European Twinning for research in Solar energy to (2) water (H2O) production and treatment technologies GA Number: 101079305 European Research Executive Agency REA.C3

Funded by the European Union

Fast Track School #2

Beyond State of the Art in Solar-driven Water production & Treatment technologies and brine treatment processes

POZO IZQUIERDO, GRAN CANARIA, 25.26.09.2024

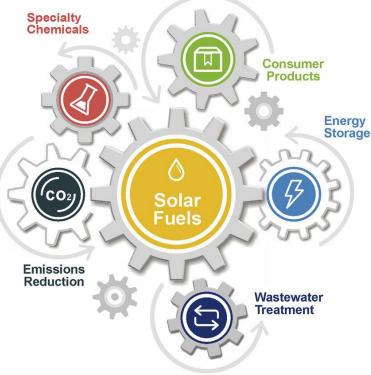
ULPGC Universidad de Las Palmas de Gran Canaria

Raul Quesada-Cabrera

ew photocatalysts for Self-Cleaning production and Remediation TECTO IZQUIERDO, GRAN CANARIA, 25.26.09.20

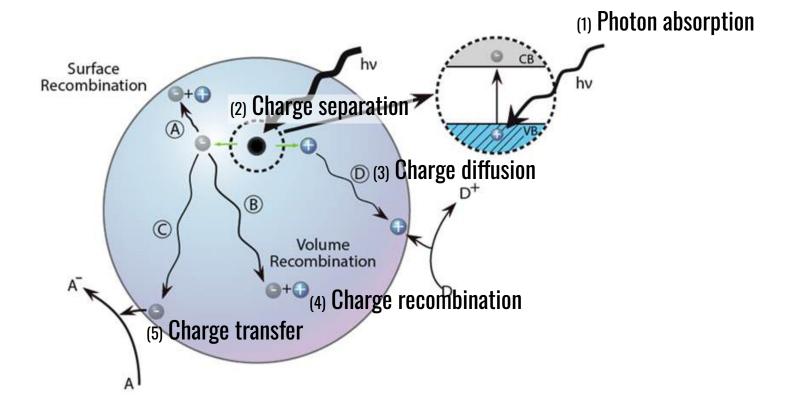
eduction

Sol2H20

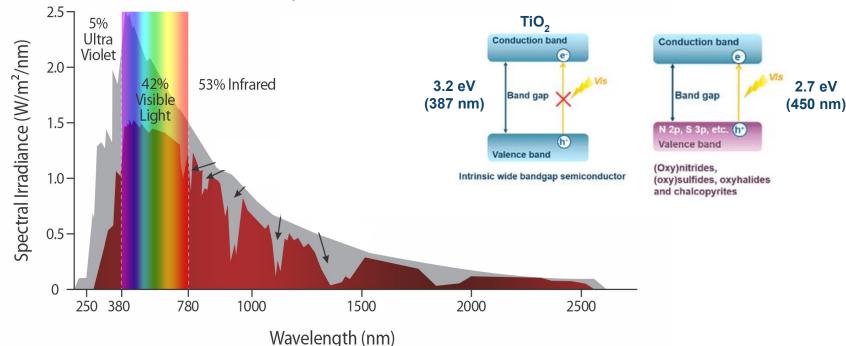

Photocatalytic materials

Photocatalysts are semiconductor materials that use light to promote chemical processes such as:

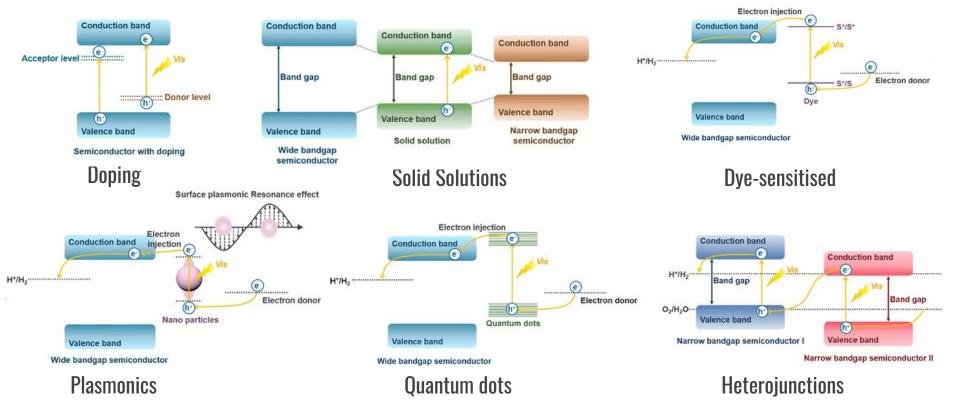
- Solar-to-chemical energy conversion systems (H₂ production)
- Air/water treatment
- Toxic metal extraction
- Waste reuse


Challenge: Efficiency

Photocatalysis: mechanism


The absorption of photons can promote reduction/oxidation reactions on the photocatalyst surface

Solar photocatalysis

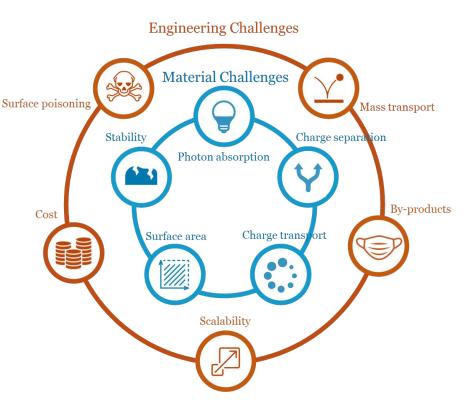

Efficiency Challenge: TiO₂ is a standard photocatalyst but it shows limited photon absorption (UV range).

Solar Radiation Spectrum

Band engineering

Photon absorption and key charge processes can be promoted via band engineering and other strategies

Domen et al. Chem. Rev. (2020), 120, 2, 919

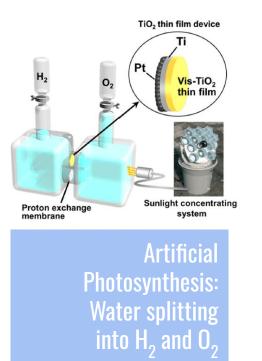

Other key challenges

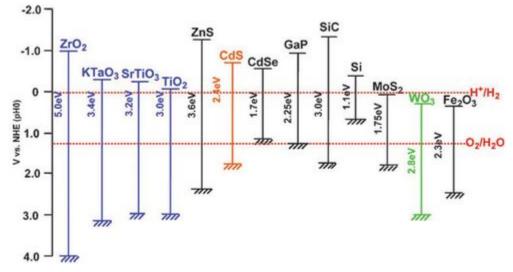
Effective photon absorption and charge transport is a good start...

Practical applications depend on many factors:

- Material stability
- Reaction selectivity (competition)
- Poisoning
- Scalability
- Cost efficiency
- •

...

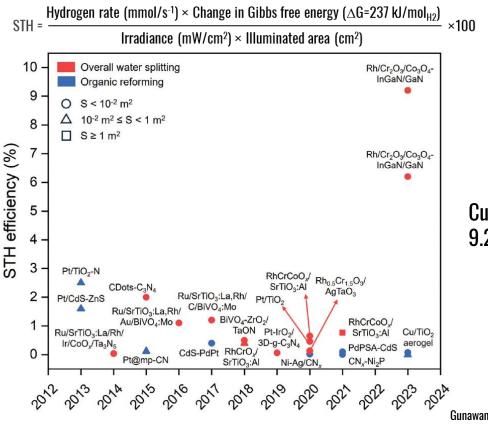




Photocatalysts for H₂ evolution

Photogenerated charges need enough energy (overpotential) to produce H_2 and O_2

Reduction: $2H^+ + 2e^- \Box H_2 = E^0 = 0 V$ Oxidation: $2H_2O \Box 4H^+ + 4e^- + O_2 = E^0 = 1.23 V$



Gunawan et al. Adv. Mater. (2024) 2404618

Solar-to-Hydrogen (STH) Efficiency

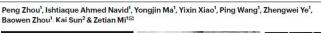
It ranks photoelectrochemical devices and sets a benchmark for solar water-splitting efficiency.

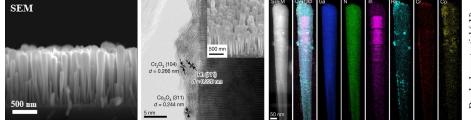
Current STH efficiencies at <2% with one study reaching 9.2% (lab) and 6.2% (concentrated solar conditions).

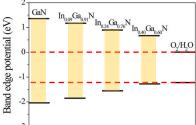
Gunawan et al. Adv. Mater. (2024) 2404618

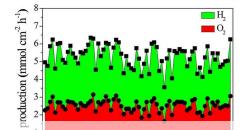
Article

Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting


Rh/CrO₃/Co₃O₄-loaded InGaN/GaN nanowires.


https://doi.org/10.1038/s41586-022-05399-1


Received: 19 January 2021


Accepted: 29 September 2022

Published online: 4 January 2023

InGaN/GaN photocatalysts show visible-light-response (400–700 nm) and suitable band-edge potentials for water splitting.

Cocatalysts: Rh/CrO_3 (H₂ evolution) and Co_3O_4 (O₂ evolution).

Strong dependence of temp<mark>erature: harvesting IR photo</mark>ns. 74-h test: T= 70°C | STH= 9.2% | simulated solar light (3800 mW/cm²)


Further irradiation (+6 h) led to deactivation of the photocatalyst (50% loss of Rh and Co content).

Photocatalysts for water treatment

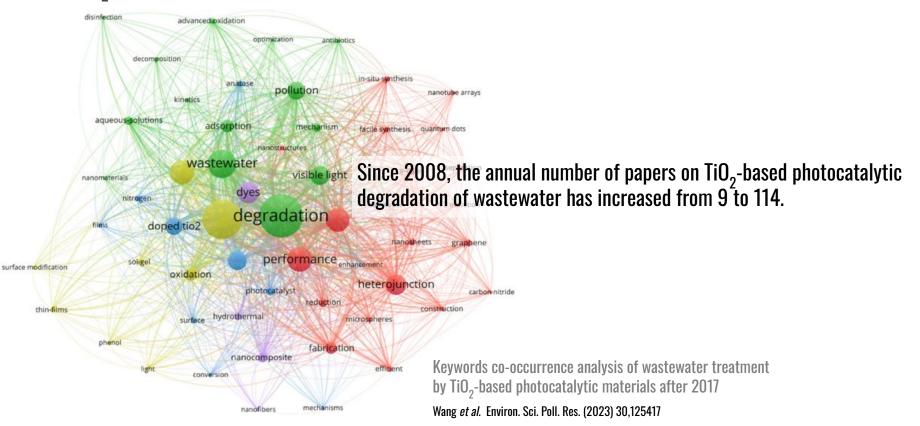
Titanium dioxide (TiO_2) : key formation of reactive oxygen species (ROS)

Anatase ← → Rutile

reduction Superoxide 0.radical e TiO₂ reduction e Hydrogen H,O, Excitation peroxide e H,O, reduction h^{*}h^{*} HO Hydroxyl radical oxidation oxidation

ULPGC Universidad de Las Palmas de

Gran Canaria


Lab-scale success is far from real applications

Kim et al. Angew. Chem. Int. Ed. (2014) 53, 14036; Nosaka et al. ACS Energy Lett. (2016), 1, 356.

Titanium dioxide (TiO₂)

ULPGC Universidad de Las Palmas de Gran Canaria

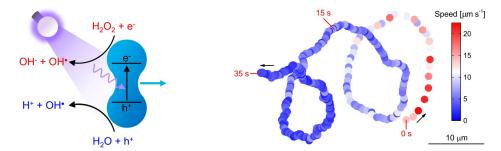
Anatase TiO₂ is still the standard commercial photocatalyst (after >50 years of active research)

Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification

Mario Urso, Martina Ussia, Xia Peng, Cagatay M. Oral & Martin Pumera

Nature Communications 14, Article number: 6969 (2023) Cite this article

Reconfigurable, reversible, and active self-assembly of microrobots at 60 s on/off switching of UV light irradiation in 1% hydrogen peroxide


а b Active cluste Fe₂O₂ Phoretic interaction

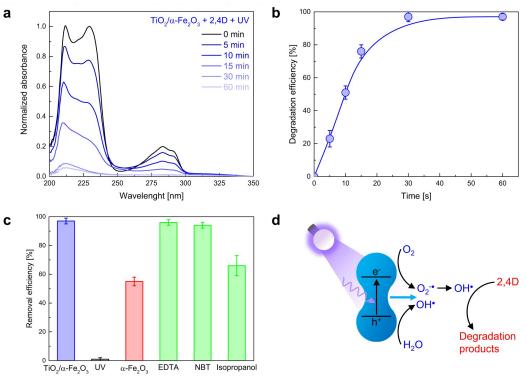
Light-active self-assembly of TiO₂/ α -Fe₂O₃ microrobots

Self-propelled light-powered magnetic microrobot

Reconfigurable self-propelled microrobotic swarms

Due to their photocatalytic and ferromagnetic properties, microrobots autonomously move in water under irradiation, while a magnetic field precisely controls their direction.

Urso et al. Nature Commun. (2023) 14. 6969


Magnetic dipole-dipole

interaction

Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification

Mario Urso, Martina Ussia, Xia Peng, Cagatay M. Oral & Martin Pumera

Nature Communications 14, Article number: 6969 (2023) Cite this article

ULPGC Universidad de Las Palmas de Gran Canaria

a Absorbance spectra of herbicide 2,4Dichlorophenoxyacetic acid (2,4D) after treatment with $TiO_2/\alpha Fe_2O_3$ microrobots under UV light irradiation in pure water.

b Degradation efficiency as a function of time.

c Comparison of efficiencies after different treatments and in the presence of scavengers.

Urso et al. Nature Commun. (2023) 14, 6969

Acknowledgements

de la Información

Unión Europea Beatriz Galindo Fellowship