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Abstract 

The ENCRYPT project, funded under the Horizon Europe 

Framework, aims to advance privacy-preserving technologies 

across various sectors, ensuring robust data protection while 

maintaining utility. By providing users with core methodologies 

including the Fully Homomorphic Encryption, Trusted Execution 

Environments, Differential Privacy and advanced Hybrid 

Protection Services, ENCRYPT seeks to address the challenge of 

ensuring data privacy and utility, across federated data spaces 

within the EU. Differential privacy is an important approach 

within ENCRYPT, in protecting individual privacy in the growing 

landscape of digital data. In this paper, we provide an overview of 

fundamental concepts and present an overview of differential 

privacy foundations, examining its theoretical underpinnings and 

practical implementations. We also provide an insight into how it 

will be applied within the ENCRYPT project. Experiments 

carried out demonstrate that differential privacy can maintain 

high data accuracy despite the addition of noise, and we will 

describe how the ENCRYPT platform simplifies the use of this 

privacy-preserving technology for non-expert users by automating 

privacy parameter selection and model optimization.  This 

approach enhances data security, efficiency and accessibility, 

helping to develop a more privacy-conscious environment for data 

analysis to carry out research and innovation in a secure and 

private manner. We will also explore potential future 

developments and applications of differential privacy within 

various industries and sectors. 
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I. INTRODUCTION  

In today's digital era, the abundance of data presents 
significant opportunities for addressing emerging challenges, 
advancing research and fostering innovative services. One 
notable application is the enhancement of machine learning 
models and data analytics through federated learning on 
extensive datasets [1].  

In light of this, the primary challenge in handling such data 
- which often contains sensitive or personal information, is the 
potential threat of cybersecurity attacks and the risk of 
disclosure or misuse of private data. Adhering to data protection 
regulations and the strict privacy standards set by the EU on 
personal data - such as the General Data Protection Regulation 

(GDPR) further complicates the management of such 
information [2]. 

Furthermore, increasing public awareness and concerns with 
regards to data privacy requires strict measures to be followed 
to ensure data protection. Importantly, these need to be readily 
and easily available to an increasing proportion of the 
population. Addressing these concerns is critical to maintaining 
public trust and ensuring the continued availability of data and 
their security, for beneficial uses. 

In this landscape, the ENCRYPT project [3] is an initiative 
under the Horizon Europe Framework. This project focuses on 
integrating cutting-edge privacy-preserving technologies to 
protect sensitive data across federated data spaces, enhancing 
security and compliance with the GDPR. Through its innovative 
platform, ENCRYPT facilitates secure and efficient data 
processing, addressing critical needs in various sectors such as 
finance, healthcare, and cybersecurity. 

ENCRYPT leverages advanced Privacy-Preserving 
Technologies (PPTs) such as Fully Homomorphic Encryption 
(FHE) [4], Trusted Execution Environment (TEE) [5, 6] and 
Differential Privacy (DP) which offer potential GDPR-
compliant solutions, and these aim to achieve applicability and 
reliability for real-world applications.  

Despite their promise, existing PPTs face several limitations 
before they can become widely adopted security solutions. As 
an example, FHE struggles with scalability when processing 
large amounts of data due to its high computational overhead. 
Additionally, many PPTs lack integration with existing 
networking infrastructure and security protocols. This poses a 
challenge for ongoing research. Such difficulties highlight the 
importance for continued innovation and collaboration in the 
field of PPTs to create more efficient, accessible and user-
friendly solutions. Innovations in this area can unlock the 
potential for secure data use across various sectors and new 
practical applications and solutions for various fields. 

The ENCRYPT project aims to address these challenges by 
providing researchers and service providers who handle 
personal and sensitive data with a scalable, practical and 
adaptable privacy-preserving framework. The ENCRYPT 
platform facilitates GDPR-compliant processing of data stored 
in federated cross-border data spaces.  



By developing and integrating a number of PPTs, the 
ENCRYPT project aims to make privacy-preserving data 
analysis accessible and practical for a wide range of users. In 
this way, it will help promote a culture of data security, private 
and anonymous computation and compliance to security and 
privacy standards. The ultimate goal is to enable a more secure 
data environment which encourages innovation and research. 

This paper focuses on DP and how it will be developed and 
deployed within the ENCRYPT project to allow use by non-
expert users through the ENCRYPT platform and its 
recommendation engine, which proposes privacy parameter 
selection and automates model optimization. 

The rest of this paper is organized as follows. Section II 
discusses the theoretical foundations of DP. Section III details 
DP’s application within the ENCRYPT project and its impact on 
privacy solutions. Section IV describes the methodologies and 
platform design of ENCRYPT, followed by Section V which 
presents experimental results validating the effectiveness of DP. 
Section VI highlights future research directions in privacy-
preserving technologies. The paper concludes in Section VII, 
summarizing the ENCRYPT project’s contributions to data 
privacy. 

II. BACKGROUND 

A. Introduction to Differential Privacy 

DP is a PPT which prevents gaining knowledge of a dataset 
and so does not compromise the privacy of individuals within 
the dataset. This security property is very important in the field 
of data privacy within data analytics, where the challenge lies in 
balancing the utility of data analysis with the need to protect 
individual privacy.  

Understanding the mathematical foundations of DP is 
important to appreciating its effectiveness and potential 
applications. DP was formulated in 2006 in the work by Cynthia 
Dwork  [7], and since then is used as a privacy preserving data 
analytics technology. DP ensures that the outcome of any 
statistical analysis is indistinguishable whether a single 
individual's data is included in the dataset or not. This is 
achieved by altering data (or the results of queries made on a 
dataset) with a controlled amount of random noise. The addition 
of noise is one of the most important aspect of DP, as it 
obfuscates the contribution of individual data points while 
maintaining data utility [8]. 

Addition of noise can be drawn from a Laplace distribution, 
Gaussian distribution or other mechanisms. The security 
parameter of DP is the privacy loss parameter - denoted by ε 
(epsilon), which quantifies the trade-off between privacy and 
accuracy. Smaller values of ε introduce greater amounts of noise 
to a dataset, achieve stronger privacy guarantees, but can 
potentially lead to less accurate data analytic results. On the 
other hand, greater values of ε add reduced amounts of noise to 
datasets, enhancing accuracy but potentially compromising 
privacy. This highlights the importance of selecting appropriate 
ε values. The ENCRYPT platform makes this a transparent 
process, by suggesting ε values to users based on their security 
requirements and application. 

DP has been used in different practical applications in 
various fields, such as in the U.S. Census Bureau's adoption of 
DP techniques for the 2020 Census to protect respondents' data 
[9, 10], while still providing useful statistical information. 
Technology companies including Apple and Google [11] have 
also implemented differential privacy in their data collection 
processes to enhance user privacy. These real-world examples 
demonstrate the versatility and effectiveness of DP in various 
sectors and applications, from government data collection to 
consumer technology. These implementations showcase the 
growing recognition and importance of DP in protecting user 
privacy across different domains. 

DP is based on a rigorous mathematical foundation, which 
provides strong privacy guarantees, and its flexibility allows it 
to be applied and adopted across various data types and use 
cases. As concerns over data privacy grow, DP offers a robust 
solution to enable the beneficial use of data while safeguarding 
individual privacy. The mathematical foundations of DP ensure 
that privacy guarantees can be formally proved and trusted, 
making it a reliable choice for sensitive data applications. This 
mathematical foundation is crucial in establishing trust and 
reliability in DP solutions. 

B. Local vs Global Differential Privacy 

DP can be implemented using one of two main approaches - 
local differential privacy (LDP) and global differential privacy 
(GDP) [12]. Understanding the differences between these 
approaches is important in selecting the appropriate model for 
specific use cases. Both approaches offer unique advantages and 
are suitable for different scenarios, enhancing the versatility of 
DP implementations. 

LDP ensures the privacy of an individual's data at the source, 
before any data collection or analysis takes place. Noise is 
therefore added to user data locally on their device, and only 
noisy data is sent to a central server. LDP is particularly useful 
when users do not fully trust a data collector. An example of 
LDP is Apple's implementation in iOS, where user data such as 
typing habits are anonymized locally before being sent to 
Apple's servers for analysis [13]. LDP is considered to provide 
strong privacy guarantees since the data is anonymized through 
the addition of noise before it leaves the user's device, ensuring 
privacy even if the central server is compromised. The LDP 
approach allows users to maintain control over their data 
privacy, enhancing security and trust in secure services used. 

GDP on the other hand, applies the privacy mechanism on a 
centralized database/server side. In this model, a dataset is 
collected, stored and processed by a trusted entity and noise is 
added to the outputs of queries made on the database. This 
approach relies on the trustworthiness of the data collector to 
apply the noise and maintain privacy and anonymity properties. 
The U.S. Census Bureau's use of DP for the 2020 Census is an 
example of GDP, where noise is added to published statistics to 
protect individual respondents data. GDP allows for more 
accurate aggregate analysis since the noise is applied only once, 
after data collection, but it requires that users trust the central 
entity to handle their raw data securely. GDP can be the best 
option for large-scale data analytics, provided that the central 
entity is reliable, secure, cannot be compromised and more 
importantly can be trusted. 



The two approaches of LDP and GDP can be visualised 
below in Figure 1.  

 

Figure 1: Global and Local Differential Privacy 

In the ENCRYPT project, the LDP model is followed. This 
choice is motivated by the project's goal to empower users with 
control over their data privacy while ensuring robust protection 
against potential breaches. This choice is key in ENCRYPT’s 
commitment to user-centric privacy solutions. 

C. Related Work 

ENCRYPT's use of DP -  as will be presented in this paper, 
is a practical implementation of the foundational theoretical 
models pioneered by Cynthia Dwork and others. ENCRYPT’s 
methodology is to incorporate theory and extend its applicability 
to practical, real-world scenarios, for various industrial sectors, 
and importantly for users of varying technical expertise.  

In this section we explore related work, namely how other 
companies have implemented DP in their services. 

Apple: Apple was among the first of the big technology 
companies to use DP for their products and services on a large 
scale [13]. DP is used by Apple to collect data from user devices, 
mainly for them to be able to analyse this data towards an 
improved user experience [14]. Such data stem from keyboards 
– mainly from smartphones, watches, fitness trackers and others 
[15]. 

Google: Google uses DP in various applications, including 
Google Maps and the Chrome browser [16]. For example, 
Google Maps uses DP to gather data - whilst still protecting the 
privacy of users, to provide information such as how busy a 
business is over the course of a day or how popular a particular 
restaurant’s dish is in Google Maps. 

Microsoft: Microsoft has incorporated DP into its products 
and services – such as the Azure platform and Microsoft 365 
suite [17], to enhance data privacy and be compliant with 
regulations. The “SmartNoise” tool of Microsoft Azure allows 
developers to develop applications using DP. 

Uber: Uber’s "Elastic Sensitivity" tool implements DP in the 
data analytics process carried out by the company [18]. 
Protecting the privacy of individual trip records, it still allows 
for aggregated data analysis to be carried out to improve services 
and operations. 

Commercially, while these technology giants have used DP, 
these applications mainly remain internal for their products and 
services. ENCRYPT on the other hand uses DP for it to be 
applied by researchers in various data oriented applications, in 
sectors such as healthcare and finance. This highlights 
ENCRYPT’s focus on versatility of its solutions while of course 
complying to regulations such as GDPR. 

III. ENCRYPT USE CASE FOR DIFFERENTIAL PRIVACY 

The ENCRYPT project centers around three use cases - in 
the healthcare domain, cyber threat domain and fintech domain. 

DP will mostly focus on the fintech use case which is a real-
world application specifically chosen to demonstrate how PPTs 
can be effectively used in the financial sector, ensuring data 
privacy and compliance with stringent regulations such as 
GDPR. In this scenario, EXUS [19] serves as the service 
provider and data processor, while EPIBANK [20] functions as 
the data steward, managing data from its customers who are the 
data owners. This collaboration between service providers and 
data stewards exemplifies the practical application of DP in 
securing sensitive financial data. 

The primary objective of the fintech use case is to 
demonstrate how ENCRYPT’s platform can enable financial 
institutions to share and analyse their data securely, protecting 
sensitive customer information and proprietary financial models 
through the use of PPTs. These ensure that data remains 
encrypted or anonymized while allowing for valuable insights to 
be derived without exposing the underlying sensitive 
information. This enhances operational efficiency and service 
delivery and also builds customer trust by demonstrating a 
strong commitment to data privacy and security. By 
implementing DP, financial institutions can achieve a balance 
between data utility and privacy, facilitating informed decision-
making without compromising customer trust. 

In this use case, DP plays an important role in safeguarding 
the privacy of sensitive financial data. EPIBANK shares 
randomised and anonymized data with EXUS to train machine 
learning models that optimize debt collection services. This data 
includes detailed customer profiles, transaction histories, and 
demographic information. DP is therefore applied to ensure the 
anonymity and confidentiality of customer information when 
sharing data between external parties while still allowing for 
data analysis to take place.  

Beyond this use case, the DP component of the ENCRYPT 
platform will also allow researchers and innovators from other 
fields to use DP in their work. Following a user-centric 
approach, the ENCRYPT recommendation engine will be able 



to propose when DP is suitable for a user to use, and also suggest 
the value of ε to be applied. The ENCRYPT platform also 
provides an interface for randomness to be applied locally to a 
dataset before it can be uploaded to the ENCRYPT platform for 
training and testing of machine learning models. These features 
enable DP to be more usable and user friendly for non-experts 
and facilitates its adoption across diverse industry sectors and 
academic fields.  

DP will also be tested on the healthcare use case of 
ENCRYPT, to explore if this technology is suitable for their 
datasets. 

Potential enhancements for DP within ENCRYPT are 
presented in Section VI, where an exploration of future research 
directions are described. 

IV. ENCRYPT PLATFORM 

The ENCRYPT platform is a system designed to facilitate 
secure, efficient and scalable handling of sensitive information. 
It brings together several distinct software components, each 
utilizing different technologies to implement specific 
functionalities independently.  

Specifically, it hosts all PPT technologies, other supporting 
technologies developed in the ENCRYPT project and provides 
the framework for these components to work together. This 
modular approach allows for flexible integration, where 
development cycles are divided into smaller modules, tested 
incrementally and integrated to deploy a cohesive platform. The 
modular design also ensures that the platform can adapt to 
evolving privacy requirements and technological advancements. 

Main features of the ENCRYPT platform include: 

• The front-end service - which hosts the user interface 

• Hosting and deployment – upon Microsoft Azure 
Cloud and utilizing its SGX-enabled VMs for secure 
enclaves and other features needed within ENCRYPT 

• Interconnections and communication – leveraging 
Azure Virtual Network for secure communication across 
the platform 

• APIs and message specification – for inter-component 
communication, ensuring validation, consistency and 
reliability 

 These features, interfaced together create a robust and secure 
environment for data processing, ensuring that privacy-
preserving measures are consistently applied and maintained. 

A. ENCRYPT Recommendation Engine 

The recommendation engine is one of the PPT supporting 
technologies within ENCRYPT, and it is a novel tool which has 
been developed to help users with the PPT technologies 
provided by ENCRYPT. Specifically, it can be used to 
recommend to users the PPT they should use for their data 
processing scenarios – based on a set of criteria. The 
recommendation engine therefore represents a novel feature 
which makes complex PPTs accessible and usable for a broader 
set of users. 

The tool uses a sophisticated algorithm which leverages 
Artificial Intelligence (AI) to analyze the characteristics of the 
user’s data, the intended processing activities and the associated 
privacy requirements.  It considers factors such data 
sensitivity, data size, computational intensity, performance 
constraints, time constraints and computational constraints to 
make PPT recommendations that balance data utility with 
privacy and security. This AI analysis ensures that 
recommendations are suitable to the specific needs and 
constraints of each user, while considering optimization, 
performance and data utility. 

The recommendation system is also designed to 
continuously update its knowledge base with the latest research 
findings, technological advancements and regulatory changes. 
This ensures that the recommendations consider current state of 
the art but are also forward-looking, which are able to adapt to 
future developments in the privacy domain. This updating 
capability allows the ENCRYPT platform to remain relevant 
and effective in light of rapid technological and regulatory 
changes. 

The recommendation system is also designed in a user-
centric approach, providing a justification for its 
recommendation tailored to the knowledge the user, which helps 
build trust in the system. By explaining its recommendations, 
the system enables user understanding and confidence, 
encouraging wider use of the platform and PPTs. This makes it 
more usable for non-experts and facilitates its adoption across 
diverse sectors, beyond fields of the ENCRYPT use cases. 

Specifically, for the ENCRYPT DP component, upon users 
providing relative details to the recommendation engine, it will 
inform them of how appropriate DP is for them to use in their 
setting and will also suggest a value of ε to be used. 

B. User Interface 

The user interface of ENCRYPT, enables users to interact 
with the platform seamlessly. This interface supports 
functionalities such as data pre-processing, user authentication, 
and role management. Users can upload data files, which are 
processed through a pre-processing pipeline with metadata 
stored in a database for further use. The user-friendly design of 
the interface enables users with limited technical expertise to 
effectively utilize the platform's features. 

Importantly for the ENCRYPT DP component, the user 
interface allows for users to add noise to their dataset before 
these are uploaded to the ENCRYPT platform. Specifically, 
users are able to select their datasets via the user interface and 
identify the ε amount of noise that should be added to the data. 

It should be noted that the addition of noise takes place 
locally, with computation carried out on the user’s device. Once 
this is complete, users are then able to upload their noised 
datasets to the ENCRYPT platform for training/testing of AI 
models or for carrying out analysis on a dataset on an already 
saved AI trained DP model. This local computation of noise 
addition enhances security by ensuring that raw data never 
leaves the user's device, further safeguarding privacy and trust 
in the system. 



V. ENCRYPT DP DEPLOYMENT 

The ENCRYPT DP component aims to train and test 
various AI models with a variety of optimizations for each, 
upon a training/testing dataset provided by a user. Details of the 
model which is found to be most accurate will be saved and 
closely tied to the user and their account. When the user wants 
to carry out data analytics on new datasets, the ENCRYPT 
platform will use the saved details of the most accurate model 
for data analytics purposes. This approach ensures that users 
can consistently achieve high-quality analysis results while 
achieving high security and privacy data-protection. 

A. Initial Experiments and Results 

In the first DP module implementation, we have conducted 
experiments applying the developed functionalities in the 
fintech use case, with synthetically generated data provided by 
EXUS. 

Several AI algorithms have been tested, including random 
forests, decision tree classifiers and artificial networks. These 
experiments aim to evaluate the effectiveness of DP across 
different types of machine learning models. 

The performance of DP models – where randomness is 
added to datasets, has been found to be high at around 88% 
which is just 4% lower than models upon datasets on their 
original state (where no noise was added). This also occurred 
when high levels of noise were added to datasets (low value of 
ε). These results demonstrate the potential of DP to maintain 
data utility even with significant privacy protections in place. 

These experiments demonstrate that upon the dataset 
provided by our use case, DP can provide a high level of utility 
of data analysis while still being able to protect individual 
privacy. These results highlight the practicality of DP in real-
world scenarios, validating its use in the ENCRYPT platform. 

B. Workflow 

When the DP component is fully developed and integrated 
to the ENCRYPT platform, we foresee the following workflow 
which users will follow: 

a. The user will interact with the ENCRYPT 
recommendation engine and provide details of their 
computational setting 

b. The recommendation engine will propose DP to be used 
(where appropriate of course) and will also suggest the 
ε value to be used on the user dataset(s) 

c. The user will use the ENCRYPT platform user interface 
and add noise to the dataset – by specifying the 
proposed ε-value 

o It is reminded that this noise is added to the 
dataset locally on the user’s system 

d. The user will upload the noisy datasets to the 
ENCRYPT platform – though the user interface 

e. The DP component will use these datasets and train 
various AI models – each with different parameters 

o Details of the most accurate model will be 
saved and associated with the user 

f. At any future time, the user will apply the same amount 
of noise (ε-value) to any other dataset upon which they 
may want to carry out data analytics on 

g. The DP component will use the saved configuration of 
the most accurate model upon the provided dataset and 
provide results to the user. 

This workflow ensures a seamless integration of DP into 
users data analysis processes, enhancing both privacy and 
usability.  

VI. CHALLENGES AND FUTURE DIRECTIONS 

While DP offers robust privacy guarantees, its practical and 
scalable implementation still has a number of challenges. A 
significant issue is the trade-off between data privacy and data 
utility. As discussed, lower ε values with higher privacy 
guarantees often result in reduced data accuracy, which can be 
problematic for certain applications requiring high precision. 
Future research could focus on optimizing this trade-off to 
achieve better balance. 

Another challenge is the scalability of DP deployments. As 
datasets grow larger and more complex, the computational 
requirements associated with adding noise and maintaining 
privacy can become prohibitive to use. Developing more 
efficient algorithms and use of advanced computational 
techniques including parallel programming and hardware 
acceleration could help address issues associated with 
scalability, energy and running time. 

Furthermore, more user-friendly tools and interfaces that 
simplify the use of DP for non-experts are required. While the 
ENCRYPT platform makes significant contributions in this 
direction, further advancements and innovations are necessary 
to ensure that a wider range of users can easily use and apply 
these technologies in their work. 

Interoperability is also another factor that needs to be 
considered. DP tools will need to seamlessly integrate with 
various data storage, processing, analysis systems and 
workflows. Ensuring this will enable for widespread adoption. 
Developing standard protocols and APIs can facilitate this 
integration and promote consistent implementation across 
different platforms. 

As privacy regulations and standards evolve, DP must also 
adapt to meet new requirements. Ongoing collaboration with 
policymakers and regulatory bodies will be essential to ensure 
that PPTs remain compliant and relevant. 

Future research could also explore novel applications of DP 
beyond traditional data analytics. For example, its use in 
emerging fields such as quantum computing, blockchain 
technology and the Internet of Things presents exciting 
possibilities. Investigating these applications can open up new 
avenues for protecting privacy in diverse technological 
landscapes. 

While DP has made significant advancements, addressing 
these challenges and exploring future directions will be critical 
for its continued evolution and adoption. By overcoming these 
hurdles, we can unlock the full potential of DP to safeguard 
individual privacy in an increasingly data-driven world. 



VII. CONCLUSION 

Currently, the ENCRYPT DP component is still under 
development and integration to the ENCRYPT platform, so the 
described workflow can be made available to users.  

Early experiments have shown that DP can be used with high 
amounts of noise added to dataset (low ε-values), thus ensuring 
data privacy while still maintaining data utility – as shown by 
the high accuracy of our initial results. 

These promising initial results suggest that DP can 
effectively balance privacy and accuracy, making it a valuable 
tool for a wide range of applications. 

The ENCRYPT platform with its recommendation engine 
and user interface greatly simplifies the process of using 
differential privacy, thus opening up the use of advanced 
security technologies to non-expert users for academic research 
and industrial innovation purposes. 

By democratizing access to PPTs, the ENCRYPT project 
paves the way for more secure and privacy-conscious data 
analysis practices across various sectors and for them to be used 
by a wider range of users. 
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