclidean space which preserves pairwise distances as far as possible. MDS

does not scale well, but an adaptation can be applied to large Euclidean spaces. A variant

of MDS, Landmark MDS, can be applied to general metric spaces.

nSimplex Zen is applicable to any metric space which is isometrically embeddable in Hilbert

space
2
. It takes as input a reference set R comprising k elements of the input space.

A simplex in (k − 1) Euclidean dimensions is constructed using the pairwise distances

measured within this set. With reference to this structure, each further element of the input

space is then mapped to a k-dimensional Cartesian coordinate according to its distances

from each element of R.

nSimplex in its simplest form is a mapping from (U,d) to (Rk , `2), where k is the size of the

reference set R. This can be used in its own right as a DR technique. There are however two further

functions which can be applied to the Rk space resulting from the mapping: Zen and Upb, which

are de�ned in Section 4. There are thus three di�erent spaces which may be formed as a result of

the projection. nSimplex Zen refers to the mapping from (U,d) to (Rk ,Zen) and is the main object

of our attention.

In contrast with the other techniques, calculation of the nSimplex transform does not require any

operations over matrices. Instead, it relies upon higher-level geometric properties of the original

metric space, which are re�ected within the generated k-dimensional space.

1.2 Relation to previous work
The ideas underlying nSimplex Zen have emerged after several years of research in the intersection

between similarity search and distance geometry, in particular with respect to work done in

the early 20th Century by, among others, Blumenthal, Hilbert, Menger, and Wilson, which we

summarise in Section 2.1.

In [12] we showed how the four-point property possessed by some metric spaces
3

could be used

to improve many metric search techniques, and in [13, 14] it was shown that this observation could

be applied in practice to a number of state-of-the-art metric indexing techniques. We extended

this work in [15] after making the observation that the major four-point spaces we had identi�ed

(Jensen-Shannon, Quadratic Form, Cosine, Triangular) also possessed the n-point property, and

that the distance lower-bound we had identi�ed for four-point spaces in the 2D projection applied

more generally in higher dimensions. During this work we also identi�ed the algorithm, referred

to as nSimplex Projection, for constructing the simplex as given here in Appendix B, and the proof

2
This includes any Euclidean space, and also metric spaces governed by appropriate variants of Cosine, Jensen-Shannon,

Quadratic Form, and Triangular distances (see [12] and Appendix A for details.)

3
see Section 2.1.2 for a description of this and the n-point property
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given in Appendix C that the Lwb function given in Section 4 is a lower bound of the distance in

the domain of the nSimplex transform
4
.

We exploited the nSimplex Projection also in the context of similarity search as an intermediate

step to transform the original data into permutations and binary strings to be employed in e�cient

approximate metric indexes [48, 49, 51].

In [18] we noted the application of the Zen function introduced in Section 4 is a better estimator

of true distance than the Lwb function described in [15] in the domain of string similarity functions.

Moreover, in [50] the Zen function has been exploited on other domains (image features and word

embeddings) to e�ectively re�ne candidate results obtained using a permutation-based k-NN search

without accessing the original data. We subsequently observed the very non-uniform pattern of

angles measured within the simplexes thus formed from high-dimensional spaces. This angular

distribution was separately examined and published in [19].

The main contribution of this article is the full exposition and analysis of the Zen function of the

nSimplex construction as a general dimensionality reduction technique for Euclidean and other

Hilbert spaces, all of which content is entirely novel.

1.3 Paper Outline
The rest of the article is structured as follows. Section 2 gives an overview of the necessary mathe-

matical background required to understand the mechanism and motivation of the nSimplex Zen
transform. Section 3 gives background on dimensionality reduction, and outlines the four mecha-

nisms with which we compare nSimplex Zen . Section 4 gives a detailed account of the nSimplex
transform, and its three related functions: Zen, Lwb and Upb . Section 5 gives experimental results

comparing the quality of the reductions given by nSimplex Zen with the transforms introduced in

Section 3, and Section 6 compares the run-time performance of the various mechanisms. Finally,

Section 7 gives a discussion of the nSimplex Zen mechanism and its results, and concludes with

some possible future work. Table 1 summarises notations used throughout this work.

2 BACKGROUND: METRIC SPACES AND THEIR PROPERTIES
The novel nSimplex mechanism is described fully in Section 4. Before it can be understood in detail

a signi�cant amount of mathematical background is required, and provided in this section. Section

2.1 gives some mathematical preliminaries, and Section 2.2 gives some more speci�c background in

high-dimensional geometry. Section 3 gives a general background to dimensionality reduction.

2.1 Metric spaces, embeddings and simplexes
Our work relies on the ability to construct a simplex in a k-dimensional Euclidean space, whose

edge lengths correspond to the distances among any (k + 1) objects selected from any metric space

which is (k + 1)-isometrically embeddable in a Hilbert space. These underlying concepts are brie�y

explained in this subsection.

2.1.1 Metric and Semimetric Spaces. Let (U,d) be a pair comprising a domain of objects U
and a numeric dissimilarity function d : U × U → R. In general the more similar the objects

x ,y ∈ U, the smaller the value of d(x ,y). For a space to be semimetric, it requires d to be positive

or zero, with d(x ,y) = 0 if and only if x = y, and symmetric, i.e. d(x ,y) = d(y,x). A (proper) metric

space, governed by a (proper) distance function, also possesses the triangle inequality property, i.e.

d(x , z) ≤ d(x ,y) + d(y, z). For the rest of this article, we use the terms distance and metric space to

refer to functions and spaces with these properties.

4
In fact these were not included in the published version due to space limitations, but were given in an adjunct arXiv

publication [20]
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Table 1. Table of notations used

Notation Meaning

n The cardinality of both domain and range of a DR transform

m The dimension of a Euclidean space which is the domain of a DR transform

k The dimension of a Euclidean space which is the co-domain of a DR transform

(U,d) A metric space with domainU and distance function d

(S,d) A (typically large) �nite subspace ofU, S ⊂ U
R A (typically small) set of reference objects drawn from S
u,ui Individual objects drawn fromU
s, si Individual objects drawn from S
r , ri Individual reference objects drawn from R
τ A DR transform mapping some (U,d) to (U ′, ζ )
σ An nSimplex transform based on k reference objects, σ : U → Rk

`2 The Euclidean distance function

(Rm , `2) A Euclidean space ofm dimensions

δi j The distance d(i, j) where i, j ∈ (S,d)
ζi j The corresponding distance ζ (i, j) for corresponding i, j ∈ (S′, ζ ), where S′ = τ (S)

2.1.2 Metric Spaces and Isometric Embeddings. For metric spaces (U,d) and (U ′, ζ ) we say

that U is isometrically embeddable in U ′ if there exists a function f : U → U ′ such that

ζ (f (x), f (y)) = d(x ,y) for all x ,y ∈ U. A �nite isometric embedding is de�ned when such a

function exists for a �nite subset ofU. A �nite isometric embedding may be generalised to any

�xed size of subset; for example, we state that (U,d) is �nitely n-embeddable in (U ′, ζ ) where

such a function exists for any subset of n values selected fromU.

These concepts give rise to an alternative de�nition of a metric space. Normally, a metric space

is de�ned as a semimetric space which has the triangle inequality property. Alternatively, a metric

space may be de�ned as a semimetric space which is �nitely 3-embeddable in 2D Euclidean space,

this being an equivalent property.

Finite isometric embeddings are summarised by Blumenthal [7]. He de�nes the four-point
property to refer to any space that is �nitely 4-embeddable in 3-dimensional Euclidean space.

Wilson [54] shows various properties of such spaces, and Blumenthal points out that results given

by Wilson, when combined with work by Menger [38], generalise to show that some spaces with the

four-point property also have the n-point property: that is, for any n, they are �nitely n-embeddable

in (n− 1)-dimensional Euclidean space. In a later work, Blumenthal [6] shows that any space which

is isometrically embeddable in a Hilbert space has the n-point property. This is a generalisation

of the better-known result that any n points from a Euclidean space of any dimension may be

isometrically embedded in (n − 1)-dimensional Euclidean space, and is the main abstract result we

rely upon here.

2.1.3 Hilbert Spaces. A Hilbert space is a real or complex inner product space that is also a

complete metric space with respect to the distance function induced by the inner product. Hilbert

spaces possess inner product and distance functions with properties analogous to, but not necessarily

the same as, the dot product and distance functions of a Euclidean space.
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A Hilbert space is a generalisation of a Euclidean space, allowing the study of vector spaces

which do not necessarily have �nite coordinate systems. Hilbert spaces have always been important

in the study of abstract geometry. All Euclidean vector spaces are Hilbert spaces; in more recent

years however, many further useful spaces have been identi�ed as being isometrically embeddable

in Hilbert space. These include spaces governed by the Jensen-Shannon, Quadratic Form, Trian-

gular, and Cosine
5

distances. These spaces do not have Euclidean coordinates, and so cannot be

manipulated via matrix arithmetic, but can be used as the domain of the transform we propose

here as they inherit the n-point property of a Hilbert space.

2.1.4 Construction of a simplex. A simplex is the generalisation of a triangle or a tetrahedron in

arbitrary dimensions of Euclidean space. In one dimension, a simplex is a line segment. In two

dimensions it is a triangle, while in three dimensions it is a tetrahedron. In general, a point v1
forms a 0-simplex, and the n-simplex of vertices v1, . . . , vn+1 is given by the union of the simplex

formed from v1, . . . , vn with the line segments joining vn+1 to all vertices of that simplex.

The property that a Hilbert space (U,d) is �nitely (n+1)-embeddable in n-dimensional Euclidean

space directly implies that, for any (n + 1) objects inU, it is possible to construct a simplex with

(n + 1) vertices in Rn , where each vertex corresponds to an object inU, and the edges joining all

pairs of adjacent vertices correspond with the distances between the corresponding objects inU.

In Appendix B we show an algorithm for determining Cartesian coordinates for the vertices of a

simplex, given only the distances between all pairs of points. The algorithm is inductive, at each

stage allowing the apex of an n-dimensional simplex to be determined given the coordinates of an

(n − 1)-dimensional simplex, and the distances from the new apex to each vertex in the existing

simplex.

The outcome of this algorithm represents a simplex in n-dimensional space as a lower triangular

n + 1 by n matrix representing the Cartesian coordinates of each vertex. For example, the rows of

the following matrix represent the coordinates vi, j of four vertices v1, . . . , v4 of a tetrahedron in

3D space: 
0 0 0

v2,1 0 0

v3,1 v3,2 0

v4,1 v4,2 v4,3


(1)

This matrix is derived from four objects o1, . . . ,o4 in the Hilbert space, and the distances d(oi ,oj )
are the same as the distances `2(vi , vj ) where vi and vj are vectors given by the i-th and j-th rows

of the matrix, respectively.

For all such sets of objects, the invariant that vi, j = 0 whenever j ≥ i can be maintained without

loss of generality. For any simplex constructed, this can be achieved by rotation and translation

within the Euclidean space while maintaining the distances among all the vertices. Furthermore, if

we restrict vi, j ≥ 0 whenever j = i − 1 then in each row this component represents the altitude of

the point vi with respect to a base simplex formed by {v1, . . . , vi−1}, which is represented by the

matrix derived by selecting elements above and to the left of the entry vi, j .
Finally, we note that as long as the entry vi, j is non-zero, i.e. represents a non-zero altitude

above the base simplex de�ned by rows 1 to i − 1, then the set of vectors de�ned by the rows forms

a basis for the n-dimensional space in which it is constructed. In this way, the process of forming

the simplex gives an interesting comparison to the Gram-Schmidt method for forming a basis

in a Euclidean space, but the simplex formation method does not require access to a coordinate

5
in one particular form, see Appendix A for details of this and other metrics.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2024.

http://dx.doi.org/10.1145/3647642


This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive

version was published in ACM Transactions on Knowledge Discovery from Data, http://dx.doi.org/10.1145/3647642.

nSimplex Zen 1:7

ab

r

θ

c

(a)

ab
θ

θ

c

−r rt

(b) (c)

Fig. 1. In n dimensions, for fixed a and b within a given plane, c is sampled from within the same plane
at a fixed radius r from b. As the dimensionality of the space increases, the probability of θ being close to
π/2 increases rapidly: the right-hand plot shows probability density functions for various dimensions as
t = r cosθ varies between −r and r .

space de�ning the original metric space, and can thus be applied to any metric space which is

isometrically embeddable in a Hilbert space.

2.2 Angles in High-Dimensional Metric Spaces
In Section 4.3 we rely upon a property on the distribution of angles in high-dimensional Euclidean

space that is described in this section. While the property itself is relatively straightforward, its

derivation from high-dimensional Euclidean geometry is less so, and we therefore give a short

justi�cation.

In the context of a uniformly distributed Euclidean space of n dimensions, we are interested in

the distribution of angles formed by a hyperplane H and a object c on a hypersphere
6

centred on a

point b ∈ H . Without loss of generality this distribution can be measured as the angle between

three points a, b, and c, where objects a and b are �xed in H , and c is sampled within a �xed radius

r from b. The considered situation can be easily depicted in 2D (i.e., considering the plane through

these three points) in Figure 1a. Given this arrangement, we wish to understand the distribution of

the angle θ ∈ [0,π ], that is the angle formed by the three points.

In a high-dimensional vector space it is generally known that two randomly selected vectors

are very likely to be close to orthogonal [4, 5, Chapter 2], and it is therefore no surprise that the

value of θ is likely to be close to π/2. In fact this is the only result required for the understanding

of Section 4.3, however further explanation is reasonably required.

In [19] we quanti�ed the distribution of this angle and we observed that as the dimension of the

space n increases so too does the probability of θ being close to π/2. In particular we observed that

• the total volumeVn of a n-ball with radius r isVn = r
nUn−1

∫ π
0

sin
n ψdψ , whereUn−1 is the

volume of a unit (n-1)-ball;

6
A hyperspheres in Rn is a n − 1-sphere. Note the possibly confusing conventions in the naming of n-spheres and n-balls:

in general, the surface of an n-ball is denoted as an (n − 1)-sphere. For example, the volume contained by a sphere in 3D

space is a 3-ball, whereas its surface is a 2-sphere.
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• the volume Vn(θ ) of the portion of the n-ball delimited by the hyperplane through c and

orthogonal to H (i.e. the portion delimited by θ and denoted by the green-shaded area in

Figure 1b) is proportional to rn
∫ θ
0
sin

n ψdψ .

Actually, here we are interested in the “surface” of the portion of the n-ball delimited by θ ,

rather than its volume. However such regions are strongly related geometrically; in fact in general

the surface of an n-ball, i.e. an (n − 1)-sphere, has a volume in (n − 1) dimensions. The angular

distribution of volume in an n-sphere is identical to that in an (n − 1)-ball [53], therefore the PDF

for the distribution of points on an (n − 1)-sphere is given by a normalisation of the same formula.

While the formula to computes the volume is di�cult to quantify, requiring the integration of

high powers of the sine function, it has also been observed that for high values of n the function

is numerically almost indistinguishable from the normal distribution function given by setting

µ = π/2 and σ = 1/
√
(n) [1, 10], for which integral values are highly accessible. Figure 1c quanti�es

this volume as PDFs for various dimensions n. It can be observed that as n increases the distribution

of t concentrates around the mean value 0, so the distribution of the angle θ concentrates around

π/2.

This theoretical model can be veri�ed by experiment in unbounded Euclidean spaces. As usual,

there are various factors in real-world spaces (in particular boundedness and non-uniformity)

which a�ect the observed distribution of angles, but the theoretical e�ect is still highly visible; a

deeper analysis is given in [19]. In Section 5 we analyse Euclidean spaces drawn from examples in

100 to 4,096 dimensions, in which the e�ect is very evident.

3 RELATED WORK: DIMENSIONALITY REDUCTION
In simple terms, dimensionality reduction refers to the transformation of a set of values in dimension

m to a set of values in dimension k , where k < m. Associated with such a transformation is a

controlled loss of information within the reduced-dimension space.

The notion of dimensionality in general metric spaces is itself complex, and indeed the estab-

lishment of a generally agreed de�nition of intrinsic dimensionality is an ongoing research issue.

In Euclidean spaces dimensionality can be understood as the minimum value ofm for which an

isometric embedding in an (Rm , `2) space can be de�ned. For example, a set of points on a plane can

be de�ned in a 3-dimensional space, but the intrinsic dimensionality of this set is 2. Mechanisms

such as PCA and MDS can be used to detect the value of intrinsic dimensionality in a Euclidean

space. In general, metric spaces cannot be isometrically embedded in Euclidean space and so this

de�nition cannot be used. The concept of dimensionality is important in non-vector spaces, and

can be de�ned upon properties such as the distribution of distances among objects of the space, as

shown for example in [11]. In this article we refer to “dimensionality reduction” transforms which

map from metric spaces to Euclidean spaces of a lower dimensionality, in these cases we implicitly

rely upon such de�nitions of dimensionality.

Dimensionality reduction techniques are usually classi�ed into two groups: linear and topolog-

ical. Linear mechanisms are concerned with preserving the accuracy of simple distances, while

topological mechanisms are concerned with the preservation of higher-level properties, for example

relative rather than absolute distances. In all cases, the main purpose is to reduce the cost of distance

comparisons, by reducing both the size of the data and the cost of the distance measurement. In

most contexts, we are interested in applying such transforms to a �nite metric space (S,d) which

is a (typically very large) subset of an in�nite space (U,d). For example in metric search, the task

is to �nd, from the subset S, values which are similar to a query value q ∈ U, where typically

q < S. This causes us to reconsider the general notion of dimensionality reduction. Rather than

a transform which maps some �nite space (S,d) to another space (S′, ζ ), where (S,d) is a �nite
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Table 2. Dimensionality reduction algorithms used in this research.

Name Goals Input Output

PCA Project data onto a lower-

dimensional subspace while

maximising the retained variance

Euclidean space: original data

(or its covariance matrix)

Projection matrix (principal

components) and projected data

RP Project data onto a lower-

dimensional subspace with small

distortion in pairwise distances

Euclidean space: original data Random projection matrix and

projected data

MDS Represent data in a lower-

dimensional space, preserving

the rank ordering of pairwise

distances

Any semi-metric space: distance

matrix (all pairwise distances)

Transformed data (coordinates)

LMDS As MDS, but using a subset of land-

marks to reduce computational cost

Any semi-metric space: pair-

wise distances between data ob-

jects and landmark points, and

pairwise distances among all

landmark points

MDS on landmarks and trans-

formed data (coordinates)

nSimplex

Zen

Represent data in a lower-

dimensional space with small

distortion in pairwise distances

Any Hilbert-embeddable space:

pairwise distances between data

objects and reference objects,

and pairwise distances among

all reference objects

Matrix representing a base sim-

plex and the transformed data

(coordinates)

subset of some in�nite space (U,d), we require a more general transform τ : (U,d) → (U ′, ζ )
which can map individual elements of U to U ′. This is important for two reasons. First, any

analytic technique that analyses the entire �nite domain S in order to map to a new one will be

intractable for very large �nite domains. Second, such a technique would not allow the mapping

of a query value q where q ∈ U but q < S. We make this distinction as classical de�nitions of

techniques such as MDS assume analysis of the entire �nite domain.

In this section, as well as giving outline descriptions of these techniques, we also show how they

can be applied in this more general context. There are many dimensionality reduction techniques,

many of which have been developed for speci�c contexts. The Principal Component Analysis (PCA)

[27, 41] stands out as the most widely used dimensionality reduction algorithm, �nding applications

in data compression, data processing, feature extraction, and data visualisation, among others.

Random Projection (RP) [22], Multidimensional Scaling (MDS) [21, 32, 44], and their variants aim at

representing the data in a lower-dimensional space in such a way that the distances between points

in that space approximate the pairwise dissimilarities in the original space. Isomap [46] focuses on

preserving geodesic distances and local structures, often used in data analysis and machine learning.

Additionally, other techniques such as t-Distributed Stochastic Neighbour Embedding (t-SNE) [52]

and Uniform Manifold Approximation and Projection (UMAP) [37], are commonly employed for

exploratory data analysis and visualisation. Given our focus on distance-preserving mechanisms

and not on data visualisation, here we introduce three general mechanisms most relevant to our

context, namely PCA, RP, MDS, which we believe are the mechanisms in most common use. Table

2 provides an overview of these mechanisms, alongside our proposed nSimplex Zen.

3.1 Random Projection
According to the Johnson-Lindenstrauss Flattening Lemma (see e.g. [36, page 358]), a random

projection can be used to transform a �nite set ofn Euclidean vectors into a k-dimensional Euclidean
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space (k < n) with a “small” distortion. Speci�cally the Lemma asserts that for any n points of

the space (Rm , `2), and for every 0 < ϵ < 1, there is a mapping into (Rk , `2) that preserves all the

pairwise distances within a factor of 1 + ϵ , where k = O(ϵ−2 logn). Note that this lemma depends

on the size, and not the dimensionality, of the domain.

The low dimensional projection anticipated by the Johnson-Lindenstrauss lemma is particularly

simple to implement. Speci�cally, for a Euclidean space represented by an n ×m matrix, a suitable

transform into k dimensions can be achieved through a randomly generatedm × k orthonormal

matrix. Practically, there are even better ways of achieving the projection. Achlioptas [2] shows

that equally good results can usually be achieved with a much cheaper transform, by creating a

m × k pseudo-orthogonal matrix with, for example, the randomised strategy:

Ri, j =
√
3 ×


+1 with probability 1/6

0 with probability 2/3

−1 with probability 1/6

(2)

This greatly improves the e�ciency of the projection, as it introduces many zeros into the projection

matrix, and allows integer arithmetic to be used instead of �oating point. Further, the strategy has

been shown to give better outcomes in some circumstances than a truly orthonormal matrix. We

use this strategy in our comparative experiments in Section 5.

It is self-evident that, for Euclidean data which is uniformly distributed, a random projection

is no worse than any other linear technique. However, much real-world data is not uniformly

distributed, often in ways that are di�cult to predict or analyse, in which case other techniques

typically perform better.

3.2 Principal Component Analysis
PCA [27, 41] is probably the best known and most widely used unsupervised dimensionality

reduction technique, and has been used also for feature extraction and data visualisation. The

main idea is to �nd a linear transformation of m-dimensional vectors to k-dimensional vectors

(k < m) that best preserves the variance of the input data. Speci�cally, PCA determines the principal

components of the data, which are those directions within the vector space showing maximum

variance. The �rst such direction is found, and represented by a unit vector; then, the second

direction is found within the (m − 1)-dimensional subspace orthogonal to this unit vector, and

so on until a set of m orthonormal vectors is established. These vectors are represented in an

m-dimensional square matrix whose columns correspond to the unit vectors established by this

process (i.e., the so-called principal components).

If the intrinsic dimensionality of the data is less thanm, then the last steps of the process will

discover a variance of 0 in all directions and the unit vectors derived become arbitrary.

The principal components can be computed by solving a maximisation problem. However, it has

been shown that the principal components are the eigenvectors of the covariance matrix of the

centred input data. Thus typically they are computed by using spectral analysis via Singular Value

Decomposition of the data rather then solving the optimisation problem, which is more expensive.

The eigenvalues λ1, . . . , λm give the variances of their respective principal components. Moreover,

the ratio ∑k
i=1 λi∑m
j=1 λj

(3)

represents the proportion of the total variance in the original data set accounted for by the �rst k
principal components.
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The dimensionality reduction transform itself is achieved by multiplication of the matrix repre-

senting the domain by the �rst k columns of the principal component matrix. If the value given by

Equation 3 is large, then the loss of accuracy in distances measured in the projected space will be

correspondingly small.

While PCA is de�ned as the orthogonal projection of the data onto a lower dimensional linear

subspace, such that the variance of the projected data is maximised, there also exists an equivalent

de�nition of PCA that gives rise to the same algorithm. In the latter, the PCA is de�ned as the

linear projection that minimises the average projection cost, de�ned as the mean squared distance

between the data points and their projections [24]. This property implies that PCA is the best

strategy for dimensionality reduction in a Euclidean space, where the goal is to minimise the

introduced inaccuracy of arbitrary distance measurements.

For a very large data set, the cost of calculating the principal components using the entire set is

likely to be intractable. However this cost may be avoided by using a representative sample of the

data to generate the principal components. As the projection to construct the reduced-dimension

set comprises multiplication of the n ×m data matrix by the m × k principal component matrix,

principal components derived from a representative subset can be used to transform the remainder

of the data.

3.3 Multidimensional Scaling
MDS [21] is a technique which analyses the pairwise distances within a �nite semimetric space

(S,d) and, given a target dimension k , generates a k-dimensional Euclidean space which preserves

topological features of these distances as far as possible. There are two main variants of MDS,

so-called “classic” (metric) and non-metric. Here we consider the “non-metric” version as this may

be applied to spaces not governed by the Euclidean distance and can thus be compared with the

nSimplex technique.

MDS iteratively constructs Euclidean vectors, using a gradient descent technique, in order to

minimise a stress formula. In the non-metric variant, this is typically Kruskal’s (see Section E.1)

stress1 de�nition:

SK =

√√∑
i<j (ζi j − d∗i j )2∑

i<j ζ
2

i j
(4)

In this formula, i and j are indices over the data objects in S, ζi j = ζ (τ (si ),τ (sj ) is the Euclidean

distance measured in the reduced space, and d∗i j = d
∗(si , sj ) is a function generated by an isotonic

regression over the true distances d(si , sj ) as a function of the reduced distances ζi j . Stress is

therefore a�ected not by the absolute di�erence between distances in the two spaces, but instead

according to the relative ordering of distances between them: if this is preserved, then the measured

stress will be lower.

MDS is an expensive (O(n4)) algorithm to compute, signi�cantly limiting the size of data to

which it can be applied. It has the further disadvantage that as the analysis is over a given �nite set

of distances among objects, it cannot therefore produce a transform which may be applied to other

non-manifest elements of the same domain. This would imply that a representative sample cannot

be used to construct a transform which can subsequently be applied to a very large domain, and

also that a query from the same universal domain cannot be subsequently transformed into the

generated k-dimensional space.

In fact it may be possible to generate such a transform when MDS is applied to anm-dimensional

Euclidean space, using Procrustes analysis and a pseudo-inverse matrix operator, as follows. First,

a representative set of l objects is selected from the n objects of the domain, and the l × l distance

matrix is generated. MDS takes this as input and an l × k matrix is produced to represent the
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k-dimensional space representing those objects. Procrustes analysis can then be used to produce a

transform from this space back to a best �t within the original m-dimensional space. Although

in general this transform is represented by a non-square matrix, and therefore is not guaranteed

to have an inverse, a pseudo-inverse technique can be used to successfully construct the inverse

transform. This can therefore be subsequently applied to other samples from the same original

space. We use this technique in Section 5 to compare MDS as a dimensionality reduction technique

for large Euclidean spaces.

3.4 Landmark Multidimensional Scaling
Landmark MDS (LMDS) [44] is a technique which allows MDS to be used for the generation of

a general transform over metric spaces, using a triangulation technique. A representative set

of landmark values L is selected from the domain U, and classical MDS is applied in order to

transform the (typically) non-Euclidean space L to a k-dimensional Euclidean space, minimising

the stress as above.

As already noted, classical MDS does not generate a transform function which can be applied

to data not included in the manifest space whose distances are used to construct this transform.

Instead, LDMS allows the addition of further elements of the domain to the transformed space

using only the distances calculated to each element of L. A triangulation approach is then used to

place each subsequent element into the reduced-dimension space with minimal stress on this set of

distances.

In this manner, LMDS extends classical MDS in such a way that it can be extended for use over

very large data sets and non-manifest queries in non-Euclidean spaces. We use this technique in

Section 5.6 to compare LMDS with our nSimplex Zen transform over spaces not governed by the

Euclidean distance.

4 THE NSIMPLEX PROJECTION
The nSimplex transform can be applied to Hilbert spaces in general, and relies on the Hilbert

property that any k + 1 values can be isometrically embedded in an k-dimensional Euclidean space.

In outline, the transform from a Hilbert spaceU to Rk is de�ned as follows:

(1) k values r1, r2, . . . rk are �rst selected fromU to form a reference set R. (Typically, R will

be selected from a large �nite subset S ofU.)

(2) All pairwise distances among the values in R are calculated, and used to construct a base
simplex Σ in a Euclidean space of k − 1 dimensions, where each vertex vi in Σ corresponds

to one value ri in R with `2(vi , vj ) = d(ri , r j ) for all i, j = 1, . . . ,k .

(3) For any further value u ∈ U, the distances between u and all values in R are calculated.

(4) These distances are used to construct a point vu in k-dimensional Euclidean space, where vu
is the apex of a simplex formed by its addition to the base simplex Σ, such that `2(vu , vi ) =
d(u, ri ) for all i = 1, . . . ,k

These apex points form the target of the transform. The process therefore gives a mapping σ
from the general Hilbert spaceU to a k-dimensional Euclidean space, where σ (u) = vu , ∀u ∈ U.

MATLAB and Java code for computing the nSimplex projection is available on GitHub at https:

//bitbucket.org/richardconnor/metric-space-framework
7
. For Python users, the corresponding code

implementation can be accessed at https://github.com/vadicamo/nSimplex.

7
Matlab implementation: https://bitbucket.org/richardconnor/metric-space-framework/src/master/MATLAB/

NSimplexProjection/; Java implementation: https://bitbucket.org/richardconnor/metric-space-framework/src/master/src/n_

point_surrogate/
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(a) Original data in 3D (b) nSimplex projection into 2 dimentions

Fig. 2. Example projection from 3D to 2D using nSimplex . The le� figure shows some generated points
roughly in a 3D spiral pa�ern. Two of these points (depicted with red triangles) have been randomly selected
to form the reference set R. The right figure shows the 2D projection, formed over a 1D simplex derived from
the distance between these points, whose vertices are shown in red. Each other point from the 3D set has
been plo�ed at the apex of the triangle formed from its distances to these two points.

As a simple example, Figure 2 shows a projection from a 3D Euclidean space S to a 2D space. In

this case the reference set R comprises two values r1 and r2 selected randomly from S, and the

base simplex formed is a line segment. This is arbitrarily embedded in the 2D target space with

vertex coordinates v1 = [0, 0] and v2 = [d(r1, r2), 0]. Every other value u from S is then placed into

the 2D projection according to its distances from these two reference values, therefore forming for

each point an apex of a triangle whose base is the line (1D simplex) formed from v1 and v2.
In fact, not quite any set of values can be used for R. The distances within the set must be able

to form a set of linearly independent points in the projected space; in most spaces this is rarely an

issue for a random selection. In fact the choice made for R a�ects various aspects of the projection,

and will be discussed in detail later. It may also be noted that, in Step (4), there are two possible

apex points that might be formed, one on either side of the hyperplane containing the base simplex.

In our example, we have aligned the base (1-dimensional) simplex with the X axis, and selected

apices with a positive Y coordinate. This choice can in fact be generalised over any number of

dimensions, as the base simplex can always be formed with only zero values in the k th dimension,

i.e., it is constructed so that it lies in the hyperplane {[x1, . . . ,xk ] ∈ Rk |xk = 0}. We include in

Appendix B an algorithm to construct a simplex with these properties in arbitrary dimensions.

In this example, the 2D projection could be formed for any metric space, as the triangle inequality

property means that it is always possible to construct the apex points of the triangles, i.e. determine

a point vu such that `2(vu , v1) = d(u, r1) and `2(vu , v2) = d(u, r2)8. However as we will show

the properties of the derived space are stronger if the domain of the transform has the Hilbert

properties.

In due course we will de�ne three functions over this k-dimensional coordinate space. First,

however, we will introduce its important properties.

4.1 Properties
For a Hilbert spaceU governed by a distance function d , we refer to σR : U → Rk as an nSimplex
transform de�ned by some appropriate set R of k reference points selected fromU. For the sake

of simplicity we henceforth use the notation σ in place of σR .

The most important properties of the nSimplex transform are the following:

8
The apex is in the intersection of a hypersphere centred in v1 with radius d (u, r1) and a hypersphere centred in v2 with

radius d (u, r2). The intersection exists because d (r1, r2) ≤ d (u, r1) + d (u, r2).
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• σ is a contraction mapping, i.e.

∀ui ,uj ∈ U, `2(σ (ui ),σ (uj )) ≤ d(ui ,uj )
• Over the same coordinate space, there exists a function Upb which is an expansion mapping,

i.e.

∀ui ,uj ∈ U, d(ui ,uj ) ≤ Upb(σ (ui ),σ (uj ))
• Finally, there exists a further function Zen which gives a value between these two, i.e.

∀ui ,uj ∈ U, `2(σ (ui ),σ (uj )) ≤ Zen(σ (ui ),σ (uj )) ≤ Upb(σ (ui ),σ (uj ))
It can be seen from these inequalities that the Zen function is a better estimator of the true

distance than either `2 or Upb. In fact, as we will show, the Zen function acts as an excellent

estimator of true distance particularly when the original space is high dimensional, allowing good

estimates to be made even when these are projected onto relatively low dimensions. To give better

consistency of naming, we will henceforth refer to the `2 function as Lwb when it is used in this

context.

We �rst give de�nitions of the three functions, and will give a geometric explanation in the

following section. Let Rk be a space in the co-domain of some nSimplex transform σ . Let the

Euclidean coordinates of x,y ∈ Rk be given by [x1,x2, . . . ,xk ] and [y1,y2, . . . ,yk ] respectively.

Then

base_dist(x,y) =

k−1∑
i=1

(xi − yi )2 (5)

Lwb(x,y) =
√
base_dist(x,y) + (xk − yk )2 (6)

Upb(x,y) =
√
base_dist(x,y) + (xk + yk )2 (7)

Zen(x,y) =

√
base_dist(x,y) + x2k + y

2

k (8)

Of the three functions, only Lwb is a proper metric. The others are not even semimetric, as for

example they do not have the identity property: i.e. Zen(x,x) , 0 if the last vector component is

non-zero. They do, however, all possess the triangle inequality property, and so are suitable for use

with metric search techniques. In fact the lack of the identity property from the Zen function is

actually a requirement for it to produce very good estimates when used in low dimensions.

Furthermore, it can be seen that the three functions can, if required, be evaluated e�ciently as a

triple, by observing that

lwb2(x,y) + 2xkyk = zen2(x,y) = upb2(x,y) − 2xkyk

4.2 Geometry of the Simplex
The easiest introduction to the intuition of the Lwb and Upb functions is to consider �rst a projection

into two dimensions. Although this is not the primary intended use, it is useful to illustrate principles

that apply also more generally in higher dimensions with the simpler case.

Figure 3a shows two objects u1 and u2 from a (potentially high-dimensional) Hilbert space (U,d)
projected into two dimensions, using two reference objects r1 and r2. The reference objects are

used to form the one-dimensional simplex comprising the line segment [(0, 0), (d(r1, r2), 0)] and
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(a) A 2D nSimplex projection of a
space (U,d). The projection σ is con-
structed according to the reference ob-
jects r1, r2 ∈ (U,d). The distances
d(u, r1) and d(u, r2) give a unique po-
sition in the 2D plane for any element
u ∈ U.

(b) From the Hilbert properties, any four objects from (U,d)
can be isometrically embedded in a 3D space. It can be seen
that the distance `2(σ (u1),σ (u2)) is a lower bound of the
true distance d(u1,u2).

Fig. 3. Two-dimensional projection of two values based on two reference objects (3a), and the two possible
planar tetrahedra formed by all four objects (3b).

the objects u1 and u2 are projected into the 2D space, each as a separate apex of the base simplex

formed by this line, according to their respective distances from r1 and r2. The points in the 2D

space are thus the projections σ (u1) and σ (u2) of the nSimplex transform, where σ is a mapping

σ : U → R2 de�ned by the two reference points r1 and r2.
Due to the Hilbert properties of the projection domain, any 4 values can be isometrically

embedded in an 3-dimensional Euclidean space therefore there must exist a tetrahedron in 3-

dimensional Euclidean space whose vertices correspond to the four objects {r1, r2,u1,u2}, and

whose edge lengths correspond to the distances between each corresponding pair. Two of the faces

of this tetrahedron are congruent with the two triangles illustrated in Figure 3a. Considering only

the 2D projection, 5 of the 6 inter-vertex distances have been calculated and are directly available

from the projection (i.e., d(r1, r2) and d(ri ,uj ), i, j = 1, 2). The distance d(u1,u2) is not available.

Without loss of generality the vertices of the tetrahedron are {σ (r1),σ (r2),σ (u1), vu2 }, where the

vertex vu2 ∈ R3 can be calculated only by explicitly computing d(u1,u2). However, it is possible to

put upper and lower bounds on this distance from the tetrahedral geometry which is guaranteed to

exist in a 3D projection.

Figure 3b shows a third dimension added to this diagram, which can accommodate the fourth

unknown vertex vu2 of the tetrahedron. Note that this is a hypothetical space, in that it is not

explicitly constructed by the 2D nSimplex projection, but only used to reason about properties of

the 2D projection. We introduce the term σθ (u) to refer to the mapping of an object u ∈ U into this

(R3, `2) space so that `2(σθ (u),σ (ri )) = d(u, ri ), i = 1, 2, while still considering the 2D projection σ .

The angle θ is the angle formed by the point σθ (u) and the hyperplane in R3 containing the other

three vertex of the tetrahedron.
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The two adjacent faces of the tetrahedron share the line segment [σ (r1),σ (r2)] as their common

edge. Given that the tetrahedron must exist, it can be fully de�ned by the �ve available edge

lengths in combination with the true angle θ ∗ between these faces, which must be somewhere

in the interval [0,π ] radians. Without loss of generality, we �x the point σ (u1) in the XY plane.

The locus of the point σθ (u2) in the higher dimension is thus restricted to the circle de�ned by the

rotation of apex point σ (u2) around the X axis, and its exact location within the 3D space could be

determined with knowledge of the distance d(u1,u2), or equivalently from the knowledge of the

exact angle θ ∗.
It is clear that the lower and upper bounds of the distance d(u1,u2) in the original space occur

with the planar tetrahedra formed when the angle θ is 0 and π radians respectively. These planar

tetrahedra are contained within the 2D space of the original projection σ , and the 3-dimensional

model does not need to be explicitly formed in order to establish their geometry. The tetrahedron

de�ned by the angle θ = 0 has vertices exactly as already projected. Due to the manner in which

the projection is constructed, with the �nal coordinate of the projection representing the altitude of

the apex point above the hyperplane containing the base simplex (see Appendix B for full details),

the tetrahedron de�ned by the angle θ = π can be created simply by taking the negative value of

the Y coordinate of point σ (u2). These observations lead directly to the derivation of the Lwb and

Upb functions as de�ned in Equations 6 and 7 respectively. It should be noted that these bounds

apply only to projections made from general Hilbert spaces.

As noted above, any metric space can be projected into two dimensions, as the ability to perform

this mapping is guaranteed by the triangle inequality property. However, the lower and upper

bound properties do not hold for the 2D projection unless a stronger condition, the ability to

isometrically embed any four objects into 3D Euclidean space
9
, also holds in the domain of the

projection.

While the intuitive argument given is valid only for the two-dimensional projection, it carries

through a projection into any number of dimensions, as the Hilbert properties give the ability to

isometrically embed any k objects into (k − 1) Euclidean dimensions. It is possible, for example

when k = 3, to rotate the apex of a tetrahedron through a fourth dimension, around the plane

containing its triangular base, whilst preserving the edge lengths, but this is not so clear in terms

of intuition. The general result as stated above, that the Lwb and Upb functions given in Section 4.1

are lower and upper bounds respectively of the true distance, is independent of the dimension of

the projection when applied to any Hilbert space. We enclose a proof of correctness of this result

in Appendix C.

4.3 The Zen function
Figure 4a is an illustration of the same 2D projection as in Figure 3, but shows the triangle

∆σ (r1)σ (r2)σθ (u2) with a di�erent orientation in the hypothetical 3D space, while Figure 4b shows

the case where this triangle is set at the angle π/2 with respect to the hyperplane H containing

σ (r1), σ (r2), σ (u1). The Zen (zenith) function is named after this last orientation, and gives the `2
distance between the points σ (u1) and σθ (u2)when σθ (u2) is at the zenith of this circle, i.e. the point

with the highest altitude above the hyperplane H . This distance can be simply calculated using

only the information in the projection, as given in Equation 8. In this section, we explain why this

function provides the best estimator for the true distance d(u1,u2) in an original high-dimensional

space.

9
This is the so-called four-point property; it is slightly more general than Hilbert properties, and some useful non-Hilbert

metric spaces possess this. We have previously de�ned such spaces as supermetric [14], and shown how general metric

search techniques can be improved through its use.

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2024.

http://dx.doi.org/10.1145/3647642


This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive

version was published in ACM Transactions on Knowledge Discovery from Data, http://dx.doi.org/10.1145/3647642.

nSimplex Zen 1:17

(a) Four objects r1, r2,u1 andu2 are projected into two
dimensions. σθ (u2) is a hypothetical position in 3D
space.

(b) Adding b, the centre of the locus of σθ (u2), and
se�ing the angle θ = ∠σ (u2)bσθ (u2) to π/2.

Fig. 4. The Zen function is defined when the angle between the two triangles is set at π/2 in the hypothetical
further dimension. There is no requirement to calculate a projection in this dimension: Zen(σ (u1),σ (u2)) =
`2(σ (u1),σθ (u2)).

Considering Figure 4 again, and all of the possible tetrahedra that could be formed from the

�ve known and the one unknown distances, it might be supposed that there is no constraint on

the particular position in which the point σθ (u2) is most likely to lie on the circle depicted. This

assumption however typi�es the danger of basing intuition on low-dimensional spaces. In fact

there is no absolute constraint, but there is a very signi�cant probabilistic constraint, assuming the

domain is evenly distributed, and this gets tighter as the dimensionality of the domain increases.

4.3.1 Considering higher dimensions. If the projection is onto a k-dimensional space, then the

hypothetical space being considered is in k + 1 dimensions. In that case, k reference objects and

any two data points u1 and u2 are projected in Rk using the nSimplex projection σ . The vertex

σθ (u2) ∈ Rk+1 is obtained by rotating σ (u2) around the k − 2 dimensional space containing the base

simplex formed by {σ (r1), . . . ,σ (rk )}; the angle θ is the angle formed by σθ (u2) and the hyperplane

H = {[x1, . . . ,xk+1] ∈ Rk+1 | xk+1 = 0} containing both σ (u1) and the simplex base. In other

words, σθ (u2) lies in the intersection of k hyperspheres Bi = {v ∈ Rk+1 |`2(v,σ (ri )) = d(u2, ri )}
for i = 1, . . . ,k , that forms a circle on a plane orthogonal to the hyperplane containing the base

simplex of vertices σ (r1), . . . ,σ (rk ) and the projected point σ (u1). The exact angle θ ∗ that would

give `2(σ (u1),σθ
∗ (u2)) = d(u1,u2) it is not known without explicitly calculating d(u1,u2). However,

as shown in Section 2.2, in high dimensional space the most likely value for this angle is π/2, and

furthermore, as the dimension of the space increases, the variance rapidly decreases. This variance

is a factor of the dimensionality of the domain, rather than the range, of the projection. With this

angle set to π/2, the distance `2(σ (u1),σθ (u2)) in the hypothetical further dimension can be simply

calculated given the projection values σ (u1) and σ (u2) in the k-dimensional space of the projection.

This �nally gives the explanation of the Zen formula (Equation 8) which gives this distance in the

context of the projection fromm to k dimensions.

In Appendix C we give a formal derivation of this intuitive argument in arbitrary Hilbert spaces.

In particular, we show that if σ : U → Rk is the nSimplex transform de�ned by a set of k reference
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points then for any u1,u2 ∈ U given the transformed points x = σ (u1) and y = σ (u2) it holds

d(u1,u2) =

√√√k−1∑
i=1

(xi − yi )2 + x2k + y
2

k − 2xkyk cosθ (9)

where θ corresponds to the angle ∠σ (u2)bσθ (u2) in Figure 4b. It is clear from this form that as the

probability of θ being close to π/2 increases (as happens when the dimensionality of domainU
increases) the Zen function applied to the σ projection gives an increasingly accurate estimate of

the true distance d(u1,u2).
There is one caveat here however. If d(u1,u2) is very small, this can a�ect the probability of θ

being close to π/2. Considering Figure 4 it can be seen that if d(u1,u2) is close to the lower-bound,

shown in the diagram by the distance d(σ (u1),σ (u2)), then θ will be signi�cantly less than π/2.

Equation 9 shows that, for small values of θ , the Zen function will not be such a good estimator.

The implications of the general result however are quite extraordinary: it is possible to compress

a space of perhaps thousands of dimensions into a very low-dimensional space of only a few

dimensions, where the majority of pairwise distances are well-preserved. We demonstrate that this

is in fact the case in Section 5.

5 EXPERIMENTAL ANALYSIS
Experimental analysis is presented in four main sections, each of which tests dimension reduction

over a di�erent class of metric space. Section 5.3 tests the di�erent transforms against uniformly

generated Euclidean spaces, and Section 5.4 uses two high-dimensional Euclidean spaces deriving

from real-world applications. Section 5.5 tests two spaces governed by the Cosine metric, and

Section 5.6 tests two spaces governed by the Jensen-Shannon metric.

For the �rst three of these sections, the mechanisms tested are: nSimplex Zen, PCA, MDS and

RP. For Jensen-Shannon distance, where there is no coordinate space, the mechanisms tested are

nSimplex Zen and LMDS.

First, in Sections 5.1 and 5.2 respectively the quality measures and data sets used are introduced.

All of the code used to generate our experimental results is available from https://github.com/

richardconnor/dr-matlab-code.

5.1 �ality Measurement
Dimensionality reduction is a very generic concept, de�ning any mechanism whose purpose is to

transform a set of values into a lower-dimensional space whilst maintaining, as far as possible, the

most important aspects of the geometry of the original space. This rather general de�nition leaves

much room for the interpretation of quality, depending on the context of use. A comprehensive

survey of quality measurement techniques is given in [26]; based on this, we have picked the

following measures as the most representative for the general context.

For a space (S,d) which has been reduced to a lower-dimensional space (S′, ζ ) using a DR

transform τ , we adopt the following notation and measures

δi j = d(si , sj ) si , sj ∈ (S,d)
ζi j = ζ (s ′i , s ′j ) s ′i , s

′
j ∈ (S′, ζ ) where s ′i = τ (si )∀i

Shepard Plots A scatter plot of sampled distances δi j from the domain, plotted against

distances ζi j , which gives a simple visual impression of quality. Plots are typically overlaid

with the monotonic function implied by the Kruskal Stress measurement.
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Table 3. Data sets used in experiments and their outline properties. Cosine distance refers to the `2 metric
applied over L2−normalised data, and for Jensen-Shannon distance the data is L1-normalised as required.

Data Set Representational
Dimension

Metric Dimension of
80% variance

100-dimensional generated 100 Euclidean 80

500-dimensional generated 500 Euclidean 400

Twitter GloVe 200 Euclidean 120

MirFlickr fc6 4096 Euclidean 109

ANN SIFT 128 Cosine 28

MirFlickr fc6 RELU 4096 Cosine 1111

100-dimensional generated 100 Jensen-Shannon n/a

MirFlickr GIST 480 Jensen-Shannon n/a

Kruskal Stress The Kruskal stress1 criterion, which gives a measure of the monotonicity

of the transform. This is a topological measure; stress will be zero if the DR transform is

purely monotonic, independent of the actual values of δi j and ζi j .
Sammon Stress Deriving from Sammon mapping, the Sammon stress formula is a�ected by

the absolute di�erences between δi j and ζi j , as well as their topological relationship.

Quadratic Loss A purely distance-based measure, which particularly punishes the existence

of outliers in δi j − ζi j .
Spearman Rho A topological measure of order preservation of distances within sampled

pairs of objects from the domain, essentially a measure of the likelihood that δi j < δik
implies ζi j < ζik .

kNN Query Recall Here the results of kNN searches in the reduced space are tested for

quality against the same search performed in the original space. This aspect is not measured

in [26], and we are not aware of any commonly accepted measure for testing it. Nonetheless

it seems that nearest-neighbour search over the reduced space is an important use of these

techniques. It is not captured by any of the quality metrics listed above, as behaviour

over very small distances may di�er from randomly sampled distances. We have therefore

devised our own measure of recall, described in Appendix E, where discounted cumulative

gain is measured over a relevance function based on rank.

Appendix E gives fuller background on all of these measurements.

5.2 Test data and methodology
In all cases we have used data sets that are widely available, or can be recreated using widely

available software, and have at least one million elements to allow reasonable recall experiments.

The data sets used and their main features are given in Table 3. Details are given in Appendix D.

In all experiments, a randomly selected subset of objects from the domain is used as a witness10
.

set with which to create the transforms. The witness set should be su�ciently large for the initial

analysis of any manifold within which the actual data set is embedded, depending on the technique

being considered, to allow the general (U → Rk ) transform to be created. The RP transform is

10
or training set; we prefer the term witness in this context to denote a relatively small representative subset.
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(a) nSimplex Zen (b) PCA

(c) MDS (d) RP

Fig. 5. Shepard plots for the reduction transforms, each having reduced 100-dimensional generated data
to 80 dimensions. For 50 randomly selected values, all pairwise distances are plo�ed in both original and
transformed spaces. The Y-axis represents true distance, and the X-axis is the distance measured in the
reduced space. The solid black line shows the fi�ed least-squares monotonic regression function from which
the Kruskal stress (SK ) is measured. It can be seen that nSimplex Zen and RP point clouds are centred around
the true distance function (y = x , the dashed line), whereas PCA is a contraction mapping. While MDS gives
the appearance of a contraction mapping, in fact this is not a guarantee.

created without reference to the domain, and the nSimplex transform is created from a set of k
objects randomly selected from the witness set.

For the majority of quality tests a further (non-intersecting) subset of objects is used as the

domain of the transform. For Shepard plots, a subset of just 50 objects is used to avoid overcrowding

the plot. A set of 10
4

objects is used to calculate the Kruskal stress used to annotate the plot, and

the other quality measures other than recall. For recall experiments, a set of 10
6

elements is used,

against which the ground truth of 1,000 nearest neighbours is calculated for 100 elements of this

subset. All experiments have been multiply repeated with di�erent random selections to ensure

the results shown are representative and repeatable.

5.3 Generated Euclidean spaces
Uniformly distributed Euclidean spaces

11
were generated in 100 and 500 dimensions. Reduced-

dimension versions were produced using RP, PCA, MDS, and nSimplex, and tested using the quality

measures outlined in Section 5.1.

In the case of generated data, the witness set contains no useful information about the data, as

there is no lower-dimensional manifold contained within the representational space. Both PCA and

MDS therefore e�ectively apply a random projection to the experimental data. The PCA transform

11
The experiments have been repeated for generated data with a Gaussian distribution, the results are not signi�cantly

di�erent from those shown here.
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(a) Kruskal stress (b) Spearman Rho (c) 1- Sammon stress

(d) �adratic loss (e) kNN Recall

Fig. 6. Five measures of quality as the reduction dimension decreases. The X-axis in each plot is the dimension
of the reduction used, in this case starting from 100 on the le� and ending at 2 on the right. The Y-axis shows
the measure of quality, for each transform, at each dimension. All quality measures are normalised into [0, 1]
to make the comparisons clearer, as recommended in [26]. For all measures, a value of 1 implies a perfect
representation of the original space, a value of 0 means the transform has no e�ective value.

is guaranteed to be orthonormal, and while the MDS transform is not, it is always close to this

given a uniform distribution of the witness data. The RP technique used in these experiments is

much further from orthonormal, especially with lower dimensionalities.

It is generally perceived that there is no value in applying non-random dimensionality reduction

to uniformly distributed data, but these experiments demonstrate that the Zen function preserves

distances better than the other methods, due to the geometric model described in Section 4.3, even

in the absence of a lower-dimensional manifold.

5.3.1 100 dimensional generated space. Figure 5 shows Shepard plots for the 100-dimensional

data reduced to 80 dimensions using various reduction transforms. The reduction to 80 dimensions

has been chosen as it represents the number of dimensions that explain 80% of the variance using

PCA analysis and Eq. (3).

As can be seen, nSimplex Zen is the best transform according to the Kruskal stress criterion,

giving a signi�cantly better outcome than either PCA or MDS. In this example, PCA gives a slightly

better outcome than MDS, but this is not signi�cant. It is however signi�cant than nSimplex Zen
gives a better outcome: this function relies upon properties of the domain geometry which are not

available to a linear transform. RP, as expected, performs the worst of the four transforms.

Figure 6 shows the outcomes of the various quality measures, as the reduction dimension is

reduced from the dimension of the original data down to 2 dimensions. Each quality measure has

been normalised into the range [0, 1], where 1 implies a perfect outcome and 0 implies that the

transform has no e�ective value. The expectation is that, for each measure, the outcome will start

high and monotonically reduce as the dimension of the reduction decreases.
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(a) Zen (b) PCA (c) RP

Fig. 7. Shepard plots for the DR mechanisms applied to 500-dimensional space, reduced to 400 dimensions.
MDS, as before, gives very similar results to PCA, and from now on we omit that figure from this analysis.

(a) Kruskal stress (b) Spearman Rho (c) Sammon stress

(d) �adratic loss (e) kNN Recall

Fig. 8. �ality metrics for 500 dimensional Euclidean spaces reduced to between 500 and 2 dimensions.

It is clear that for this data set the nSimplex Zen transform consistently performs better than any

of the other techniques for all measures and for all reduction dimensions. It is also particularly

evident that the Kruskal quality of nSimplex Zen does not appear to signi�cantly degrade as the

reduction dimension is reduced to surprisingly low dimensions. Extraordinarily, the Kruskal stress

of nSimplex Zen in the 2-dimensional reduction is less than that of the other techniques at 80

dimensions. This aspect will again be discussed further in Section 7.

The poor Quadratic Loss and Sammon Stress outcomes for PCA are due to the mechanism being

a contraction transform, which therefore introduces a consistent error across all measurements.

These quality measures punish any absolute, rather than relative, error. The nSimplex Zen transform

gives much better results in these tests, as the underlying geometry holds the transformed distances

close to those measured in the original space as seen in Figure 5.
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Fig. 9. nSimplex Zen, PCA and RP transforms mapping GloVe from 200 to 120 dimensions. MDS gives, as
before, very similar results to PCA and is omi�ed from the Figure.

5.3.2 500-dimensional generated space. We repeat the above analysis for a higher dimension

space. Figure 7 gives Shepard plots for nSimplex Zen, PCA and RP reduced to 400 dimensions.

Even although the reduction is again to 80% of the original dimensions, it can be seen that the

higher dimensions give relatively better outcomes, as predicted by Johnson-Lindenstrauss. This is

particularly evident in the quality charts shown in Figure 8, where it can be further seen that, as

dimensions are reduced, RP starts to give equal performance to both PCA and MDS in all quality

measures, and is better for Sammon stress and Quadratic Loss. However, from our perspective,

the key result is substantially better performance of the nSimplex Zen transform for all quality

measures across all dimensions.

5.4 Euclidean spaces from other applications
In this section we examine the reduction of some high-dimensional Euclidean data sets produced

in the application of representational techniques to real-world data. These spaces are known to lie

within complex manifolds of the Euclidean space in which they are embedded, and are therefore

better subjects for dimensionality reduction than the uniform spaces of the previous section.

5.4.1 Twi�er GloVe 200. GloVe [42] is an unsupervised learning algorithm for obtaining vector

representations for words, with the intent that the distance between vectors is semantically sig-

ni�cant. Twitter GloVe is the outcome of this algorithm applied to 2 × 109 individual short texts

from Twitter, from which 10
6

individual tokens are assigned vector values. The achieved semantic

similarity is quite striking, for example the closest vectors to the term frog are, in order: frogs, toad,
litoria and leptodactylidae.

Linear substructures are also preserved, for example the relative di�erence between the word

pair (man, king) is similar to that between the pair (woman, queen). The authors have considered

both Euclidean and Cosine distances over the records and have found no signi�cant advantage to

either metric. Pre-trained word vectors with 25, 50, 100 and 200 dimensions are available online
12

,

here we have used the 200 dimension version.

The same experiments as above were performed on the Twitter GloVe data set. Before creating

the Shepard plots, PCA was used to �nd the number of dimensions necessary to explain 80% of

the variance (according to Eq. 3). This value is 120, signi�cantly less than the 160 dimensions that

would be required for uniform data. This was selected as the reduction dimension to illustrate

using Shepherd plots in in Figure 9. As can be seen, in this context the nSimplex Zen transform

performs by far the best of those tested, the Kruskal stress now being less than half of that obtained

using PCA or MDS.

12
https://nlp.stanford.edu/projects/glove_
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(a) Kruskal stress (b) Spearman Rho (c) Sammon stress

(d) �adratic loss (e) kNN Recall

Fig. 10. �ality metrics for Twi�er GloVe reduced to between 200 and 2 dimensions.

The plots of transform quality with reducing dimensions are shown in Figure 10. Some of these

results are quite startling: the nSimplex Zen transform is almost always best, for all quality measures,

and in some cases maintains high quality values down to tiny reduction dimensions compared to

the other techniques.

The reason for this relative increase in performance is, we believe, due to the nature of the

manifold in which the data lie. PCA, MDS and RP all produce linear transforms of this manifold,

whereas nSimplex Zen’s transform is non-linear, allowing it to respect the geometry of the original

manifold with respect to each object mapped into the lower dimension. The nSimplex Zen transform

shown in Figure 9 is produced with reference to only 120 reference objects, as opposed to the

1, 000 objects used for PCA , and in Figure 10 the transform at each dimension is produced using

only that number of reference points to represent the manifold in which the domain lies. Even for

example with a random selection of only 20 reference objects, mapping to 20 dimensions, it is clear

that nSimplex Zen performs far better than the linear transforms which use many more reference

objects, even when mapped to many more dimensions.

5.4.2 MirFlickr 1M / Alexnet. This data derives from the AlexNet convolutional neural network

[31] applied to the set of one million images available from the MirFlickr project [28]. While this

network is starting to be considered a little dated, as its categorisation performance is less good

than some more modern networks, the combination gives a highly available network applied to a

highly available large image collection: the purpose here is just to provide a realistic set of data,

with meaningful semantics, in high dimensions. The data is taken from the �rst fully-connected

(DeCAF, fc6) layer of the network, after the initial convolutional layers and before the remaining

fully-connected layers of the network. Euclidean distance over this representation has been shown

to give an excellent proxy to image similarity even for categories of image that are not included in

the original classi�cation [23, 39]. In this experiment we apply Euclidean distance to the data as
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Fig. 11. MirFlickr fc6 representations, reduced from 4,096 dimensions to 109.

(a) Kruskal stress (b) Spearman Rho (c) Sammon stress

(d) �adratic loss (e) kNN Recall

Fig. 12. �ality metrics for Mirflickr fc6. For most plots, the X-axis (dimensionality of the reduction) goes
between 200 and 2, as there is very li�le loss of quality for any of the measurements above 200 dimensions.
The recall experiment is run from 1,000 dimensions down to 2.

extracted, and in Section 5.5.2 we use the same data with Cosine distance applied to the post-RELU

�ltered version.

The data used for this section therefore comprises 4,096 Euclidean dimensions, including both

positive and negative values, and lies within a complex manifold where the PCA eigenvalues

determine that only 109 dimensions are required to explain 80% of its variance (Eq. 3). As before we

compare RP, PCA and nSimplex Zen at this reduction dimension, the results of which are shown in

Figure 11. Again MDS and PCA give almost indistinguishable outcomes for this test.

Again, it is visually evident that the Zen function gives a much tighter �t to the true distances

than either RP or PCA, borne out by the lower value of Kruskal stress, and is generally much closer

than either to the true distance.

For the �rst time, we show a result where the nSimplex Zen transform is less good than either PCA

or MDS across the range of reduced dimensions: while nSimplex Zen remains the highest-scoring

mechanism for almost all the quality measures across all reduction dimensions, Figure 12 shows
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Fig. 13. ANN-SIFT `2-normed representations, reduced from 128 dimensions to 28.

that the recall test for nSimplex Zen is worse for recall than either PCA or MDS when the reduction

dimension is less than around 300. This is initially surprising, as the Spearman Rho measure, which

tests the preservation of ordering among distances, shows a better performance for nSimplex Zen.

The phenomenon being displayed is that Zen’s performance in this test is less good over very small

distances, which we examine in more detail in Section 7.1.

5.5 Other Hilbert spaces - Cosine Distance
Cosine similarity is frequently applied over large high-dimensional spaces in the context of Infor-

mation Retrieval [35]. As noted in Appendix A, the most common interpretation of Cosine distance,

the complement of the normal cosine similarity (the cosine of the angle between vectors) is not a

proper metric. The angle itself does give a proper metric, and can be used as a proxy which gives

the same ordering within a space. To avoid the potentially expensive arccos function, Euclidean

distance measured over the end-points of `2-normalised vectors is another proper metric, with the

same ordering, and which also has the Hilbert properties. While the Euclidean metric is used, such

spaces are however very di�erent from general Euclidean spaces in terms of the distribution of

distances.

5.5.1 ANN SIFT. The ANN_SIFT1M [29] dataset comprises vectors of Angular Quantisation-

based Binary Codes (AQBC) [25] deriving from the SIFT [33] feature analysis of one million images.

The similarity of such representations is intended to be assessed using Cosine similarity. SIFT is no

longer state-of-the-art in image similarity, but the benchmark is still widely used and provides a

valuable set of data for this purpose. In these experiments the 128-dimensional data is `2-normalised

and Euclidean distance is used to provide a semantic proxy for Cosine distance.

As before, PCA and Eq. (3) are used to determine the number of dimensions required to explain

80% of the variance in distances, which turns out to be only 28 dimensions. Figure 13 shows the

Shepard plots of this data for nSimplex Zen, PCA and RP. In this case there is little visual di�erence

between the plots for PCA and nSimplex Zen, although the Kruskal score for nSimplex Zen is

signi�cantly better.

Figure 14 shows the quality measures for the data, for dimensions reducing from 100 down to 2

as, with the exception of RP, there is almost no quality loss at above 100 dimensions. As can be

seen, in these tests nSimplex Zen performs best for Kruskal stress, Sammon stress and quadratic

loss, but is marginally less good than either PCA or MDS at lower dimensions for Spearman Rho,

and is strikingly less good than either for recall at all dimensions.

We do not have a categorical reason for these observations, but believe that there are two main

reasons for this di�erence in performance: �rst, the data set to start with has a relatively low

intrinsic dimensionality, and second, the data lies on a relatively regular linear manifold within the

representational space. These observations are certainly consistent with the relatively small number
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(a) Kruskal stress (b) Spearman Rho (c) Sammon stress

(d) �adratic loss (e) kNN Recall

Fig. 14. �ality metrics for ANN SIFT reduced from 128 to between 100 and 2 dimensions.

Fig. 15. fc6 RELU cos `2-normed representations, reduced from 4096 dimensions to 1111.

of dimensions shown by PCA to capture the majority of the distance variance. The relatively poor

performance of RP is also explained by these observations.

5.5.2 MirFlickr 1m / Alexnet. In this section we use the same raw data as that of Section 5.4.2,

but with the data converted to give a proxy for the classic “cosine” distance after the RELU �lter

has been applied. RELU is applied by zeroing out the negative values, then the resulting points

are `2-normalised by dividing each vector component by the magnitude of the resulting vector.

After this transformation, the Euclidean distance between the values, which now represent the

end-points of unit vectors, gives the same rank ordering as Cosine distance over the post-RELU

space.

The value of this metric is that it is that used for training the original network, with this transform

being applied at each fully-connected layer of the categorisation section of the CNN architecture. It

might therefore be expected to give an improved performance in terms of semantic similarity over

the simpler DeCAF measure, although testing this in practice for a large data set is challenging.
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(a) Kruskal stress (b) Spearman Rho (c) Sammon stress

(d) �adratic loss (e) kNN Recall

Fig. 16. �ality metrics for fc6 RELU Cosine distance over MirFlickr fc6 data. Apart from recall, all charts
plot reductions from the original 4096 to between 200 and 2 dimensions, as nSimplex Zen gives almost perfect
results at 200 dimensions. Recall is plo�ed from between 1000 and 2 dimensions. 1111 dimensions capture
80% of the variance when using PCA.

However, as before, our purpose for this data is to give a convincingly realistic large set of values

which derive from some application and which require the use of the Cosine metric, which is thus

achieved. As previously mentioned, the characteristics of the metric space produced in this way

are quite di�erent to those for the same raw data under simple Euclidean distance.

For this data the PCA eigenvalues show that 1, 111 dimensions are required to explain 80% of the

variance in distance according to Eq. (3), a surprising departure from the 109 dimensions required

for the non-RELU `2 metric version. Figure 15 shows Shepard plots at this dimension. For the �rst

time we see that RP outperforms PCA and MDS, implying that no useful information about the

manifold containing this data is gleaned from either of these analyses. In fact both can in fact be

seen to be harmful, as the randomly generated RP transform, which is approximately orthonormal

at this higher dimension, outperforms both. In this case the relatively small stress caused by the

reduction transform can only be attributed to the e�ect highlighted by the Johnson-Lindenstrauss

lemma, and this e�ect is somehow being lessened by linear analysis of the original manifold.

Again, however, our main purpose is to compare the nSimplex Zen transform, which in this case

signi�cantly outperforms any of the other three mechanisms. As can be seen, the Kruskal stress in

this case is almost an order of magnitude less than for PCA.

In fact, the high quality of the nSimplex Zen transform is maintained down to much lower

dimensions. Figure 16 shows the �rst four quality measures applied to reductions of between 200

and 2 dimensions; the starting point of 200 is used as, with the exception of recall, there is almost

no loss of quality with nSimplex Zen at any of these dimensions. In all cases it can be seen that

nSimplex Zen is the best mechanism, along with the observation that RP is better than either PCA

or MDS again across the whole range of reduction dimensions. For Kruskal stress and Spearman

Rho measures, nSimplex Zen is much better than RP.
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Fig. 17. 100-dimensional generated probability space with Jensen-Shannon metric, reduced to 80 dimensions
using nSimplex Zen and LMDS.

The only exception to this is the recall measure, where it can be seen that nSimplex Zen starts

to perform less well than either PCA or MDS when the reduction dimensions is less than around

300. While nSimplex Zen is better than RP across the whole range, the advantage is only relatively

small; again, RP gives a surprisingly good outcome for this test.

5.6 Other Hilbert spaces - Jensen-Shannon Distance
In the �nal experimental section, we apply nSimplex Zen to Hilbert spaces where there is no available

coordinate system. As explained in Section 4, the underlying nSimplex transform can be applied

to any metric space which is isometrically embeddable in a Hilbert space. As the n-dimensional

simplexes are constructed in Euclidean space using only the pairwise distances measured in the

original space, then any metric space which allows a �nite n-embedding into (n − 1) Euclidean

dimensions can be used as the domain, and all metric spaces which are isometrically embeddable

in Hilbert space have this property.

One of the most interesting classes in this category is that of metric spaces governed by the

Jensen-Shannon distance, an information-theoretic distance metric which has some interesting

properties, and can reasonably be regarded as a distance which should always be preferred to

the semantics-free Cosine distance [16]. One possible reason for its relatively low uptake may be

that its calculation requires many log calculations, and can be two orders of magnitude slower

than Cosine distance over the same dimensions. It is therefore intriguing that a dimensionality

reduction transform exists which not only reduces the size of the representations, but also converts

the distance metric from an expensive calculation to a much cheaper one.

The absence of a coordinate system means that neither PCA nor RP can be applied. While MDS

can be applied to a small space, it is not possible to use the extended version described in Section

3.3 which is necessary to allow its application to a large space. However in [44] it is shown that

LMDS, a di�erent extension of the MDS principles, can be applied to any metric space, including

those without a coordinate system. In this section we therefore compare nSimplex Zen and LMDS

in use against two spaces governed by the Jensen-Shannon metric.

5.6.1 100-dimensional generated space. The �rst experiment uses a 100 dimensional generated

space. 100-dimensional vectors are generated using a uniform random generator with each dimen-

sion, bounded in [0, 1], and each vector is `1-normed in order to simulate a probability distribution

over 100 independent variables, thus giving an appropriate domain for Jensen-Shannon distance.

Figure 17 shows Shepard plots for nSimplex Zen and LDMS at 80 dimensions (now an arbitrary

�gure as PCA is not possible over the data), from which it can be seen that nSimplex Zen gives less

Kruskal stress than LMDS.
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(a) Kruskal stress (b) Spearman Rho (c) Sammon stress

(d) �adratic loss (e) kNN Recall

Fig. 18. �ality metrics 100-dimensional generated probability space with Jensen-Shannon Distance.

Figure 18 shows the usual quality charts across the range of 100 down to 2 dimensions. Again,

nSimplex Zen is generally the better of the mechanisms. It is interesting to note that nSimplex
Zen does not give perfect results even at 100 dimensions, and that the only cases where LMDS

outperforms nSimplex Zen are at 100 dimensions for the Spearman Rho test, and at about 80

dimensions for recall. While one property of a Hilbert space is a �nite n-embeddability in (n − 1)
Euclidean dimensions, this does not of course imply that an n-dimensional Jensen-Shannon space

should in general be isometrically embeddable in an n-dimensional Euclidean space. Thus there is

no reason to expect perfect performance when any space with Hilbert properties is “reduced” to a

Euclidean space with the same physical dimensions.

5.6.2 GIST. Our �nal experiment is with Jensen-Shannon distance applied to GIST image

descriptors. GIST [40] is a representation of the image based on a set of perceptual dimensions that

represent the dominant spatial structure of a scene. Although again GIST is no longer the state

of the art in image similarity, it has been shown that GIST representations used in conjunction

with Jensen-Shannon distance gives an excellent technique for �nding near-duplicate images for

forensic purposes [17], a specialist application quite di�erent from more general image similarity.

The MirFlickr 1M image set was again used, and GIST representations were obtained. Each

representation is a 480-dimensional vector, again `1-normalisation is applied to achieve a set of one

million values suitable as a domain for the Jensen-Shannon distance metric.

After initial analysis it was found that these representations are quite amenable to dimensionality

reduction using both nSimplex Zen and LMDS, so Shepard diagrams were produced at the 100-

dimensional reduction. As shown in Figure 19, both techniques give a relatively low Kruskal

stress even at around one-�fth or their initial size, and again the nSimplex Zen transform gives a

signi�cantly lower stress than LMDS.
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Fig. 19. MirFlickr GIST with Jensen-Shannon metric, reduced to 400 dimensions using nSimplex Zen and
Landmark MDS.

(a) Kruskal stress (b) Spearman Rho (c) Sammon stress

(d) �adratic loss (e) kNN Recall

Fig. 20. �ality metrics for GIST/JSD. The data is 480 dimensions, however there is very li�le quality loss
when reduced to 100 dimensions, therefore most charts are plo�ed from 100 down to 2 dimensions; kNN
recall is plo�ed from 200 dimensions downwards.

Figure 20 repeats the usual quality analysis over these descriptors. Most charts are from 100

down to 2 dimensions again as there is little quality loss at higher dimensions; recall is measured

between 200 and 2 dimensional reductions.

For this space, nSimplex Zen is better across all dimensionalities for all tests other than for recall,

where it is not as good as LMDS. It is noteworthy that both techniques, relying on distances alone,

perform much better for the “real” data than for the uniformly generated data. The reason for this

is presumably that the data is contained within a manifold contained within the representational

space whose characteristics are being usefully captured by the distance-based analysis.
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Fig. 21. Log-scaled costs of the creation and execution of the di�erent DR transforms over a synthetic
Euclidean space of 1000 dimensions.

6 RUN-TIME COSTS
As explained in [30], it is di�cult or impossible to make fundamental comparisons on computational

cost for a novel mechanism. In this case, we note that mechanisms such as PCA have had many

years of study as to their optimisation, and specialist mathematical programming systems provide

extremely fast versions, whereas the LMDS and nSimplex Zen transforms reported here are (possibly

naively) coded by ourselves following the high-level de�nitions. However measurements of the

systems as used may be pragmatically useful, although these caveats should be taken into account.

As a further caveat, the experimental results reported here are performed using MatLab
13

, and

some of the tests performed in Java implementations give quite di�erent outcomes. The MatLab

system is highly optimised for array manipulation, and provides optimised implementations of

PCA and MDS.

There are two key aspects to the performance of the mechanisms: the cost of producing the

transform, and the cost of applying it to a data item, or a data set.

For PCA, MDS and RP, the transform function comprises a matrix which is multiplied by the

data in order to produce the reduced-dimensional form. So in all cases, when anm-dimensional

Euclidean space is to be reduced to k dimensions, the transform takes the shape of anm × k matrix.

The data to be reduced is an n ×m matrix, comprising n rows ofm−dimensional data. The outcome

of multiplying the data by the transform is then an n×k matrix representing the reduced-dimension

data. Although the cost of producing the transform matrix varies widely with the technique, the

application to the data is thus largely constant for a given m and k . In theory, this cost with the RP

mechanism we have used throughout could be much lower, as the transform matrix is deliberately

constructed to contain many zero values and thus reduce the potential cost of matrix multiplication.

We have not observed this in our tests, using standard matrix multiplication as provided by MatLab,

but the potential exists.

For nSimplex Zen and LMDS, the execution of the transform in both cases depends on distances

measured between each element of the data and a set of reference objects. For LMDS this is a

typically large �xed set of reference objects, whereas for nSimplex Zen the magnitude of the set of

reference objects is the same as the reduction dimension.

Figure 21 shows a set of experimental results for the creation and execution of the di�erent

reduction transforms. The context is a generated Euclidean space of 1000 dimensions, and each

13
R2022a update 4, 64-bit (Mac i64)

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2024.

http://dx.doi.org/10.1145/3647642


This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive

version was published in ACM Transactions on Knowledge Discovery from Data, http://dx.doi.org/10.1145/3647642.

nSimplex Zen 1:33

transform is used to reduce this to between 2 and 500 dimensions. The charts show the cost in each

case of creating the transform, and the per-object cost of applying it to the data once the transform

is created.

As can be seen, the cost of the transform creation varies widely, and this we believe to show

fundamental di�erences in each approach. However in most cases the cost of transform creation is

relatively unimportant compared to the cost of its execution.

The execution times show the cost of transformation per object. Two major e�ects are visible

here; �rst, the mechanisms using matrix multiplication are approximately an order of magnitude

faster than the mechanisms using object distances. In terms of the number of individual arithmetic

operations performed, there is no such order of magnitude di�erence: in fact both nSimplex Zen
and LMDS require fewer individual arithmetic operations for these examples, and the di�erence

seen is due to the optimisation of array multiplication.

Secondly, two execution times are shown for each of PCA, MDS and RP. The greater of these

apply the matrix multiplication inside an iterative loop, to give a fair comparison with nSimplex
Zen and LMDS where this is necessary. The faster outcomes, again approximately an order of

magnitude better, apply the transform via a single matrix multiplication over the entire data set as

would normally be possible.

In summary, the application of any of PCA, MDS or RP is around two orders of magnitude faster

than nSimplex Zen or LMDS, when our naive implementations are compared against a professional

matrix-optimised programming system. It is possible that nSimplex Zen could be optimised to reach

an equivalent performance, but whether this is the case or not, and indeed how to achieve it, are

open questions. Meantime, our provided version of nSimplex Zen can perform reduction at a typical

rate of between 10
−4s and 10

−3s per object, which may be fast enough for many useful purposes.

7 DISCUSSION
In almost all quality measures, the nSimplex Zen transform outperforms all of the other well-known

general techniques for Euclidean spaces. As its application requires only the measurement of

pairwise distances, rather than inspection of a coordinate space, it can also be applied to any

metric space which is isometrically embeddable in a Hilbert space, where the necessary Euclidean

properties also exist. In this context, it again outperforms LMDS in almost all measures.

There are two main reasons why the technique can perform better than other linear methods.

First, it uses a well-known feature of high-dimensional spaces, namely the high probability of two

sampled vectors being nearly orthogonal, to build a more accurate geometric model. Secondly,

for a data set within a complex manifold, the use of a small number of sampled reference points,

as opposed to a much larger number required to produce a linear transform, seems to give a

better reference model for the transform. It is noteworthy that, for example, the two-dimensional

reductions shown in the example are derived from a set of 1000 reference points for the PCA

transform, but only two randomly-selected reference points for the nSimplex Zen transform; it

seems scarcely credible that the latter almost always give much better outcomes.

One drawback of the technique is that the range of the nSimplex Zen transform is not a Euclidean

space, and therefore cannot be used for low-dimensional visualisations of data. However, small

projected sets can be re-modelled using MDS to produce such a visualisation if desired. The

nSimplex Zen function does possess the triangle inequality property, and the reduced space can

therefore be used with metric indexing techniques.
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7.1 Very small distances
The nSimplex Zen function has been seen in some spaces to be less good at preserving ordering

over very small distances than other techniques, in particular when applied to relatively low-

dimensional spaces, or spaces which lie within a relatively uniform low-dimensional manifold. This

is a signi�cant drawback as it means the technique may not be the best for performing similarity

search over a large reduced-dimension space. The reason for this is understood, and explained in

Section 4.3. In pragmatic terms, there is an absolute lower-bound on any distance measured within

the reduced space based on the altitude of the last derived component of the representative simplex.

As the simplest case, the nSimplex Zen distance between any object and itself, i.e. d(u,u),
projected into any dimension, is calculated as

√
2x2k , where xk is the value of the �nal-dimension

coordinate in the transformed space. This nSimplex Zen distance may well be greater than to

another object y where the other components are similar and yk is coincidentally smaller than xk .

In high-dimensional spaces very small distances are very rare, and the problem is more evident in

the lower-dimensional spaces we have tested. The probability of it occurring however is currently

beyond our full understanding; in some of our experiments it presents a problem, in others it does

not. We would be reasonably optimistic that the e�ect could be at least partly overcome with

further research. One factor that does make a di�erence is the choice of reference objects, which

in all experiments we have reported has been random. Reference points which are mutually very

close improves this particular outcome.

7.2 Choice of Reference Objects
As would be expected, the choice of reference objects used to construct the simplex has a signi�cant

e�ect on the quality of the reduction transforms.

In particular, it is possible for a pathological choice to result in the formation of a simplex which

can be embedded in less than the required number of Euclidean dimensions. This does not lead to

an incorrect situation, but one where the vectors comprising the individual vertex points do not

form a basis for the desired projection space, therefore leading to a loss of information potential. In

a high-dimensional space the probability of this happening by chance is in fact vanishingly small,

and it is easy to check during simplex construction at which point a di�erent choice of reference

object can be made. The problem is only likely to occur in practice if the space is contained in a

manifold whose intrinsic dimensionality is close to the dimensionality of the projection.

In all other cases, the quality of the transform can still be greatly a�ected by the choice of objects.

We have spent some e�ort in seeking an optimal strategy, and have so far failed to improve, in

general, on a random selection, other than when the projection is to very low dimensions. We

used the random strategy in all of the reported experimental results, and consider this point as

further work. In outline, other than for a very small selection of reference objects, a random choice

is highly likely to re�ect the properties of the manifold in which the data is contained, and thus

form a natural basis for the projection of the rest of that manifold.

8 CONCLUSIONS
We have presented a novel dimensionality reduction technique based on a geometric model of

high-dimensional metric spaces. In an extensive range of tests, it outperforms any of the other

well-known general techniques for Euclidean spaces. It gives particularly good relative performance

when reductions from high to low dimensions are performed. Furthermore, it can be applied to a

wide range of Hilbert spaces.
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While there are still many unanswered questions as to its improvement, and the optimisation of

its performance, we are convinced that the nSimplex Zen transform provides an exciting new tool

to the dimensionality reduction toolbox.
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APPENDICES
A HILBERT-EMBEDDABLE DISTANCE METRICS
Distance metrics are usually referred to by name, but these names are often subject to details of

context and may mean subtly di�erent things to di�erent readers. The following gives unambiguous

de�nitions of metrics to which we refer in the text, all of which are isometrically embeddable in

Hilbert space. In all cases we refer to a domain of vectors v,w ∈ Rn indexed as vi ,wi , 1 ≤ i ≤ n.

A.1 Euclidean Distance

`2(v,w) =

√√
n∑
i=1

(vi −wi )2 (10)

A.2 Cosine Distance
This term is particularly problematic; in some contexts it refers to simply the complement of the

cosine of the angle between vectors, which is not a proper metric; in some it refers to the angle

between vectors, which is a proper metric, and in some cases it means the Euclidean distance

between the `2-normalised vectors, which is a proper, Hilbert-embeddable metric. Note that all

three forms give the same rank ordering. We use the last form:

Dcos(v,w) =

√√
n∑
i=1

(
vi
‖v‖ −

wi

‖w‖

)
2

(11)

which is generally e�cient to evaluate as it is equivalent to Euclidean distance over `2-normalised

data. Note however that the general properties of such spaces are generally very di�erent to

Euclidean spaces due to this tight constraint over the data distribution.

A.3 Jensen-Shannon Distance
This distance is applicable only to `1-normalised positive vectors, as it derives from a metric over

probability distributions. It is de�ned as

Djsd(v,w) =
√
K(v,w) (12)
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Algorithm 1: nSimplexBuild

Input: n + 1 reference points r1, . . . , rn+1 ∈ (U,d)
Output: n-dimensional simplex in `n

2
represented by the matrix Σ ∈ R(n+1)×n

1 Σ = 0 ∈ R(n+1)×n ;

2 if n = 1 then
3 δ = d(r1, r2);

4 Σ =

[
0

δ

]
;

5 return Σ;

6 end
7 ΣBase = nSimplexBuild(r1, . . . , rn );

8 Distances = 0 ∈ Rn ;

9 for 1 ≤ i ≤ n set Distances[i] = d(ri , rn+1);
10 newApex = ApexAddition(ΣBase ,Distances);

11 for 1 ≤ i ≤ n and 1 ≤ j ≤ i − 1 set Σ[i][j] to ΣBase [i][j];
12 for 1 ≤ j ≤ n set Σ[n + 1][j] to newApex[j];
13 return Σ;

where

K(v,w) = 1 − 1

2

n∑
i=1

(h(vi ) + h(wi ) − h(vi +wi )) (13)

h(x) = −x log
2
x (14)

In sparse spaces the term 0 log 0 may occur; this is taken as 0, rather than unde�ned. This is a

reasonable interpretation as this is the limit of the term e log e as e tends to 0 from above.

A.4 Triangular Distance
This distance is applicable only to `1-normalised positive vectors. Its main value is as a (much

cheaper and very accurate in high dimensions) estimator for Jensen-Shannon distance [16].

Dtri(v,w) =

√√
1

2

n∑
i=1

(vi −wi )2
vi +wi

(15)

In sparse spaces the term 0/0 may occur; this is taken as 0, rather than unde�ned.

A.5 �adratic Form Distance
The Quadratic Form Distance associated to a symmetric semi-de�nite positive matrix M ∈ Rn×n is

de�ned as

DM(v,w) =
√
(v −w)TM(v −w) (16)

When the matrix M is diagonal the corresponding distance is a weighted Euclidean distance.

Notable examples include Mahalanobis distance [34], and the Signature Quadratic Form distance

[3].
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Algorithm 2: ApexAddition

Input: A (n − 1)-dimensional base simplex and the distances between a new (unknown) apex

point and the vertices of the base simplex:

ΣBase =



0

v2,1 0 0

v3,1 v3,2
. . .

:

. . . 0

vn,1 · · · vn,n−1


∈ Rn×n−1

Distances =
[
δ1 · · · δn

]
∈ Rn

Output: The cartesian coordinates of the new apex point

1 Output =
[
δ1 0 · · · 0

]
∈ Rn ;

2 for i = 2 to n do
3 l = `2(ΣBase [i],Output);
4 δ = Distances[i];
5 x = ΣBase [i][i − 1];
6 y = Output[i − 1];
7 Output[i − 1] = y − (δ 2 − l2)/2x ;

8 Output[i] = +
√
y2 − (Output[i − 1])2;

9 end
10 return Output

B SIMPLEX CONSTRUCTION
This section gives an inductive algorithm (Algorithm 1) to construct a simplex in n dimensions

based only on the distances measured among n + 1 points.

For the base case of a one-dimensional simplex (i.e. two points with a single distance δ ) the

construction is simply

Σ =

[
0

δ

]
(17)

For an n-dimensional simplex, where n ≥ 2, the distances among n + 1 points are given. In this

case, an (n−1)-dimensional simplex is �rst constructed using the �rst n points. This simplex is used

as a simplex base to which a new apex, the (n + 1)th point, is added by the following ApexAddition
algorithm (Algorithm 2).

For an arbitrary set of objects si ∈ U, the apex σ (si ) can be pre-calculated. When a query is

performed, only n distances in the metric space require to be calculated to discover the new apex

σ (q) in `n
2

.

In essence, the ApexAddition algorithm is derived from exactly the same intuition as the lower-

bound property explained earlier. Proofs of correctness for both the construction and the lower-

bound property are included hereafter for the interested reader.
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C PROOF OF CORRECTESS, APEXADDITION AND NSIMPLEX LWB
Lemma C.1 (Correctness of the ApexAddition algorithm). Let ΣBase ∈ Rn×n−1 representing

a (n − 1)-dimensional simplex of vertices ΣBase[i] ∈ `n−1
2

, with ΣBase[i][j] = 0 for all j ≥ i and
ΣBase[n][n − 1] ≥ 0. Let vi the corresponding vertices in `n

2
(obtained from ΣBase[i] by adding a zero to

the end of the vector) and let δi the distance between an unknown apex point and the vertex vi . Let
o =

[
o1 . . . on

]
the output of the ApexAddition Algorithm. Then o is a feasible apex, i.e. it is

a point in Rn satisfying `2(o, vi ) = δi for all 1 ≤ i ≤ n. The last component on is non-negative and
represents the altitude of o with respect to a base face ΣBase.

Proof. It is su�cient to prove that the output o =
[
o1 . . . on

]
of the Algorithm 2 has distance

δi from the vertex vi , i.e. satis�es the following equations

o2
1
+ · · · + o2n = δ 21 (18.1)

:∑i−1
j=1(vi, j − oj )2 +

∑n
j=i o

2

j = δ
2

i (18.i)
:∑n−1

j=1 (vn, j − oj )2 + o2n = δ 2n (18.n)

(18)

Note that the i-th component of the output o is updated only at the iteration i and i + 1 of the

ApexAddition Algorithm. So, if we denote with o(i) the output at the end of iteration i we have:

o(1) =
[
δ1 0 . . . 0

]
(19)

oi = o
(h)
i , on = o

(n)
n , o(i)h = 0 1 ≤ i < h ≤ n (20)

oi−1 = o
(i−1)
i−1 −

δ 2i −
∑i−2

j=1(vi, j − oj )2 − (vi,i−1 − o
(i−1)
i−1 )2

2vi,i−1
2 ≤ i ≤ n (21)

(oi−1)2 = (o(i−1)i−1 )
2 − (o(i)i )

2
1 ≤ i ≤ n − 1 (22)

By combining Eq. (20) and (22) we obtain

∑n
j=i o

2

j = (o
(i)
i )2 for all 1 ≤ i ≤ n − 2, and so Eq. (18.1)

clearly holds (case i = 1). Moreover, it follows that o satis�es Eq. (18.i) for all i = 2, . . . ,n:

i−1∑
j=1

(vi, j − oj )2 +
n∑
j=i

o2j = v
2

i,i−1 − 2vi,i−1 oi−1 +
i−2∑
j=1

(vi,i−1 − oj )2 + (o(i−1)i−1 )
2

(21)

= δ 2i

� �

Lemma C.2 (n-Simplex Distance Constraint). Let (U,d) a space (n + 2)-embeddable in `n+1
2

.
Let r1, . . . , rn ∈ U and, for any m ≤ n, let σm the (m − 1)-dimensional simplex generated from
r1, . . . , rm by using the nSimplexBuild Algorithm. For any x ∈ U, let x(m) ∈ `m

2
the apex point with

distance d(x , r1), . . . , d(x , rm) from the vertices of σm , computed using the ApexAddition Algorithm.
Then for all q, s ∈ U,

(1) `m−1
2
(s(m−1), q(m−1)) ≤ `m

2
(s(m), q(m)) for 2 ≤ m ≤ n

(2) д(s(m−1), q(m−1)) ≥ д(s(m), q(m)) for 2 ≤ m ≤ n

(3) `n
2
(s(n), q(n)) ≤ d(s,q) ≤ д(s(n), q(n))

where, for any k ∈ N, д : `k
2
→ `k

2
is de�ned as д(x, y) =

√∑k−1
i=1 (xi − yi )2 + (xk + yk )2.
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Proof. By construction, for anym ≤ n we have

x (m)i = x (m−1)i i = 1, . . . ,m − 2 (23)

x (i)i ≥ 0 i = 1, . . . ,m (24)

(x (m)m−1)
2 + (x (m)m )2 = (x (m−1)m−1 )

2
(25)

Condition 1 directly follows from Eq. (23)-(25):

`m
2
(s(m),q(m))2 = `m−1

2
(s(m−1),q(m−1))2 − (s(m−1)m−1 − q

(m−1)
m−1 )

2 +

m∑
i=m−1

(s(m)i − q(m)i )
2

= `m−1
2
(s(m−1),q(m−1))2 + 2

[
− s(m)m−1q

(m)
m−1 − s

(m)
m q(m)m

+

√
(s(m)m−1)2 + (s

(m)
m )2

√
(q(m)m−1)2 + (q

(m)
m )2

]
≥ `m−1

2
(s(m−1),q(m−1))2

where the last passage follows from the Cauchy–Schwarz inequality
14

.

Similarly, Condition 2 also holds:

д(s(m),q(m))2 = д(s(m−1),q(m−1))2 + 2
[
− s(m)m−1q

(m)
m−1 + s

(m)
m q(m)m

−
√
(s(m)m−1)2 + (s

(m)
m )2

√
(q(m)m−1)2 + (q

(m)
m )2

]
≤ д(s(m−1),q(m−1))2.

Now we prove that `n
2
(s(n),q(n)) and д(s(n),q(n)) are, respectively, a lower bound and an upper

bound for the actual distance d(s,q). The main idea is using the simplex σn spanned by r1, . . . , rn
as a base face to build the simplex σn+1 spanned by r1, . . . , rn , s and then use the latter as base face

to build the simplex σn+2 spanned by r1, . . . , rn , s,q. In this way, we have an isometric embedding

of r1, . . . , rn , s,q into `n+1
2

that is the function that maps r1, . . . , rn , s,q into the vertices of σn+2. So,

given the base simplex σn (represented by the matrix Σn ), and the apex s(n),q(n) ∈ `n
2

we have that

the simplex σn+2 is represented by

Σn+2 =


Σn 0

s(n)
1

· · · s(n)n−1 s(n)n 0

q(n)
1
· · · q(n)n−1 q(n+1)n q(n+1)n+1


∈ Rn+2×n+1 (26)

where, by construction, (q(n+1)n+1 )2 = (q
(n)
n )2 − (q(n+1)n )2, s(n)n ,q

(n+1)
n+1 ≥ 0, and d(q, s) equals the Eu-

clidean distance between the two last rows of Σn+2.

14
Cauchy–Schwarz inequality in two dimension is: (a1b1 + a2b2)2 ≤ (a2

1
+ a2

2
)(b2

1
+ b2

2
) ∀a1, b1, a2, b2 ∈ R, which implies

(a1b1 + a2b2) ≤
√
(a2

1
+ a2

2
)
√
(b2

1
+ b2

2
) ∀a1, b1, a2, b2 ∈ R
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It follows that

d(q, s)2 =
n−1∑
i=1

(s(n)i − q
(n)
i )

2 + (s(n)n )2 + (q(n)n )2 − 2s(n)n q(n+1)n ; (27)

and, since q(n)n ≥ |q(n+1)n |, we have

d(q, s)2 = `n
2
(s(n),q(n))2 + 2s(n)n (q(n)n − q(n+1)n ) ≥ `n

2
(s(n),q(n))2,

and

d(q, s)2 = д(s(n),q(n))2 − 2s(n)n (q(n)n + q
(n+1)
n ) ≤ д(s(n),q(n))2

Finally, we observe that since (q(n+1)n+1 )2 + (q
(n+1)
n )2 = (q(n)n )2, q(n+1)n+1 ≥ 0, and q(n)n ≥ 0, there exists

an angle θ ∈ [0,π ] such that {
q(n+1)n = q(n)n cosθ

q(n+1)n+1 = q(n)n sinθ
(28)

Therefore, Eq. 27 can be rewritten as

d(q, s)2 =
n−1∑
i=1

(s(n)i − q
(n)
i )

2 + (s(n)n )2 + (q(n)n )2 − 2s(n)n q(n)n cosθ ;

In other words, if σ : D → Rn is the nSimplex transform de�ned by a set of n reference points then

for any s,q ∈ D given the transformed points x = σ (s) an y = σ (q) it holds

d(q, s) =

√√√n−1∑
i=1

(xi − yi )2 + x2n + y2n − 2xnyn cosθ (29)

�

D DATA SETS USED IN EXPERIMENTS
While all the software used in experiments described is available from https://github.com/richardconnor/

dr-matlab-code, the data sets are typically too large to provide conveniently and we therefore

provide brief descriptions of their provenance.

Generated uniform data All generated data is created using the MatLab rand function from

the Statistics and Machine Learning toolbox. For example a set of one thousand objects of

one hundred dimensions is created by the single line

data = rand(1000,100);

Twitter GloVe The GloVe data used derives from https://nlp.stanford.edu/projects/glove_

where the data and instructions for downloading it can be found. We used the 200-

dimensional vectors.

MF1M The images from which this data derives are available from https://press.liacs.nl/

mir�ickr/mirdownload.html. We use the one million image set. For input to AlexNet, whole

images were reduced to 227 x 227 using ImageMagick.

The 4096-dimensional vectors were obtained by applying the MatLab release of AlexNet,

which is also available from other domains in other languages. In MatLab, the fc6 layer

used is simply extracted by code such as

fc6 = activations(net,thisImage,"fc6","OutputAs","rows");

ANN SIFT The ANN SIFT data, along with code to extract it, is available from http://

corpus-texmex.irisa.fr/.
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GIST Again the Mir Flickr one million image collection was used to produce the GIST data.

Although not fully documented, GIST representations of the images are also available from

https://press.liacs.nl/mir�ickr/mir�ickr1m.v3b/; alternatively MatLab code to create GIST

descriptors is available at https://people.csail.mit.edu/torralba/code/spatialenvelope/

E MEASURING THE QUALITY OF DIMENSIONALITY REDUCTION
E.1 Global Structure

Shepard Diagrams give a visual overview of the quality of a transform. For a given set of

data all distances δi j are plotted against the reduced dimensional distances ζi j . In most

general terms, the closer the plot lies to the y = x diagonal, the better the reduction.

Kruskal Stress To quantify the visual e�ect, Shepard diagrams are usually overlaid with an

isotonic regression function calculated from the original and reduced spaces, as used to

calculate Kruskal’s stress function. The stress function is given by:

SK =

√√∑
i<j (ζi j − d∗i j )2∑

i<j ζ
2

i j
(30)

where d∗ is the value given by a function implied from the least-squares isotonic regression

calculated from the �nite data presented in the chart.

The point of �tting an isotonic regression is that the stress function assigns a value

according to the monotonicity of the reduction transform, rather than the absolute values

produced. PCA, for example, is a reduction mapping: in all cases, ζi j ≤ δi j . However if the

function τ : δi j → ζi j is perfectly monotonic, the stress will be zero despite the reduction

in individual values, even if this is non-linear.

E.2 Distance Preservation
Sammon Stress derives from Sammon Mapping, a non-linear dimensionality reduction

technique similar to MDS which minimises the stress function:

SS =
1∑

i<j δi j

∑
i<j

(δi j − ζi j )2

δi j
(31)

Unlike Kruskal’s stress function, Sammon stress is a�ected by the absolute di�erences

between ζi j and δi j rather than their isotonic relationship, and so gives a further useful

perspective on the quality of a reduction transform.

Quadratic Loss is a purely distance-based technique, the quadratic function used to punish

the production of outliers:

SQ =
∑
i<j

(δi j − ζi j )2 (32)

In fact we view this function as somewhat of a blunt instrument, as it punishes even

regular deviations from original distances. For example, PCA is a contraction function,

while RP is not; RP often performs better for quadratic loss even when the quality of the

reduction is clearly, overall, lower. Even if the absolute deviation from original distance

is important, it may often be possible to apply a scaling function to the reduced space in

order to minimise this.
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As discussed in Appendix E.4, we require all quality measures to be bounded in [0, 1] to

allow visual comparisons over di�erent reduction dimensions. There is no natural upper-

bound on this measure, so we simply convert an outcome of q to
qmax−q
qmax

to produce the

desired range, where qmax is the greatest value obtained in the context of the visualisation.

E.3 Topology Preservation
Spearman Rho measures the preservation of rank ordering among pairwise distances mea-

sured between corresponding objects in the domain and range of the reduction transform.

This is a useful measure for many applications, such as nearest-neighbour analysis, where

the absolute distances among values are of no interest other than for the ordering which

they induce over other elements of the set.

Pairwise distances from a sample set of n objects are used to construct an ordering z of

size T =
(n
2

)
of pairs δi j . A ranking z ′ is then created according to the relative distances of

the same pairs of objects after the transform is applied. The Spearman Rho function is then

given as

SR = 1 −
6

∑T
i=1(z(i) − ẑ(i))2
T 3 −T (33)

where the adjusting factors combine to give an output in the range [−1, 1] where 1 implies

a perfect preservation of distance ordering and −1 implies the inverse correlation.

There are other forms of this formula, but we choose this one to faithfully follow the

exact methodology of [26]. Although all of our other quality measures are normalised into

[0, 1], the fact that the outcome of zero implies an e�ectively random ordering suits our

purpose in this respect.

kNN Query Recall When the purpose of dimension reduction is to speed up similarity

search, the most important outcome is the nearest-neighbour topology. To an extent this

is tested by both Kruskal stress and Spearman Rho quality measures, but with the crucial

di�erence that in the context of query recall it is only the smallest distances, relative to

a query, that are relevant. Thus, a transform which preserves very small distances well,

but is less good over larger distances, will be preferable to one which preserves distances

overall, although the latter may score better in these quality measures.

To measure this quality, it is necessary to construct a nearest-neighbour ground truth

over a representative sample of queries for a large data set, and then compare the nearest

neighbours of those queries in the reduced-dimension space. One problem is that the

pattern of nearest neighbours depends on speci�c details of the space being considered,

as well as more general properties of the reduction. The larger the space, the smaller the

nearest-neighbour distances will be, and the higher the probability of having very close

matches which are not representative of the general space.

To overcome some of these issues we measure recall using the following assumptions:

(1) only a small percentage of the true nearest neighbours are of any signi�cance

(2) the nearer true neighbours are considerably more signi�cant than the further neigh-

bours

(3) preservation of order in the results is also important

Our recall measurement therefore uses a discounted cumulative gain (DCG) function over

a relevance function based on nearest-neighbour rank.

The ranking function is constructed to give signi�cantly higher importance to the closer

neighbours by using the logistic function to give an inverse sigmoid function over rank.

In our experiments we have collected 1,000 nearest neighbours from a collection of one

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 1. Publication date: January 2024.

http://dx.doi.org/10.1145/3647642


This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The de�nitive

version was published in ACM Transactions on Knowledge Discovery from Data, http://dx.doi.org/10.1145/3647642.

nSimplex Zen 1:45

million data, and rank the relevance of each true nearest neighbour as

Ri = 1 − 1(
1 + e−

i−500
100

) (34)

for the ith true nearest neighbour.

We then compare the 1,000 nearest neighbours returned by the DR function using the

DCG variant de�ned in [9]:

DCGDR =

1000∑
i

2
DRi − 1

log
2
i + 1

(35)

where DRi is Ri applied to the position in the true nearest neighbours of the object found

in the ith position of the nearest neighbours according to the DR transform.

Finally, this function produces an arbitrary maximum value of 66.0435 when lists of

length 1,000 are in perfect correlation, and so the outcome is divided by this factor to give

a normalised value in the range [0, 1], where 0 means there is no overlap between the lists

and 1 means they are in perfect correlation.

E.4 �ality profiles
As discussed in [26], it is instructive to consider the quality of transforms as a pro�le over di�erent

reduction dimensions. This may be shown as a plot where one or more of the numeric quality

functions is plotted against the dimension of the reduction, typically as this is reduced from the

original dimensionality of the original domain down to 2. For most mechanisms and useful quality

measures, this will result in a monotonic decreasing plot, and will allow the selection of the most

useful compromise in terms of quality loss for a given reduction dimension.

To allow presentation of all quality measures within the same bounds, Kruskal and Sammon and

stress measurements are subtracted from 1 to give a quality rather than a stress measure, and the

results in the range [0, 1] are given. A negative value can arise from either Spearman Rho (which

is bounded in [−1, 1] or Sammon stress (which has no formal upper bound) but in reality a value

of less than 0 for Spearman Rho, or greater than 1 for Sammon stress, e�ectively means that the

transform has no practical value and a zero quality rating is reasonable. For quadratic loss there

are no natural bounds, and this is handled as explained in Appendix E.2.
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