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BACKGROUND: ABOUT THE SCORE PROJECT 

 

SCORE is a four-year EU-funded project aiming to increase climate resilience in European coastal cities. 

The intensification of extreme weather events, coastal erosion and sea-level rise are major challenges to be 
urgently addressed by European coastal cities. The science behind these disruptive phenomena is complex, and 
advancing climate resilience requires progress in data acquisition, forecasting, and understanding of the potential 
risks and impacts for real-scenario interventions. The Ecosystem-Based Approach (EBA) supported by smart 
technologies has potential to increase climate resilience of European coastal cities; however, it is not yet 
adequately understood and coordinated at European level.  

SCORE outlines a co-creation strategy, developed via a network of 10 coastal city ‘living labs’ (CCLLs), to rapidly, 
equitably and sustainably enhance coastal city climate resilience through EBAs and sophisticated digital 
technologies.  

The 10 coastal city living labs involved in the project are: Sligo and Dublin, Ireland; Barcelona/Vilanova i la Geltrú, 
Benidorm and Basque Country, Spain; Oeiras, Portugal; Massa, Italy; Piran, Slovenia; Gdansk, Poland; Samsun, 
Turkey. 

SCORE will establish an integrated coastal zone management framework for strengthening EBA and smart coastal 
city policies, creating European leadership in coastal city climate change adaptation in line with The Paris 
Agreement. It will provide innovative platforms to empower stakeholders’ deployment of EBAs to increase climate 
resilience, business opportunities and financial sustainability of coastal cities. 

The SCORE interdisciplinary team consists of 28 world-leading organisations from academia, local authorities, RPOs, 
and SMEs encompassing a wide range of skills including environmental science and policy, climate modelling, 
citizen and social science, data management, coastal management and engineering, security and technological 
aspects of smart sensing research. 
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EXECUTIVE SUMMARY 

This document is a deliverable of the SCORE project, funded under the European Union’s Horizon 2020 research and 
innovation programme under grant agreement No 101003534. 

The aim of this document is to outline the dual objectives essential to the success of the SCORE project: first, 
providing an overview of the methods and practices for validating citizen science data, and second, integrating these 
validated data with institutional monitoring systems. Validating citizen science data is crucial to ensuring the accuracy 
and reliability of information collected by non-professional volunteers. Once validated, this data can be integrated 
into institutional systems to enhance environmental monitoring, particularly in urban coastal areas where detailed 
and localised data can significantly improve monitoring capabilities and decision-making.  

The integration of low-cost, widely distributed citizen science sensors offers significant benefits by providing detailed 
and localised environmental data, complementing existing institutional networks. However, the report also highlights 
the need for rigorous validation processes to ensure the reliability and accuracy of this data. In detail, it outlines 
various validation techniques, including calibration, cross-validation with local reference instruments, and the use of 
consistency checks to address different types of errors. 

At the core of the validation process is the SCORE ICT Platform (SIP), which acts as a centralised hub for data 
management and sharing, real-time interactions, and stakeholder communication. The report details how the SIP 
will employ consistency checks —temporal, spatial, and climatological— as well as collocation methods like dual and 
triple collocation to maintain data integrity and filter out anomalies. 

In addition, the Early Warning Support system (EWSS) is discussed, emphasising how it benefits from the inclusion 
of validated citizen science data to improve flood risk assessments and other environmental predictions. The report 
stresses the importance of regular calibration, a robust validation framework, and the autonomous management of 
data integrity by the EWSS to ensure that only reliable information is used for critical environmental assessments. 

Finally, the report recommends investing in capacity-building initiatives for citizen scientists, including training on 
data collection and sensor maintenance, and establishing a clear framework for integrating citizen science data with 
institutional datasets. This approach aims to maximise the potential of citizen science data while ensuring high 
standards of data quality and reliability. 

 

 

LINKS WITH OTHER PROJECT ACTIVITIES  

The data generated from citizen science activities, as described in WP4, plays a crucial role in the work outlined in 
WP5 and WP8. WP5 "Pre/post-EBA Interventions Evidence Collection and Knowledge Marketplace," focuses on 
creating and implementing the SCORE ICT Platform. This platform is designed to centralise and manage various data 
sources, including those from citizen science efforts. It supports the integration, analysis, and sharing of this data to 
enhance environmental knowledge and decision-making. 

Similarly, WP8, "Development of Integrated Early Warning Support and Spatial Digital Twin Solution Prototypes," is 
dedicated to developing a GIS-based Early Warning Support system (EWSS) and Digital Twin platform. This system 
leverages the data collected from various sources, including citizen science, to provide real-time environmental 
monitoring and predictive capabilities. 
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1. INTRODUCTION 
1.1. Background and Objectives 

This report "D4.6: Validation of Citizen Science Data. Report on Validation Algorithms for Data Collected During 
Citizen Science Activities'' addresses the essential task of ensuring the quality and reliability of data collected through 
citizen science initiatives using low-cost sensing technology. These sensors are deployed in various Coastal City Living 
Labs (CCLLs) as part of a broader effort to enhance climate resilience in European coastal cities. The process for 
selecting these low-cost sensors has been presented in ‘D4.2-Report on low-cost sensors viable for citizen science 
activities.’ [1] The SCORE project framework for citizen science has been detailed previously in ‘D4.3-Citizen science 
DIY framework’ [2], while specific citizen science activities in each CCLL will be showcased in ‘D4.5-Citizen science 
activities in CCLLs’ (forthcoming). 

The emergence of citizen science as a valuable tool for environmental monitoring creates the opportunity for 
innovative approaches to data collection. In this project, low-cost sensors are employed by citizen scientists to gather 
data that is complementary to the high-quality data collected by institutional sensors. These low-cost sensors, while 
accessible and easy to deploy, often require additional validation to ensure their data is accurate, reliable, and useful 
for scientific and policy-making purposes. 

Task 4.5 focuses on developing and implementing algorithms to validate the data from these low-cost sensors. The 
goal is to evaluate their potential ability to supplement institutional data used in coastal city early-warning systems. 
This validation effort aims to ensure that the data collected by citizen scientists meets the necessary standards for 
use in critical decision-making processes related to climate resilience. 

1.2. Definitions 
In environmental applications, sensor validation is the process of confirming the overall accuracy and reliability of 
measurements, as well as their ability to support specific applications. This validation process includes calibration 
and the verification (or monitoring) of this calibration. 

The terms calibration, verification, and validation are defined by the International Organization for Standardization 
(ISO/TS 19101-2:2008, ISO/TS 19159-1:2014) and the Committee on Earth Observation Satellites (CEOS) for satellite 
remote sensing of environmental variables. 

Calibration refers to the process of quantitatively defining the system’s responses to known, controlled signal inputs. 
Proper calibration of sensors, and providing detailed instructions on sensor operation and maintenance is essential 
to provide high-quality data collections and ensure streamlined validation. 

In contrast, validation requires independent means to assess the quality of the data products derived from the 
sensors and system output. While calibration may involve laboratory tests, validation requires measurements in the 
field, with a focus on the application and purpose of data usage (fitness to be used). Overall, validation assesses the 
adequacy of sensors to fulfil specific objectives. 

The verification process checks current data to ensure their accuracy and consistency. Verification often involves 
real-time monitoring to promptly identify any behaviours that can be attributed to the malfunctioning of some 
sensors. 
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1.3. Importance of Data Validation in Citizen Science 
The validation of data from low-cost sensors is pivotal for a number of reasons. Firstly, it ensures that the data is 
accurate and reliable, thereby making it useful for integration with institutional data. Proper data validation enables 
the creation of a database that can enhance early-warning systems, providing timely and precise supportive 
information about climate hazards. This, in turn, helps in the development of effective mitigation and adaptation 
strategies. 

Validation procedures further help to identify and correct any discrepancies in the data collected by low-cost sensors. 
By comparing data from these sensors with data from other sensor networks or high-quality reference instruments, 
the validation process can highlight any inconsistencies and guide necessary adjustments. This ensures that the data 
contribute positively to the overall understanding of local climate conditions and hazards. 

Validation also plays a critical role in maintaining the credibility of citizen science activities. When the data collected 
by citizen scientists is validated and deemed reliable, it builds trust among stakeholders, including scientists, 
policymakers, and the general public. This trust is essential for the continued support and expansion of citizen science 
initiatives, which are increasingly recognised as valuable contributors to environmental monitoring and climate 
resilience efforts. 
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2. OVERVIEW OF CITIZEN SCIENCE 
SENSORS IN CCLLS 

2.1. CCLL Sensor Deployment and Management 
Citizen Science plays a pivotal role in the SCORE project, where local communities actively participate in 
environmental monitoring to enhance climate resilience. The CCLLs are integral to this initiative, identifying major 
hazards that require vigilant monitoring to mitigate their impact on coastal cities. This collaborative approach ensures 
that the monitoring activities are aligned with the specific needs and vulnerabilities of each community. SCORE aims 
to mitigate vulnerability to coastal hazards by deploying a dense network of low-cost sensors and empowering 
citizens to participate in hazard co-monitoring. These affordable sensors have to provide consistent data for trend 
analysis and support early warning systems, as well as that they might monitor the effectiveness of various 
ecosystem-based adaptations (EBAs) implemented within SCORE. 

Initially, the CCLLs engaged in discussions and assessments to pinpoint the critical environmental hazards, such as 
coastal and riverine flooding, air quality deterioration, and shoreline erosion. These identified hazards served as the 
foundation for the project WP4 team to develop a curated catalogue of low-cost sensors (https://sensors.score-eu-
project.eu/). This catalogue was designed to offer a range of sensors capable of monitoring various environmental 
parameters relevant to the identified hazards. The CCLLs then selected sensors from this catalogue, tailoring their 
choices to their respective local context and monitoring needs.  

Table 1: Environmental hazards and monitored parameters 

Hazard Monitored Parameters 

Coastal erosion Shoreline and topography; water level; surface waves 

Coastal flooding Water level and surface waves; precipitation; atmospheric pressure; air 
temperature 

Drought  Precipitation; atmospheric pressure; air temperature 

Heat waves, heath domes Air quality and UV levels; precipitation; atmospheric pressure; air temperature 

Lands and river flooding Precipitation; atmospheric pressure; air temperature, water level; surface waves 

Landslide Precipitation; atmospheric pressure; air temperature 

Sea level rise Shoreline and topography; water level; surface waves 

Storm surge Water level; surface waves; precipitation; atmospheric pressure; air temperature 

 

A full summary of the low-cost sensors utilised in the project can be found in the Appendix section. These low-cost 
sensors are crucial for enabling local communities in the CCLLs to actively engage through citizen science initiatives. 
The data collected from these citizen science projects is directly uploaded to the SCORE ICT platform, where it 
complements institutional data and aids in validating models for the SCORE Early-Warning Support system. This 
citizen science approach is particularly valuable because coastal monitoring is typically complex (due to the multitude 
of hazards simultaneously occurring) and therefore expensive, often relying solely on high-cost standard instruments 
that offer limited spatial and temporal resolution. 

Given the reliance on these citizen-collected datasets, ensuring their accuracy and reliability is paramount. The most 
common planned validation method is cross-validation with reference instruments. Other 

https://sensors.score-eu-project.eu/
https://sensors.score-eu-project.eu/
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methods include statistical methods and comparison with reliable data sources, Table 2 summarises these methods 
by CCLL. 

 
Table 2: CCLL validation methods 

CCLL Monitored Parameter Method 

Barcelona/Vilanova Intensified atmospheric conditions Weather stations 

Sligo Sea level rise Sea water levels 

Massa Coastal erosion Shoreline, topography 

Gdansk Statistical analysis Statistical methods 

Benidorm Statistical analysis Statistical methods 

Barcelona/Vilanova Comparison with reliable data Rain sensors, water level 

Benidorm Comparison with reliable data Photography 
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3. VALIDATION ALGORITHMS AND 
METHODOLOGIES 

3.1. Introduction to Validation Algorithms 
Validation algorithms play a crucial role in assessing model performance by comparing predictions to real-world data 
or a separate validation dataset. These methods help determine whether a model can generalise effectively to 
unseen data. In the context of low-cost sensors, data validation becomes even more critical due to several reasons: 
 

• Accuracy and reliability: Validation confirms that a model accurately represents the real-world system or the 
process(es) it aims to simulate. This is particularly vital in applications where incorrect predictions could have 
serious consequences, for example healthcare applications to monitor personal health status or autonomous 
driving. 

• Prevention of overfitting: Overfitting occurs when a model learns not only the underlying patterns in the 
training data, but also to recognise noise and outliers. Unlike traditional data training, which involves using 
all available data, low-cost sensors may not have extensive training data. Validation ensures that the model 
generalises well to new data, reducing the risk of overfitting. 

• Enhancing model quality: Validation identifies and rectifies errors, ensuring consistent and reliable model 
behaviour. By catching issues early in the development process, it contributes to scalability and flexibility 
while minimising costs. 

• Detecting errors and anomalies: Low-cost sensors are susceptible to manufacturing inconsistencies and 
environmental factors. Data validation helps identify and correct these errors, ensuring accurate analysis. 

• Ensuring consistency across devices: Variations in sensor performance make consistency challenging. 
Validation standardises data, making it comparable across different sensors and ensuring uniformity across 
the collected data. 

• Improving model performance: Validating large datasets from low-cost sensors enhances model inputs, 
leading to better accuracy in predictions for applications like environmental monitoring and citizen science. 

• Maintaining data quality: Over time, low-cost sensors may degrade, causing measurement drift. Regular data 
validation detects these drifts early, prompting recalibration or sensor replacement to maintain high data 
quality. 

• Supporting decision-making: Reliable, validated data from low-cost sensors is essential for informed 
decision-making in fields such as smart cities, environmental management and public health. 

To ensure the accuracy and reliability of data from low-cost sensors, the SCORE project leverages a multi-faceted 
approach to guarantee the accuracy and reliability of data collected from low-cost sensors.  

Several validation criteria must therefore be applied. Initially, calibration and comparison with high-precision 
reference instruments are essential for the majority of sensors being used by the CCLLs. Regular calibration against 
these references can correct biases in sensor readings and verify their accuracy. Statistical techniques such as 
regression analysis or error detection algorithms can then be employed to compare sensor outputs with reference 
values, thereby quantifying and addressing discrepancies caused by environmental variations or sensor malfunctions. 

Maintaining data integrity and reliability involves continuous monitoring and validation processes. Using outlier 
detection algorithms are recommended to handle outliers indicating potential sensor issues or external interferences 
and to ensure reproducibility through testing to confirm that repeated measurements under the same conditions 
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yield consistent results. Establishing validation rules and thresholds for acceptable data ranges automatically flags 
and excludes invalid data, complemented by automated quality control processes that continuously validate 
incoming data. 

3.2. Criteria for Validating Low-Cost Sensor Data 
Calibration and verification of calibration are essential for correcting biases in sensor readings. Common methods 
include data-driven techniques to adjust outputs based on reference measurements. This often involves adjustments 
for environmental factors like temperature and humidity, which can significantly impact sensor performance. Low-
cost sensors typically undergo validation by comparing their data with that from high-accuracy instruments, aiding 
in identifying and correcting discrepancies. 

Ensuring data consistency over time requires regular stability checks. This process includes monitoring for sensor 
drift and performing recalibrations as necessary. Employing statistical measures, such as the Coefficient of 
Determination (R²), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE), evaluates sensor accuracy. 
These metrics quantify alignment between sensor readings and expected values, highlighting any deviations. See 
Appendix 2 for definitions of all the statistical measures referenced in this report. 

Sensors must be tested and adjusted for their specific operational environments. For coastal areas, considerations 
include factors like saltwater corrosion and varying atmospheric conditions. Utilising multiple sensors for redundancy 
helps in cross-verifying data, enhancing reliability. This redundancy enables the identification and correction of 
anomalies or errors, ensuring the robustness of the collected data. 

 

3.3. Approaches to Algorithm-Based Data Validation 
Machine learning models can be trained on labelled data from reference instruments to predict and correct low-cost 
sensor outputs. These models are capable of performing anomaly detection, and can identify readings that deviate 
from expected patterns. Statistical techniques, such as regression analysis, assess relationships between sensor data 
and reference measurements to address biases. Time-series analysis methods like an autoregressive integrated 
moving average can also detect trends, seasonality, and anomalies. 

Calibration algorithms play a crucial role in maintaining sensor accuracy. Dynamic calibration continuously updates 
parameters based on real-time comparisons with reference instruments. Multi-point calibration involves using 
multiple reference points to achieve greater accuracy, particularly useful for diverse sensor types like those in the 
SCORE project. Data fusion techniques combine inputs from multiple sensors to enhance overall data quality and 
reliability. 

Various validation methods ensure data integrity and reliability. Statistical validation involves outlier detection and 
regression analysis to identify trends and patterns. Contextual validation checks for consistency with expected 
environmental conditions and known data patterns. Record-level validation includes completeness checks and 
identifying gaps in data collection. Automated validation employs scripts and rules within data processing pipelines 
for real-time data integrity checks. 

The project team is currently working on implementing an algorithm to collect and compare data from relevant 
platforms with locally collected, continuously updated reference values. This algorithm is being developed as part of 
the ongoing improvements to the SIP and is expected to be completed before the project's conclusion. While specific 
algorithms will vary depending on the sensor type, the underlying principle of consistent validation remains the same. 
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3.4. Data stream quality automated evaluation and pre-
processing by the DT-EWS 

The EWSS collects and processes the data from the data streams acquired by the sensors and operates some checks 
on their integrity and consistency, also taking actions to prepare them to be used for the current scenarios evaluation. 
Each data stream is read and passed through a chain of data-preparation processes: 

• Data normalization and check: Time series are made compliant with a common system format, i.e., with the 
system time parameters and measurement units. Missing or negative values are detected, the latter replaced 
by empty entries, and if the percentage of missing data in the scenario time interval exceeds a specific 
threshold, data are discarded. In all these cases, the system raises a warning through the graphical user 
interface (GUI) that can be read by the user, with the details about the problem of the specific sensor. 

• Outliers detection: A procedure aimed at detecting possible wrong or suspect values is applied. These kinds 
of techniques represent a common step in the pre-processing of data for analysis or model-building 
purposes. More specifically, the EWSS implements algorithms based on the Median Absolute Deviation 
(MAD) and Isolation Forest to identify outliers in the time series (see the documentation in D8.5 for details). 
At the end of the procedure, all the points identified as possible outliers are removed. Like in the previous 
step, in case of detection, the information is reported to the user as a warning related to the specific sensor 
through the GUI. 

• Data imputation: Once the time series are cleaned up, if they are considered valid, i.e., the number of 
removed/missing elements does not exceed the fixed threshold in the scenario time interval, empty entries 
are imputed in order to get a complete time series. This task is achieved in two possible ways: By adopting 
either interpolation, or median imputation, both selectable in the configuration stage. In the first case, the 
time series values are linearly interpolated, keeping into account the actual frequency. In the second case, 
the median of the values in the series interval is used. 

At the end of these steps, collected data from different data streams belonging to a specific time series and location 
are processed together, in order to obtain a single time series associated to a relevant scenario. At this stage, for the 
specific element, it is necessary to have at least one valid time series that has been previously collected. If this is not 
the case, the system notifies through the GUI that the element itself cannot be used for the creation of the scenario. 

The result of these steps is therefore a collection of valid time series acquired from the sensors that can be fed into 
the process of creation of the current scenario. Indeed, these values are then channelled into the feature aggregation 
procedure, which represent the last preprocessing step needed to define the current scenario evaluated by the 
EWSS. 
 
 
 
 
 
 



  

     SCORE _D4.6_V1.0    15/ 26 

4. LOCAL LEVEL VALIDATION IN CCLLS 
4.1. Specific Procedures and Protocols for Routine 

Measurements 
This section presents the specific procedures and protocols for routine measurements, focusing on the calibration 
of sensors used in the CCLLs. The tables below detail the calibration methods employed for some of the most popular 
and established sensors currently in use by the 'frontrunner' CCLLs. These frontrunner CCLLs were selected to pilot 
these processes, establishing best practices for sensor deployment and calibration. Their role as pilots was intended 
to provide a framework for the 'follower' CCLLs, which subsequently can now utilise these examples when deploying 
their own sensors in collaboration with citizen scientists. 

While this section concentrates on the sensors that have been successfully implemented by the frontrunners, it is 
important to note that many other sensors such as the DIY Wave Gauge (https://sensors.score-eu-
project.eu/sensor/diy-wave-gauge/) and the Smart Pebbles (https://sensors.score-eu-project.eu/sensor/smart-
pebbles/) are still in the pilot phase. As these pilots continue, the corresponding calibration protocols and 
documentation are being developed based on the collective experiences of all CCLLs. These experiences will be 
compiled into an overall catalogue of instructional manuals which will be included on the sensor catalogue website. 
This evolving catalogue will serve as a resource for future sensor deployments, offering guidance and support to 
other CCLLs and similar initiatives beyond the scope of this project. 

 
Table 3: MINKE water quality sensor calibration itinerary 

Sensor 

Typical 
criteria for 

data 
validation 

Guidelines to follow 

MINKE 
Water 
quality 
sensors 

Calibration 
Process 

Order and Accuracy: Depending on the type of probe that is calibrated, calibration 
must follow a specific order: it can either be a three-point calibration—midpoint first, 
then low point, and finally high point, a 2-point calibration—dry point and 0 mg/L (for 
dissolved oxygen e.g.), or single-point calibration. Inaccuracies in this order or values 
can lead to erroneous data. 
Cleaning: The sensor probes need to be cleaned with distilled water between each 
calibration step to prevent contamination. 
Stable Readings: Ensuring the sensor readings are stable before recording calibration 
values is crucial. Unstable readings can lead to incorrect calibration and thus poor data 
quality. 
Storage Solutions: The pH and ORP probes need to be kept in a storage solution when 
not in use to prevent them from drying out, which can affect their accuracy. 

Installation 
and Setup 

Environment: Sensors should be installed in environments avoiding moisture 
accumulation, temperature and humidity transients, and direct airflow, all of which can 
impact sensor accuracy. 
Protection: Outdoor installations require protective enclosures to shield the sensors 
from moisture and other environmental factors. Filtering foam or other protective 
measures can be used to protect the sensor pad. 
Circuit Configuration: Properly configuring circuits, such as switching from UART to I2C 
mode for communication, is necessary for correct sensor operation. 
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Maintenance 

Regular Cleaning: Sensors, especially those deployed in the field, need frequent 
cleaning to prevent biofouling and other contaminants from affecting measurements. 
The maintenance can vary from weekly to less frequent depending on the 
environment. 
Electrolyte Solutions: Some probes, like those for dissolved oxygen, require periodic 
replacement of internal electrolyte solutions and cleaning of residues. 

 

Table 4: HOBO water level sensor calibration itinerary 

Sensor 

Typical 
criteria for 

data 
validation 

Guidelines to follow 

HOBO 
water 
level 

sensor 

Calibration 
Process 

Calibration Process 

• Order and Accuracy: Each pressure sensor in the sensor end is individually 
calibrated at multiple pressures and temperatures over the calibrated range. 
Ensure the logger is within the specified operation range (0 to 207 kPa or 0 to 
850 kPa depending on the model) for accurate measurements. Avoid exceeding 
the burst pressure of the sensor. 

• Stable Readings: Ensure the logger has reached full temperature equilibrium 
(approximately 20 minutes) before starting measurements to ensure accuracy. 

• Reference Water Level: Set a precise reference water level at the beginning of 
each deployment using the HOBOconnect app. This step is crucial for accurate 
water level data. 

• Water Density: Configure the correct water density in the app to ensure 
accurate water level readings. 

Cleaning Biofouling: Regularly inspect the sensor end for biological growth, which can 
affect pressure sensor accuracy. Clean any biofouling to maintain sensor performance. 

Storage Solutions Battery Maintenance: Replace the AA batteries as needed, especially 
before long deployments. Properly store the logger in a dry environment to prevent any 
damage to the electronic components. 

HOBO 
water 
level 
sensor 

Installation 
and setup 

Environment 

• Avoid Moisture Accumulation: The logger's top-end unit is weatherproof but not 
waterproof. Avoid continuous, highly saturated environments to prevent 
condensation inside the logger. 

• Temperature Equilibrium: Ensure the logger reaches temperature equilibrium 
before starting measurements. Avoid sudden temperature changes that can 
affect accuracy. 

Protection Protective Enclosures: Use stilling wells for deployments in lakes, rivers, or 
streams to protect the sensor from currents, wave action, and debris. Ensure proper 
ventilation and shading for well deployments to minimize condensation. 

Circuit Configuration Logger Configuration: Properly configure the logger using the 
HOBOconnect app. Ensure Bluetooth connectivity for data download and logger setup. 
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Maintenance  

Regular Cleaning 

• Sensor Inspection: Periodically check the sensor end for any contaminants or 
biofouling. Clean the pressure sensor's face to maintain accuracy. 

• Battery Replacement: Replace the batteries regularly, especially for 
deployments longer than a year or in extreme temperature conditions. Use 
fresh dielectric grease (comes with the sensor) on contacts to maintain a good 
electrical connection. 

Compensating for Drift Regular Reference Checks: Regularly update the reference water 
level and water density during deployment to compensate for any drift. This ensures the 
long-term accuracy of the logger data. 
 

 

Table 5: BRESSER WIFI weather station calibration itinerary 

Sensor 

Typical 
criteria for 

data 
validation 

Guidelines to follow 

BRESSER 
WIFI 

ClearView 
7in1 

Calibration 
Process 

No calibration process is recommended by the manufacturer, although calibration can 
be undertaken via the device’s captive portal if required. However, the manufacturer 
advises against this. 

Installation 
and setup 

The user must place the sensor above a non-heat radiating surface such as gravel, bare 
earth, greenery…(etc) at least 5 metres away from buildings and high vegetation. The 
station is to be mounted around 5 metres above the ground, pointing north. At this 
point, the user is directed to connect the sensor to the base and connect the system to 
the Wi-Fi and Weather Underground account. 

Maintenance 
No frequent maintenance is required for this unit. The user is provided with an email if 
their device is disconnected. In this case, they are instructed to check the batteries in 
the sensor or perform a connection refresh. 
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5. VALIDATION AT THE SIP LEVEL 
The SCORE ICT Platform (SIP) is a centralised data repository and knowledge-sharing hub designed to enhance 
collaboration among project partners and stakeholders. By providing access to datasets, maps, and geostories, the 
aim of the SIP is to support the development and implementation of climate resilience strategies in coastal cities. 
Serving as a backbone for effective communication and data exchange, it enables greater coordination among 
stakeholders, which is vital to achieving the project's goals. The platform's capability to enable real-time interactions 
and its integration with various technologies make it indispensable in contemporary environmental monitoring and 
conservation. Errors can arise from various sources, including gross errors due to device malfunctions, systematic 
biases, and random errors inherent to measurement processes. Additionally, representativeness errors, stemming 
from spatial and temporal discrepancies, must be addressed to ensure data accuracy. By incorporating error 
modelling and validation processes, the SIP can maintain the integrity of integrated data, enhancing its reliability for 
environmental monitoring and decision-making. 

 

5.1. Approaches on Data Validation Algorithms on the 
SIP 

Consistency checks 
According to WMO, measuring an environmental variable implies a set of operations for determining the value of 
such a variable in a given measurement unit. The difference between the value of the measurement and the true 
value (unknown) of the measured quantity is the error. 

Measurements of the field of a physical variable (e.g. temperature, precipitation) are obtained via remote sensing or 
via a network of pointwise sensors that are combined through spatial interpolation methods to reconstruct a 2-D 
field of a given variable. However, the quality of the reconstructed field is linked to the error of each sensor of the 
network and of course, to the representativeness error. Both institutional networks and citizen science networks 
should apply some automatic check to assess the validity of a datum collected by a sensor 

A first level of check is performed on elementary raw data (or gross data), and consists in the application of a basic 
procedure for verifying the absence of low level anomalies, such as malfunctions, instabilities or interferences. Some 
sensors are equipped with Built-In Test Equipment (BITE) allowing remote control of basic sensor parameters. 
Dealing with the citizen science network, using sensors with a basic BITE is recommended, in order to properly flag 
meaningless measurements or anomalous functioning. However, whether BITE is present or not, inner consistency 
tests should be performed, which at simplest level, consist in a check detection of unrealistic measurements (i.e., 
physically unacceptable or outside of range of measurements of a sensor). Other checks are based on detection of 
inconsistencies between different measurements (a trivial example could be detection of rain with measured 
temperature well below the zero leading to non-physical measurements). 

Other checks are the following: 

• Temporal consistency checks: These checks are based on checking the maximum and minimum degree of 
variability of the data over time and are intended to identify any anomalies between temporally contiguous 
data or with respect to the values that have historically occurred in a given site. With regard to the minimum 
variability allowed, the temporal consistency check procedures are aimed at ascertaining the presence of 
persistence in the series of measured values, i.e. the persistence over time of a value that is the same in time 
or, conversely, characterised to excessive fluctuations. Such a check depends on the properties of a 
measured physical quantity and could differ, for example for precipitation or for temperature. Some 
threshold criteria can be adopted, but the design of thresholds should rely on an analysis of available time 
series, but a fine tuning is not strictly necessary. 



  

     SCORE _D4.6_V1.0    19/ 26 

• Cross-checks with other quantities collected close to the sensors: These checks are based on checking the 
measurements of the variable under examination with other correlated quantities measured in the same 
site (e.g. comparison of temperature with solar radiation) or at a certain distance for which the 
representativeness error can be negligible. 

• Spatial consistency checks: These checks assume the existence of a sort of spatial correlation between the 
contemporary measurements of a quantity taken at (more or less) neighbouring stations. This category of 
check takes advantage of the availability of more sensors in the network. The implementation of such 
consistency check depends on the nature of the physical variable observed. An a priori knowledge of spatial 
property of a field is necessary, or otherwise specific statistical analysis of available network measurements 
are requested. 

• Climatological checks: These checks are based on the comparison of the quantity under examination with 
some parameters obtained from long term historical series. 

All these checks can be easily implemented to achieve automatic procedures to detect suspect data. In general, the 
detection of suspect data should trigger an inspection of the sensor and if suspects are confirmed, maintenance 
operations carried out by skilled technicians should start. In the context of a citizen science network, the adoption 
of detection of suspect data through automatic procedures is essential. Citizen scientists should be promptly made 
aware of issues with the sensor they manage, and in principle try to fix them. Controls are currently being established 
to flag issues and automatically notify citizens that their sensor needs maintenance. 

 

Dual co-location 

Whereas consistency checks target the detection of anomalies, the error of sensors still needs to be assessed. The 
comparison with a co-located reference sensor (it can be called Dual Collocation, DC) is the more common approach 
used to compare the relative uncertainties of measurement systems. The method assumes that two sensors measure 
the same things. In this case, one is assumed as the “true” and errors of a pair of sensor measurements are 
independent, the standard deviation of the difference di,j = Xi − Tj coincides with the instrumental errors. In case T is 
replaced by another measurement Y characterised by a specific error, it is not possible to disentangle the 
contribution to such standard deviation due to the natural variability of the observed phenomenon from the error 
of sensors. This is the most common approach to verify calibration. However, needed is a co-located reference sensor 
for example, a sensor belonging to an institutional sensor network, for which a calibration protocol exists and is 
applied. However, this is not always possible. Nevertheless, in a context of consistency checks, monitoring of 
intercalibration of sensors can be helpful. 

Triple co-location 

In contrast, the triple co-location is a mathematical method that does not require a reference sensor to evaluate 
product error statistics. The method was introduced in 1998 for a satellite application [1], but has gained popularity 
recently, being increasingly applied to a wide variety of sensors and environmental parameters. However, one 
problem seems to be emerging and that is the existence of three sensors in a single point. Here, the three 
measurements could be obtained by the monitoring sensor, while the other two measurements can be obtained by 
interpolation of fields obtained from interpolation of institutional networks, or remote sensing. The important thing 
is to monitor with time, and compare the results of triple co-locations to detect anomalous values. 

The method is based on an error model that relates estimates to true values. The most common error model assumed 
to apply the method [2] is described by 

Ri=αi+βiT+εi, i = 1, 2, 3                (1) 

being R the estimate/measurement of a variable, T is the “true” (but unknown) value, while the error terms are α 
(additive error), β (multiplicative error), and ε (residual error). An alternative method is the multiplicative error model 

Ri=aiTβieεi,   i = 1, 2, 3    (2) 
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That can be linearized as 

ri=αi+βi t+εi, i=1, 2, 3  (3) 

by taking the natural logarithm of both members and using ri = ln(Ri) αi = ln(ai), ri = ln(Ri), and t = ln(T). 

There are different procedures to solve the system of equations by optimising RMSE (root-mean-square error). Some 
implementations are available in public software repositories (see [3] https://github.com/HamedAlemo/MTC, or [4] 
https://github.com/kaighin/ETC ) and also to derive important metrics to evaluate the uncertainties. 

The triple co-location method requires certain assumptions beyond those related to the error models discussed in 
the previous equations. These include the independence of the "true" values from the "noise" in the sensor 
measurements and the independence of the components of the error terms within those equations. Additionally, 
the method assumes stationarity, meaning that the "true" values and noise maintain a constant mean and standard 
deviation over time, as opposed to being mobile. Another key assumption is representativeness, where sensors must 
observe a phenomenon that shares the same properties across measurements. Although some of these assumptions 
may only be loosely verified, it is generally accepted that the method can still be practically applied, yielding results 
that are less reliable but nonetheless valuable. 

Outputs are the estimated error standard deviation of the three measurements, and the correlation coefficient 
between the “true” T and each measurement time series Xi. 

In the case of citizen science networks, the method can be applied in a test bed in which three sensors are co-located, 
but also to implement the consistency check defined above, or assuming stationarity and representativeness at some 
distances (they depend on the correlation of the observed variables), or considering, for example, a triplet made of 
the value of the sensors, the value obtained through interpolation from institutional sensor networks, and values 
obtained by some models. In any case the application of the methods should be tuned to the environmental variable 
to be estimated. 

 

 

 

 

 

 

 

 

https://github.com/HamedAlemo/MTC
https://github.com/kaighin/ETC
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6. INTEGRATION WITH INSTITUTIONAL 
DATA ON THE SCORE SIP/DT 

6.1. Complementing Institutional Data with Citizen 
Science Data 

Citizen science sensors, in general, can have a relevant impact in the EWSS operations, whose results inform users 
about the risk of flood in the CCLLs urban area. The EWSS employs data from institutional sensors, but it can also be 
fed with data from citizen sensors, that can be more finely distributed over the study area, providing a more detailed 
picture of the ongoing scenario the EWSS must evaluate. Hence, provided that sensors are correctly calibrated and 
their data quality confirmed, citizen science can decisively impact on the current scenario assessment, also helping 
in the re-analysis of past events. 

Once the citizen science sensors will be installed and calibrated, they can be added as data sources to the sensor 
things application programming interface (STAPI) platform. First of all, a careful cataloguing on the STAPI of the 
related data streams is needed, making the measured parameters easily findable and usable by the system. The 
acquired data must be catalogued in such a way that the system can differentiate them, e.g., distinguishing rain rate 
(expressed in mm/h) and cumulated precipitation (in mm, over a specified time span) and correctly interpret and use 
their values. In case of multiple data produced by the same sensor, it is important to distinguish among different 
streams and ingest to the EWSS of the DT only the ones that are really relevant for its monitoring operations (e.g., 
rain rate, sea level, river discharge, sewage network pipes level). 

At the moment, the EWSS is almost exclusively exploiting data from official sensors. It is worth noticing that it 
repeatedly performs an analysis of the received data, to check their completeness and consistency, and to point out 
the presence of eventual outliers, as already shortly described in Section 3. Of course, citizen science sensors must 
undergo the same following pre-processing stage. In case it is not possible to obtain the data series for the simulation 
because the original data streams lack of integrity or consistency, the system behaves differently with official and 
citizen science sensors. For the former, it raises warnings and informs the users through the graphical interface, so 
that users can take actions to check the consistency of the received data and of the sensors functioning. If the data 
are not consistent and the sensor is not properly working, the user can decide to “deactivate” it, in the sense that 
the data stream it generates are not included in the EWSS runs, to avoid affecting the EWSS projections with wrong 
information. In the case of citizen science sensors, on the other hand, the system will autonomously take the action 
of sensor “deactivation”. This is due to the fact that official sensors are considered more reliable, since they have 
been installed by expert operators, correctly calibrated, and managed by institutional entities that continuously 
check their functioning. They can produce inconsistent data streams in case of accidental malfunction and, in general, 
every warning raised by the system needs a careful evaluation and a decision by users/operators with relevant 
expertise. Conversely, citizen science sensors, being cheaper, managed by citizens, and potentially more prone to 
failure or malfunction, can easily have a negative impact on the run results of the EWSS. Therefore, to guarantee the 
robustness of the system in making projections of flood risk, citizen science sensors exhibiting a suspect behaviour 
will be automatically excluded, until they are not fixed and manually reintroduced by a user in the EWSS. This allows 
a more reliable impact of the data from citizen science sensors on the EWSS results.  
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7. CONCLUSION 
The SCORE project’s approach to integrating citizen science sensors and data with institutional monitoring systems 
offers significant potential to enhance environmental monitoring, particularly in the context of urban coastal areas. 
This report highlights insights and practical strategies for implementing this integration effectively. The deployment 
of low-cost sensors across various CCLLs has proven valuable in capturing a more detailed and localised 
understanding of environmental conditions. These sensors enable broader data coverage and can complement 
institutional networks, especially in areas that are otherwise hard to monitor. Despite their potential, low-cost and 
citizen science sensors pose challenges in data reliability. The report underscores the importance of rigorous 
validation processes, including calibration, cross-validation with local reference instruments, and consistency checks 
to ensure data accuracy. The SIP has emerged as a crucial tool for centralising data, facilitating real-time interactions, 
and ensuring effective communication among stakeholders. The platform’s integration with various data validation 
algorithms will further support the accuracy and reliability of the data collected. 

The implementation of consistency checks (temporal, spatial, and climatological) and co-location methods (dual and 
triple co-location) has been identified as essential for maintaining the integrity of data from both institutional and 
citizen science sources. These methods will help to filter out anomalies and improve overall data quality. 
Furthermore, the EWSS will benefit from the inclusion of citizen science data, provided that these data streams are 
validated and deemed reliable. The ability of the EWSS to process and utilise this data has the potential to improve 
the accuracy of flood risk assessments and other critical environmental predictions. 

Citizen science data, when effectively integrated with institutional data, can significantly enhance the resolution and 
scope of environmental monitoring efforts. However, this integration demands data management practices to avoid 
potential issues of unreliable data. Therefore, it is essential to implement regular calibration of all citizen science 
sensors against high-precision instruments. This should be coupled with a validation framework which includes both 
automatic and manual data checks to ensure the highest possible data quality. By continuing the close cooperation 
with the development team of WP5, the SIP will continue to evolve in this respect as a central hub for data 
management, validation, and dissemination. Its role in ensuring real-time data consistency and facilitating 
stakeholder collaboration. Further SIP development will be particularly carried out in the context of integrating new 
data sources. The EWSS should also be further developed to autonomously manage data integrity, particularly with 
respect to citizen science sensors. Enhancing the system's ability to filter and flag inconsistent data will ensure that 
only reliable information informs critical environmental assessments. 

To maximise the potential of citizen science data, it is crucial to invest in capacity-building initiatives among 
stakeholders as citizen scientists. This includes training in data collection and sensor maintenance, thereby increasing 
the reliability of the data they contribute. With this in mind, a clear framework for integrating citizen science data 
with institutional datasets is being established through the SCORE project, to be finalised by the end of the project 
for others to follow. 
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APPENDIX 1 
Low-cost Sensors for Citizen Science 

The SCORE project uses a catalogue of sensors selected to monitor a variety of parameters and environmental 
hazards. Below is a summary of these sensors and details on their respective use cases. The catalogue is available 
online at https://sensors.score-eu-project.eu/ 

Air Quality and Meteorological Parameters 

This category encompasses sensors that measure atmospheric conditions, including temperature, humidity, 
pressure, wind speed, wind direction, and solar radiation. These parameters are crucial for understanding weather 
patterns, climate change, and air quality. 

• BRESSER WIFI ClearView Weather Station with 7-in-1 Sensor: Measures a comprehensive set of 
meteorological parameters including temperature, humidity, atmospheric pressure, precipitation, wind 
speed, wind direction, and UV levels. 

• WSG Sonic Anemometer: Specifically measures wind speed and direction. 
• BP260 Pressure Sensor: Measures atmospheric pressure. 

 

Water Level and Flow 

These sensors are designed to monitor the level and movement of water bodies, such as rivers, lakes, oceans, and 
underground aquifers. They are essential for flood prediction, water resource management, and coastal erosion 
studies. 

• DIY wave gauge: Indirectly measures wave characteristics and water levels using pressure sensors. 
• Onset HOBO water level loggers: Directly measures water levels. 
• MaxBotix Ultrasonic sensors: Measures water levels using ultrasonic technology. 
• Lidar-lite V3HP: Measures water levels using laser rangefinding. 
• LoRaWAN LIDAR ToF Distance sensor LLDS12: Measures distance, which can be used to determine water 

levels in specific applications. 
• Radar-Operated Tide Level Sensor: Specifically measures tide levels. 
• Float-Operated Tide Level Sensor: Measures tide levels using a float and encoder system. 
• PLS Level Sensor: Measures water levels based on pressure. 
• RLS Level Sensor: Measures water levels using radar. 
• ULS Level Sensor: Measures water levels using ultrasonic technology. 
• Art Sewer: Specifically measures wastewater levels using radar. 

 

Precipitation 

These sensors measure the amount of rainfall, which is vital for hydrological modelling, agriculture, and disaster 
management. 

• SmartLNB: Measures rainfall. 
• Optical rain sensor: Measures rainfall based on optical reflection. 
• R102 Pluviometre: Measures rainfall. 

 

https://sensors.score-eu-project.eu/
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Soil and Water Quality 

These sensors monitor the chemical and physical properties of soil and water, crucial for agriculture, environmental 
monitoring, and water resource management. 

• Smart Citizen Water/Soil Station: Measures various water quality parameters like pH, dissolved oxygen, 
conductivity, ORP, temperature, and soil moisture. 

• iMoisture - Soil Moisture Sensor: Specifically measures soil moisture. 

 

Coastal and Shoreline Monitoring 

These tools are used to observe and measure changes in coastal environments, including erosion, sedimentation, 
and sea level rise. 

• Kite Aerial Photography (KAP): Captures images for analysis of coastal erosion and shoreline changes. 
• Smart Pebbles: Used for studying beach morphology and erosion. 
• Fixed Camera and PTZ Camera: Capture visual data for coastal monitoring. 

 

Remote Sensing and Data Transmission 

These technologies enable the collection and transfer of data from remote locations, facilitating real-time monitoring 
and analysis. 

• Remote Telemetry Units (RTUs) + sensors: A platform for connecting various sensors and transmitting data. 
• LoRaWAN LIDAR ToF Distance sensor LLDS12: Uses LoRaWAN for data transmission. 
• SenseCAP S2120 8-in-1 LoRaWAN Weather Sensor: Uses LoRaWAN for data transmission. 

Note: Some sensors, like the BRESSER weather station, provide data on multiple parameters. The categorization here 
is based on the primary parameter or the most significant use case. 
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APPENDIX 2 
Definitions of statistical measures: 

• Anomaly Detection: Anomaly detection identifies data points or patterns that significantly deviate from the 
norm or expected behaviour, often indicating errors or significant changes in the data. 

• Autoregressive Integrated Moving Average (ARIMA): ARIMA is a time-series analysis method that models 
and forecasts data based on its own past values and past forecast errors, used to detect trends, seasonality, 
and anomalies. 

• Calibration Algorithms: Calibration algorithms are techniques used to adjust sensor outputs to improve 
accuracy, typically involving comparison with reference instruments. 

• Coefficient of Determination (R²): R² is a statistical measure that indicates how well the observed outcomes 
are replicated by the model, based on the proportion of the total variation in the dependent variable that is 
explained by the independent variables. A value of 1 indicates perfect correlation, while 0 indicates no 
correlation. 

• Contextual Validation: Contextual validation checks the consistency of data with expected environmental 
conditions and known data patterns to ensure it aligns with theoretical or historical expectations. 

• Data Fusion: Data fusion combines data from multiple sensors or sources to enhance the overall quality and 
reliability of the information, providing a more comprehensive and accurate picture of the observed 
phenomena. 

• Dynamic Calibration: Dynamic calibration is an approach where sensor parameters are continuously updated 
based on real-time comparisons with reference instruments, helping to maintain sensor accuracy. 

• Mean Absolute Error (MAE): MAE measures the average magnitude of errors in a set of predictions, without 
considering their direction. It is the average of the absolute differences between predicted and observed 
values, with lower values indicating a more accurate model. 

• Multi-Point Calibration: Multi-point calibration involves using multiple reference points to adjust and 
improve the accuracy of sensor measurements, particularly useful for sensors with varying characteristics or 
operational conditions. 

• Record-Level Validation: Record-level validation involves completeness checks and identifying gaps in data 
collection to ensure the dataset is accurate and comprehensive, focusing on the integrity of individual data 
records. 

• Regression Analysis: Regression analysis is a statistical technique used to assess the relationships between a 
dependent variable and one or more independent variables, helping to understand how changes in 
independent variables affect the dependent variable. 

• Root Mean Square Error (RMSE): RMSE is a measure of the differences between the predicted and observed 
values in a model. It calculates the square root of the average squared differences between predicted and 
observed values, providing an overall measure of prediction accuracy. Lower RMSE values indicate better 
model performance. 

• Statistical Validation: Statistical validation involves using statistical methods such as outlier detection and 
regression analysis to ensure the integrity and reliability of data, identifying trends, patterns, and anomalies 
in the dataset. 

• Time-Series Analysis: Time-series analysis involves methods like ARIMA to detect trends, seasonality, and 
anomalies in data over time. 

• Validation Methods: Validation methods are processes used to ensure data integrity and reliability, including 
statistical, contextual, and record-level validation, as well as automated scripts and rules in data processing 
pipelines. 
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