European Twinning for research in Solar energy to (2) water (H2O) production and treatment technologies GA Number: 101079305 European Research Executive Agency REA.C3

Funded by the European Union

Fast Track School #2

Beyond State of the Art in Solar-driven Water production & Treatment technologies and brine treatment processes

POZO IZQUIERDO, GRAN CANARIA, 25.-26.09.2024

Sol2H2O

Beyond SoA of Membrane Distillation

POZO IZQUIERDO, GRAN CANARIA, 25.-26.09.2024

Beyond SoA of Membrane Distillation

INDEX

• V-AGMD for brine concentration

- Batch operation vs. semi-batch
- Comparison with OARO
- Other configurations: V-MEMD
- Use of GO for membrane improvements
- Coupling with solar energy
- Other MD applications:
 - Coupling with heat pumps
 - Regeneration of liquid desiccants
 - Industrial wastewater treatment
 - \circ Green H₂ generation

BRINE CONCENTRATION

Clear advantage of thermal desalination systems to treat high salinity feeds compared to RO

AGMD, AS7 V-AGMD, AS7

7 m² (6 envelopes) AS7 1.5 m long channels **AS26**

AGMD, AS26 V-AGMD, AS26

Andrés-Mañas et al., Desalination, vol. 475, 114202, (2020)

AGMD, AS26 V-AGMD, AS26

FeedC [M]

Range of operating conditions with no permeate production as a result of high salinity reducing the driving force of the MD process

Andrés-Mañas et al., Desalination 553, 116449 (2023)

Operation in recirculation (batch mode) for higher feed concentration

Stationary conditions:

- Evaporation channel inlet temperature (TEI): 70°C and 80°C
- Cooling channel inlet temperature (TCI): 20°C
- Feed flow rate (FFR): 1100 L/h

Non-stationary conditions: Feed salinity (initial: 75 g/L)

Along time:

- Permeate Flux (PFlux) decreases
- □ STEC increases

Selection of stationary Feed flow rate

Selection of stationary Feed flow rate

Batch operation:

Feed volumen decreases □ Salinity increases faster

Semi-batch operation:

Feed volume is constant

Salinity increases slower

 \rightarrow faster increase of feed salinity with time in batch operation than in semi-batch

 \rightarrow faster decrease of PFlux with time in batch operation than in semi-batch

 \rightarrow similar decrease of PFlux with salinity in batch and semi-batch operation Batch 80 °C Batch 70 °C
 Semibatch 80 °C Semibatch 70 °C 2.7 2.4 2.1 1.8 PFlux [L/h·m²] 1.5 1.2 0.9 ÍI; 0.6 0.3 0.0 70 90 110 130 150 170 190 210 230 250 Salinity [g/L]

 \rightarrow faster increase of STEC with time in batch operation than in semi-batch

 \rightarrow similar increase of STEC with salinity in batch and semi-batch operation

 \rightarrow faster increase of total STEC with time in batch than in semi-batch operation

 \rightarrow faster increase of total STEC with time in batch than in semi-batch operation (compensated by more production in semi-batch)

Results for reaching a final salinity of 196 g/L

Experiment	Time [h]	STEC	Production
		[kWh _{th} /m ³]	[L]
Batch 80 °C	3.7	198	176
Semibatch 80 °C	8.0	190	401
Batch 70 °C	5.2	235	187
Semibatch 70 °C	12.9	232	472

Results for production of 211 L of permeate

Experiment	Time [h]	STEC	Final salinity
		[kWh _{th} /m ³]	[g/L]
Batch 80 °C	4.6	211	220
Semibatch 80 °C	3.8	160	140
Batch 70 °C	6.4	263	222
Semibatch 70 °C	4.8	173	133

V-AGMD operation in batch (feed recirculation) for brine concentration

V-AGMD operation in batch (feed recirculation) for brine concentration

-STEC -SEEC

Zhang et al. Desalination 532 (2022) 115737

V-AGMD operation in batch (feed recirculation) for brine concentration Comparison with OARO

(AS26 module with LCOE: 0.07 USD kWh $_{\rm e}^{-1}$ and LCOH: 0.025 USD kWh $_{\rm th}^{-1}$)

OARO vs. batch V-AGMD cost comparison

Feed: 70 g/l; 75% RR

Atia et al., Desalination. 509 (2021) 115069

V-AGMD operation in batch (feed recirculation) for brine concentration Comparison with OARO (<u>low energy prices</u>)

(AS26 module with LCOE: 0.03 USD kWh $_{\rm e}^{-1}$ and LCOH: 0.01 USD kWh $_{\rm th}^{-1}$)

Zhang et al. Desalination 532 (2022) 115737

V-AGMD operation in batch (feed recirculation) for brine concentration Comparison with OARO (<u>high energy prices</u>)

(AS26 module with LCOE: 0.14 USD kWh $_{e}$ -1 and LCOH: 0.05 USD kWh $_{th}$ -1)

Zhang et al. Desalination 532 (2022) 115737

Membrane area: 6.40 m² Number of effects: 4

AQUAVER, WTS-40B

 \rightarrow multi-effect configurations achieve better conversion (recovery ratio) but heat efficiency requires many effects

V-MEMD 6.4 m² membrane area 4 effects

> memsys module

AQUAVER, WTS-40B

Intelwatt project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958454.

EU project Intelwatt: intelligent Water Treatment Technologies for water preservation combined with simultaneous energy production and material recovery in energy intensive industries.

 \rightarrow Application to the <u>treatment of high salinity brines</u> from a mine effluent: combination of RED and MD using solar energy as heat source.

Use of improved vacuum multi-effect MD.

Intelwatt project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958454.

EU project Intelwatt: intelligent Water Treatment Technologies for water preservation combined with simultaneous energy production and material recovery in energy intensive industries.

 \rightarrow Application to the <u>treatment of high salinity brines</u> from a mine effluent: combination of RED and MD using solar energy as heat source.

Use of improved vacuum multi-effect MD.

Intelwatt project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 958454.

EU project Intelwatt: intelligent Water Treatment Technologies for water preservation combined with simultaneous energy production and material recovery in energy intensive industries.

 \rightarrow Application to the <u>treatment of high salinity brines</u> from a mine effluent: combination of RED and MD using solar energy as heat source.

Use of innovative membranes (PVDF coated with GO).

 \rightarrow more resistant to fouling

MEMBRANE IMPROVEMENTS FOR BRINE CONCENTRATION

Fouling performance

A = 77 cm², TEI = 75 °C, FFR = 60 L/h, TCI = 20 °C, AGMD

UPSCALING POLYMERIC MEMBRANES MODIFIED WITH GRAPHENE OXIDE

MEMBRANE IMPROVEMENTS FOR BRINE CONCENTRATION

Fouling performance

A = 77 cm², TEI = 75 °C, FFR = 60 L/h, TCI = 20 °C, AGMD

	Durapore PVDF	
Membrane material	PDA/PVDF	
	GO-PDA/PVDF	
	Real Seawater	
	Real Seawater	
Feed solution	Real Seawater 150 mg/L humic acid	

- No evidence of membrane deterioration after 50 h of seawater treatment.
- Although the quality of permeate was the same with unmodified and modified membranes, permeate production was higher with modified membranes.

EFFECT OF GRAPHENE OXIDE ON MD MEMBRANES

Capacity / Energy performance

A = 375 cm², TEI = 80 °C, FFR = 50 L/h, TCI = 25 °C, AGMD and V-AGMD (700 mbar), 35 g/L NaCI

Promising results in terms of performance

- □ Upscaled from 28 to 375 cm².
- □ 25% higher PFlux than PE membrane.
- □ 25% improved STEC with vacuum.
- Permeate quality not affected by vacuum.

A novel multi-effect evaporator (4-effects) based on disposable cartridges instead of membranes

→ for treating high fouling solutions (very concentrated brine)

C-100 Evaporator - Frames

MD FROM PILOT-SCALE TO INDUSTRIAL SIZE

Building racks of modules in parallel and clustering them in a similar fashion as RO plants

<image>

12 m³/day (Maldives seawater)

60 m³/day plant built in Ghantoot (UAE) with memsys modules to treat RO brine (decommissioned)

33 m³/day (Arabian Gulf seawater)

MD FROM PILOT-SCALE TO INDUSTRIAL SIZE

Global MVP research program (2013-2018), South Korea

Econity HF modules (10 m² total membrane area)

VMD configuration with thermal vapour compression for heat efficiency (no internal heat recovery)

GMVP

Two VMD units with total water production capacity of 400 m^3/d .

Unit 1: 120 modules (Av. Pflux: 7 l/h.m²)

Unit 2: 104 modules (Av. Pflux: 8 l/h.m²)

Advantages:

No additional investment in collectors Thermal losses reduced

Li et al., App. En. 237 (2019) 534–548

VMD: production of 0.13 l/h.m² of collector area

Bamasag, et al. Desal. 487 (2020) 114497

Advantages:

No additional investment in collectors Thermal losses reduced

Limitations:

Solar collection area is restricted to that of the membrane

Feed flow rate must be lowered to increase the temperature rise; as flow rate increases, the temperature rise in the feed becomes difficult and no evaporation takes place

 \rightarrow temperature polarization limits the efficiency

COUPLING OF MD WITH SOLAR COLLECTORS

COUPLING MD WITH HEAT PUMPS FOR POLYGENERATION

Simulation for Almería (Spain)

COUPLING MD WITH HEAT PUMPS FOR POLYGENERATION

Simulation for Almería (Spain)

primary energy resource utilization efficiency = 44.2%; exergy efficiency = 6.9%

SOLAR ADSORPTION COOLING

Chemical adsorption has been proposed for solar cooling using saline solutions regenerated by thermal desalination technologies

USE OF LIQUID DESICCANTS FOR COOLING

Use of liquid desiccants regenerated by solar energy to support evaporative cooling systems

COUPLING MD WITH LIQUID DESICCANTS

COUPLING MD WITH LIQUID DESICCANTS

The best solutes for liquid desiccant systems have low water activity and therefore require more specific thermal energy for solution regeneration with MD

Salt	Feed temperature [°C]	Feed concentration [mol I ⁻¹]	Water activity [-]
NaCl	60, 70, and 80	0.6	0.9810
		1.2	0.9601
		1.7	0.9405
		3.0	0.8852
		4.0	0.8352
	60, 70, and 80	0.7	0.9812
		1.0	0.9702
		2.0	0.9222
		3.0	0.8590
СН₃СООК ▲	60, 70, and 80	0.5	0.9824
		1.0	0.9636
		2.0	0.9224
		3.0	0.8764
CaCl₂ <mark>×</mark>		1.5	0.8988
	60, 70, and 80	2.4	0.7930
		3.7	0.5946
		5.0	0.4053
MgCl ₂	60, 70, and 80	1.0	0.9359
		2.0	0.8338
		3.0	0.6937

- <u>Pickling bath: H_2SO_4 10-38%</u> Exhausted: if [Fe²⁺] > 80 g/L
- Passivation bath: Cl₂CrHO 5 g/L Cr³⁺

Exhausted: if $[Fe^{2+}] > 200 \text{ mg/L}$ and $[Zn^{2+}] > 3000 \text{ mg/L}$

<u>Cu-electrolitic bath: CuSO₄·5H₂O</u>

Exhausted: if $CuSO_4.5H_2O > 350 \text{ g/l}$

Neutralization

Water Sewerage Sludge External management.

No reutilization of the baths

H2020 723729

To develop 4 pilot plants to regenerate industrial solutions from galvanizing industry to:

- To reduce the use of water.
- To reduce the production of wastewater
- To recover valuable compounds.
- To guarantee optimal operating conditions.

A. Ruiz-Aguirre et al, Separation and Purification Technology, 266 (2021) 118215.

R. Gueccia et al, Membranes, 10-6 (2020) 129-145.

IDE/2020/000398 (IDEPA 2020).

Regeneration of pickling and passivation baths from zinc electroplating line.

Pickling

Passivation

Recovery of H₂SO₄ above 70% and rejection of Fe²⁺ higher than 80%

Challenge

- Selective precipitation.
- Recovery of anticorrosive properties.

Regeneration of 80% of passivation solution.

Production of water with MD for generation of renewable H₂ by electrolysis

1. Cooling system of electrolysis is not needed

2. Pure water is produced with MD at zero energy cost \square waste heat

3. H₂ generation not dependent on the availability of freshwater (abundant saltwater)

Objective: lower cost of green hydrogen production from current level of 4 – 10 €/kg-H₂ towards 2 €/kg-H₂ in 2050

pre-pilot plant in the Netherlands: 1 kg/h (Hydron's 50 kW PEMWE stack) Ultra pure water production capacity ~10 kg/h

Acknowledgements:

Dr. Alba Ruiz-Aguirre Dr. Juan Antonio Andrés-Mañas Dr. Juan Diego Gil PhD Students:

1题?

Isabel Requena

Alejandro Bueso

Questions?

Guillermo Zaragoza PhD CIEMAT-Plataforma Solar de Almería guillermo.zaragoza@psa.es

MINISTERIO DE CIENCIA E INNOVACIÓN

