European Twinning for research in Solar energy to (2) water (H2O) production and treatment technologies GA Number: 101079305 European Research Executive Agency REA.C3

Funded by the European Union

Fast Track School #2

Beyond State of the Art in Solar-driven Water production & Treatment technologies and brine treatment processes

POZO IZQUIERDO, GRAN CANARIA, 25.-26.09.2024

Sol2H2O

Beyond SoA of Membrane Distillation

POZO IZQUIERDO, GRAN CANARIA, 25.-26.09.2024

Beyond SoA of Membrane Distillation

V-AGMD for brine concentration

- \circ Batch operation vs. semi-batch
- \circ Comparison with OARO
- \circ Other configurations: V-MEMD
- \circ Use of GO for membrane improvements
- **Coupling with solar energy**
- Other MD applications:
	- \circ Coupling with heat pumps
	- \circ Regeneration of liquid desiccants
	- \circ Industrial wastewater treatment
	- \circ Green H $_2$ generation

INDEX

BRINE CONCENTRATION

Clear advantage of thermal desalination systems to treat high salinity feeds compared to RO

AGMD, AS7 **EV-AGMD, AS7**

 7 m^2 (6 envelopes) 1.5 m long channels AS7

 26 m^2 (12 envelopes) 2.7 m long channels AS26

Andrés-Mañas et al., Desalination, vol. 475, 114202, (2020)

AGMD, AS26 **EV-AGMD, AS26**

Range of operating conditions with no permeate production as a result of high salinity reducing the driving force of the MD process

Andrés-Mañas et al., Desalination 553, 116449 (2023)

Operation in recirculation (batch mode) for higher feed concentration

Stationary conditions:

- Evaporation channel inlet temperature (TEI): 70ºC and 80ºC
- Cooling channel inlet temperature (TCI): 20ºC
- Feed flow rate (FFR): 1100 L/h

Non-stationary conditions: Feed salinity (initial: 75 g/L)

Along time:

- \Box Permeate Flux (PFlux) decreases
- STEC increases

Selection of stationary Feed flow rate

Selection of stationary Feed flow rate

Batch operation:

Feed volumen decreases \square Salinity increases faster

Semi-batch operation:

Feed volume is constant \square Salinity increases slower

 \rightarrow faster increase of feed salinity with time in batch operation than in semi-batch

 \rightarrow faster decrease of PFlux with time in batch operation than in semi-batch

 \rightarrow similar decrease of PFlux with salinity in batch and semi-batch operation

• Batch 80 °C • Batch 70 °C • Semibatch 80 °C • Semibatch 70 °C

 \rightarrow faster increase of STEC with time in batch operation than in semi-batch

 \rightarrow similar increase of STEC with salinity in batch and semi-batch operation

• Batch 70 °C · Semibatch 80 °C · Semibatch 70 °C • Batch 80 °C STEC [kWh_{th}/m³] Salinity [g/L]

 \rightarrow faster increase of total STEC with time in batch than in semi-batch operation

 \rightarrow faster increase of total STEC with time in batch than in semi-batch operation (compensated by more production in semi-batch)

Results for reaching a final salinity of 196 g/L

Results for production of 211 L of permeate

V-AGMD operation in batch (feed recirculation) for brine concentration

V-AGMD operation in batch (feed recirculation) for brine concentration

Zhang et al. Desalination 532 (2022) 115737

V-AGMD operation in batch (feed recirculation) for brine concentration Comparison with OARO

(AS26 module with LCOE: 0.07 USD kWh $_{\rm e}$ ¹ and LCOH: 0.025 USD kWh $_{\rm th}$ ¹)

OARO vs. batch V-AGMD cost comparison

Atia et al., Desalination. 509 (2021) 115069

V-AGMD operation in batch (feed recirculation) for brine concentration Comparison with OARO (low energy prices)

(AS26 module with LCOE: 0.03 USD kWh.⁻¹ and LCOH: 0.01 USD kWh $_{th}$ ⁻¹)

Zhang et al. Desalination 532 (2022) 115737

V-AGMD operation in batch (feed recirculation) for brine concentration Comparison with OARO (high energy prices)

(AS26 module with LCOE: 0.14 USD kWh. ¹ and LCOH: 0.05 USD kWh. ¹)

Zhang et al. Desalination 532 (2022) 115737

Membrane area: 6.40 m^2 Number of effects: 4

AQUAVER, WTS-40B

 \rightarrow multi-effect configurations achieve better conversion (recovery ratio) but heat efficiency requires many effects

V-MEMD 6.4 m² membrane area 4 effects

> memsys module

AQUAVER, WTS-40B

Intelwatt project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958454.

EU project Intelwatt: intelligent Water Treatment Technologies for water preservation combined with simultaneous energy production and material recovery in energy intensive industries.

 \rightarrow Application to the treatment of high salinity brines from a mine effluent: combination of RED and MD using solar energy as heat source.

Use of improved vacuum multi-effect MD.

Intelwatt project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958454.

EU project Intelwatt: intelligent Water Treatment Technologies for water preservation combined with simultaneous energy production and material recovery in energy intensive industries.

 \rightarrow Application to the treatment of high salinity brines from a mine effluent: combination of RED and MD using solar energy as heat source.

Use of improved vacuum multi-effect MD.

Intelwatt project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958454.

EU project Intelwatt: intelligent Water Treatment Technologies for water preservation combined with simultaneous energy production and material recovery in energy intensive industries.

 \rightarrow Application to the treatment of high salinity brines from a mine effluent: combination of RED and MD using solar energy as heat source.

Use of innovative membranes (PVDF coated with GO).

 \rightarrow more resistant to fouling

MEMBRANE IMPROVEMENTS FOR BRINE CONCENTRATION

Fouling performance

A = 77 cm² , TEI = 75 °C, FFR = 60 L/h, TCI = 20 °C, AGMD

UPSCALING POLYMERIC MEMBRANES MODIFIED WITH GRAPHENE OXIDE

MEMBRANE IMPROVEMENTS FOR BRINE CONCENTRATION

Fouling performance

A = 77 cm² , TEI = 75 °C, FFR = 60 L/h, TCI = 20 °C, AGMD

- No evidence of membrane deterioration after 50 h of seawater treatment.
- Although the quality of permeate was the same with unmodified and modified membranes, permeate production was higher with modified membranes.

EFFECT OF GRAPHENE OXIDE ON MD MEMBRANES

Capacity / Energy performance

A = 375 cm² , TEI = 80 °C, FFR = 50 L/h, TCI = 25 °C, AGMD and V-AGMD (700 mbar), 35 g/L NaCl

Promising results in terms of performance

- □ Upscaled from 28 to 375 cm^{2.}
- ❑ 25% higher PFlux than PE membrane.
- ❑ 25% improved STEC with vacuum.
- ❑ Permeate quality not affected by vacuum.

A novel multi-effect evaporator (4-effects) based on disposable cartridges instead of membranes

 \rightarrow for treating high fouling solutions (very concentrated brine)

C-100 Evaporator - Frames

MD FROM PILOT-SCALE TO INDUSTRIAL SIZE

Building racks of modules in parallel and clustering them in a similar fashion as RO plants

33 m³/day (Arabian Gulf seawater)

 12 m^3 /day (Maldives seawater)

60 m3 /day plant built in Ghantoot (UAE) with memsys modules to treat RO brine (decommissioned)

MD FROM PILOT-SCALE TO INDUSTRIAL SIZE

Global MVP research program (2013-2018), South Korea

Econity HF modules (10 $m²$ total membrane area)

VMD configuration with thermal vapour compression for heat efficiency (no internal heat recovery)

GMVP

Two VMD units with total water production capacity of 400 m^3/d .

Unit 1: 120 modules (Av. Pflux: $7 \frac{\text{I}}{\text{h}} \cdot \text{m}^2$)

Unit 2: 104 modules (Av. Pflux: 8 I/h.m^2)

Advantages:

No additional investment in collectors Thermal losses reduced

Li et al., App. En. 237 (2019) 534–548

VMD: production of 0.13 l/h.m² of collector area

Bamasag, et al. Desal. 487 (2020) 114497

Advantages:

No additional investment in collectors Thermal losses reduced

Limitations:

Solar collection area is restricted to that of the membrane

Feed flow rate must be lowered to increase the temperature rise; as flow rate increases, the temperature rise in the feed becomes difficult and no evaporation takes place

 \rightarrow temperature polarization limits the efficiency

COUPLING OF MD WITH SOLAR COLLECTORS

COUPLING MD WITH HEAT PUMPS FOR POLYGENERATION

Simulation for Almería (Spain)

COUPLING MD WITH HEAT PUMPS FOR POLYGENERATION

Simulation for Almería (Spain)

primary energy resource utilization efficiency = 44.2%; exergy efficiency = 6.9%

SOLAR ADSORPTION COOLING

Chemical adsorption has been proposed for solar cooling using saline solutions regenerated by thermal desalination technologies

USE OF LIQUID DESICCANTS FOR COOLING

Use of liquid desiccants regenerated by solar energy to support evaporative cooling systems

COUPLING MD WITH LIQUID DESICCANTS

COUPLING MD WITH LIQUID DESICCANTS

The best solutes for liquid desiccant systems have low water activity and therefore require more specific thermal energy for solution regeneration with MD

- **• Pickling bath: H2SO4 10-38%** Exhausted: if $[Fe^{2+}] > 80$ g/L
- **Passivation bath: CI₂CrHO 5 g/L Cr³⁺** Exhausted: if $[Fe^{2+}] > 200$ mg/L and $[Zn^{2+}] > 3000$ mg/L
- <u>**•** Cu-electrolitic bath: CuSO₄:5H₂O</u>

Exhausted: if $\text{CuSO}_4\text{.}5\text{H}_2\text{O}$ >350 g/l

Neutralization

Sludge \square External management. **No reutilization of the baths** Water[□] Sewerage

H2020 723729

To develop 4 pilot plants to regenerate industrial solutions from galvanizing industry to:

- ❖ To reduce the use of water.
- ❖ To reduce the production of wastewater
- To recover valuable compounds.
- ❖ To guarantee optimal operating conditions.

A. Ruiz-Aguirre et al, Separation and Purification Technology, 266 (2021) 118215.

R. Gueccia et al, Membranes, 10-6 (2020) 129-145.

IDE/2020/000398 (IDEPA 2020).

Regeneration of pickling and passivation baths from zinc electroplating line.

Pickling

- Selective precipitation.
- Recovery of anticorrosive properties.

Regeneration of 80% of passivation solution.

Production of water with MD for generation of renewable $\mathsf{H}_{_2}$ by electrolysis

1. Cooling system of electrolysis is not needed

2. Pure water is produced with MD at zero energy cost \Box waste heat

3. ${\sf H_2}$ generation not dependent on the availability of freshwater (abundant saltwater)

Objective: lower cost of green hydrogen production from current level of 4 – 10 €/kg-H₂ towards 2 €/kg-H₂ in 2050

pre-pilot plant in the Netherlands: 1 kg/h (Hydron's 50 kW PEMWE stack) Ultra pure water production capacity ~10 kg/h

hydron

energy

Rijksdienst voor Ondernemend

Nederland

Acknowledgements:

Dr. Alba Ruiz-Aguirre Dr. Juan Antonio Andrés-Mañas Dr. Juan Diego Gil PhD Students:

 Isabel Requena

 Alejandro Bueso

Questions?

Guillermo Zaragoza PhD CIEMAT-Plataforma Solar de Almería guillermo.zaragoza@psa.es

1.第7

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

