

Backend simulations and
prototyping report

Designing a Next-Generation Radio Facility for Multi-Messenger Astronomy

Deliverable No: D6.1

Deliverable/Document Title: Backend simulations and prototyping report

Version: 1.0

Release date: 2024-06-28

Dissemination level: Public

Status: Submitted

Author: Weiwei Chen, Ewan Barr, Niclas Esser, Yunpeng
Men

This project has received funding from the European Union’s Horizon Europe research
and innovation programme under grant agreement No 101094354. The content of this
material reflects the opinions of its authors and does not in any way represent the
opinions of the European Union

Document history

Version Date Content and changes Edited by

1.0 2024-06-28 Initial Release Ewan Barr

Peer review history

Partner Reviewer Date Version

FORTH-ICS Stefanos Papadakis 25.06.24 1.0

Release history

Signed off by Release Date Version Signature

John Antoniadis 13.08.24 1.0

Disclaimer
ARGOS-CDS is funded by the European Union. Views and opinions expressed are, however, those of the
author(s) only and do not necessarily reflect those of the European Union. The European Union cannot be held
responsible for them.

Applicable Documents

• D3.2 System Requirements Specification
• D5.3 Front-end subsystem design

Table of Contents

Document history ... 2

Peer review history ... 2

Release history ... 2

Disclaimer ... 2

Applicable documents ... 2

Abbreviations and Acronyms .. 5

1. Overview ... 6

Intended audience .. 6

Assumptions ... 6

2. Data Transport Network Simulations ... 7

Problem statement ... 7

Assumptions ... 7

Topology selection .. 7

Network diagram .. 7

Scalability and flexibility ... 9

Load balancing .. 10

Comparison to other solutions .. 11

Conclusion .. 11

3. Beamforming Strategies ... 12

Problem statement ... 12

Array geometry ... 12

Data rates ... 14

Conclusions ... 15

4. Prototyping overview .. 16

Objectives ... 16

Assumptions and constraints .. 16

Prior work ... 16

5. Digital Rx Prototyping ... 17

Description ... 17

Scope .. 17

System requirements .. 17

Hardware selection ... 18

Development environment ... 18

System architecture .. 19

Algorithm development .. 20

FPGA programming ... 20

Software development ... 21

 Test plan .. 21

 Test setup .. 22

Results .. 23

Resource utilization .. 24

Challenges and solutions ... 25

Conclusions ... 25

6. Beamformer Prototyping .. 27

Description ... 27

Software development ... 27

Pipeline design ... 27

Output products ... 28

Benchmarks .. 28

Conclusion .. 30

Abbreviations and Acronyms

Acronym Description

ADC Analogue-to-Digital Converter

CMAC UltraScale Integrated 100G Ethernet Subsystem

DAC Digital-to-Analogue Converter

DDR Double Data Rate

FPGA Field-Programmable Gate Array

GbE Gigabit Ethernet

GPU Graphics Processing Unit

Gsps Gigasamples per second

HLS High-level synthesis

IP Intellectual Property

OFIR Optimal Finite Impulse Response

OS-PFB Oversampling Poly-phase Filterbank

PPS Pulse per second

QSFP Quad Small Form-factor Pluggable

RFDC Radio Frequency Data Converter

RFSoC Radio Frequency System on a Chip

RTL Register Transfer Level

Rx Receiver

TRL Technology Readiness Level

UDP User Datagram Protocol

VLBI Very Long Baseline Interferometry

1. Overview
This document contains the results of simulations and prototyping for the ARGOS digital signal processing
backend as conducted by Work Package 6 (WP6) of the ARGOS-CDS project. WP6 is responsible for the
design of the digitisation and channelisation system for the ARGOS antennas and with the data transport,
correlation, and beamforming that is required to enable the telescope to perform as an interferometer.

In this document, we present simulation results for the following:

• Data transport for digitised/channelised voltages streams between the ARGOS antennas and the
downstream processing hardware.

• Beamforming optimisations based on different array geometries.

We further present the results of the following prototyping activities:

• Development of a demonstrator digitiser-channeliser on an RFSoC evaluation board.
• Development of a demonstrator beamformer-correlator on tensor-core capable GPUs.

Intended audience
This document is intended for use by system designers and engineers working on the realisation of the ARGOS
telescope.

Assumptions
At the time of writing, the system requirements for the final ARGOS telescope are in flux, and no technology
readiness levels (TRLs) or freeze-in dates have been defined for the ARGOS hardware. Hence, we here make
several assumptions to aid in performing simulations:

• We assume a full-size ARGOS array will consist of 1120, dual-polarisation elements with 2 GHz of
bandwidth each.

• For simulations, we principally assume that we are solving the problem with hardware that can be
procured at the time of writing. Where relevant, we discuss the implications of hypothetical future
upgrades to such hardware.

2. Data Transport Network Simulations

Problem Statement
Assuming that ARGOS consists of 1120 antennas with dual-polarisation receivers digitising at a sampling rate
of 4 Gsps, the input data rate from the telescopes is 72 Tb/s. Due to the requirement for ARGOS to be
compatible with existing VLBI infrastructures, it is necessary to oversample in the ARGOS channelisers
(details discussed later). With an oversampling factor of 32/27, the telescope's data rate increases to 85 Tb/s.
This rate is 42 times higher than the current state-of-the-art MeerKAT radio telescope in South Africa, posing
a significant challenge in designing a data transport network capable of distributing the telescope data over the
processing hardware for correlation, beamforming, and other downstream processing. A network architecture
for the data transport network must be designed and shown via simulation to be viable for the ARGOS array.

Assumptions
It is assumed that ARGOS will use digital receivers at the antenna that digitise, channelise, and packetise the
received voltages before sending them into an Ethernet network. Justification of the use of on-antenna
digitiser/channelisers is beyond the scope of this document. However, such a design that combines digitisation
and channelisation into one hardware component has a significant impact on the design of a data transport
network for ARGOS. In this case, the input to the network is now channelised rather than unchannelised
voltages streams (which is the case for MeerKAT for example). When using unchannelised inputs, the data
must first be routed to channelisers, and the resulting channelised data then routed to the downstream
processing endpoints. In the case of ARGOS, only the routing between the channelisers and the downstream
processing systems need to be considered, simplifying the network design and reducing the required network
throughput.
We further assume that each ARGOS antenna has a single 100-GbE fibre connection that carries all digitised
voltages. This is sufficient to accommodate the 76 Gb/s of data produced at each antenna.

Topology selection
We initially considered several network topologies when investigating the data transport network for ARGOS.
However, the standard F-X correlator architecture imposes constraints on network design, as it must be
possible to route the data from each antenna to all processing endpoints. This leaves only variants of fully
connected networks for consideration. Here, we consider a variant of the folded Clos network (a kind of
multistage circuit-switching network, name after Charles Clos), where we allow the antenna data to be directly
routed into the spine switches. This is reasonable as there is no requirement to send data between antennas,
only between antennas and processing endpoints and between processing endpoints (but at much lower volume
than the volume from the antennas).
The aforementioned processing endpoints are likely to be GPU or FPGA servers that perform correlation and
beamforming on discrete portions of the frequency band for all antennas. In the discussion below, they are
interchangeably referred to as nodes, processing nodes or processing endpoints.

Network diagram
In Figure 2.1 we present a schematic of the nominal modified folded Clos network considered for ARGOS

Table 2.1: The items and their properties inside the network topology diagram

Symbol Description Interface (individual) Number

ant0 … ant1119 Antenna 100 GbE 1120

spine0 … spine4 Spine switch 800 GbE, 64 port 5

leaf0 … leaf4 Leaf switch 800 GbE, 64 port 5

node cluster 0 … node cluster 4 Processing node cluster 200 GbE, 104 port 5

In this example (Figure 2.1), we use the same switch variant for both spines and leaves. The current state-of-
the-art in commercial Ethernet switching is 800 GbE. Here, we assume the use of 800-GbE switches with 64
physical ports per switch (an example of a switch with such properties would be the Nvidia SN5600: 920-
9N42F-00RI-7C0). Each physical port can be split into 8 logical 100-GbE ports or 4 logical 200-GbE ports
while the total number of logical ports can not exceed 256 (this has been a restriction in the majority of top-
of-the-line switches since 40 GbE became available and it is reasonable to assume it will be the same in future).
For reasons of redundancy, fault tolerance and future extensibility, we leave 4 physical ports in each spine
switch and 6 physical ports in the leaf switch unused. Each of the 1120 antennas, transmits data over a 100-
GbE connection. To ingress and egress data from all antennas, a minimum of 5 spine switches are needed.
Each spine switch uses 28 physical ports for uplinks, with each port connecting to 8 different antennas using
8-way breakout fibres. Each spine switch has 32 ports available for downlinks. They are distributed to all leaf
switches in a round robin.
Each leaf switch uses the remaining 26 physical ports for connecting to a node cluster. According to the data
rate calculation (see next section) that based on prototyping activities on the ARGOS beamformer, we assume
an upper cap on the bandwidth to each processing node in the node cluster of approximately 166 Gb/s. As such,
each of the 26 remaining physical 800-GbE ports is broken-out to 4x 200-GbE logical ports with 4-way
breakout fibres. In this mode, each processing cluster can host up to 104 processing nodes.

The number of processing nodes required to satisfy the ARGOS requirements is currently unknown. In the
case that ARGOS must produce a very large number of beams (or must share its beamformer hardware with
other compute intensive downstream processing) the network must be expanded to accommodate a larger
number of nodes. Below we describe the scaling properties of this network topology.

Figure 2.1: Example of a modified folded Clos network topology for ARGOS data transport.

Scalability and flexibility
In order to reduce project risk and to be flexible to changes in the processing node design and science
requirements for ARGOS, it is necessary to provide a flexible and scalable network architecture. A Clos
network design such as the one presented in Figure 2.1 can be scaled by modifying the number of leaves and/or
spines depending on the specific constraints that must be met. Examples of such changes are listed in Table
2.2. For the nominal example shown in Figure 2.1, there are 5 spine switches and 5 leaf switches, which support
520 processing nodes (see the highlighted green column in Table 2.2). With the number of spine switches fixed,
there would be around 200 additional new nodes available after every new leaf switch is added (shown in the
third row in Table 2.2). When using 5 spine switches it is possible to support a total of 6784 processing nodes
with 32 leaf switches. For more processing nodes, further spine switches are needed.

Table 2.2: Number of processing nodes supported by different spine/leaf combinations. The data rates here show how the
antenna data is distributed as it flows from the spines to the processing nodes. The first column is highlighted in red as it
results in a data rate per node that would exceed the throughout a 200-GbE network connection. The 5 spine, 5 leaf
combination that we consider to be the nominal configuration for ARGOS is highlighted in green.

Spine switch 5 5 5 5 5 5 5 5 5 5

Leaf switch 4 5 6 7 8 9 10 11 12 13

Processing Nodes 288 520 752 984 1216 1448 1680 1912 2144 2376

Data rate from spine to leaf
switch (Gb/s)

21280 17024 14187 12160 10640 9458 8412 7738 7093 6458

Data rate per node (Gb/s) 296 164 113 87 70 59 52 45 40 36

To show the trend of the changes at larger scales, the numbers of the processing nodes, spine switches and leaf
switches are parameterized (starting with 5 spine switches and 4 leaf switches) and shown in Figure 2.2. It is
clear from Figure 2.2 that the number of the leaf switches and processing nodes does not increase evenly when
a new spine switch is added. This is due to the new available ports from adding a new spine switch becoming
less effective for supporting uplinks from new leaf switches.

Figure 2.2: Numbers of spine and leaf switches as a function of number of nodes.

It should be noted here that we have maintained the requirement of a 200-GbE connection to each node in
Figure 2.2. In theory the bandwidth to the nodes could be decreased to 100 GbE after we reach 7 leaves,
although it should be noted that this would require 8-way breakouts and would be capped by the logical port
count limit on the switch.

Load balancing
The architecture simulated here contains implicit assumptions about how data will be routed in the network.
Here we make these assumptions explicit:

• It is assumed that all data in the network (with the exception of some required protocol traffic) will be
UDP multicast.

• Processing nodes will subscribe to data streams as a function of frequency. This allows the data out of
each spine to be evenly distributed between all leaves. In turn this imposes a constraint that the same
frequency channels should not be subscribed to on different leaves, as this will result in packet
replication in the spines.

• There will be sufficient entropy in the combination of source IP, source port, destination IP and
destination port to allow for even load balancing on link-aggregated connections between spines and
leaves. This is relatively easy to achieve as there are significantly more nodes on each leaf compared
to link-aggregated ports.

• Should multiple nodes require subscription to the same data this would be done by nodes on the same
leaf, thus delegating packet replication to the corresponding leaf and leaving the leaf-to-spine traffic
unaffected.

• It is the responsibility of the backend control software to specify the multicast subscription mapping
over all nodes so as to not overload individual links in the network.

Comparison to other solutions
Similar Clos network architectures for radio telescope data are currently in place at the MeerKAT and
Effelsberg radio telescopes. While these operate at lower data rates than ARGOS, their data rates as a function
of the technology they use (e.g. 2 Tb/s at MeerKAT using 40 GbE networking) are comparable to ARGOS.
We note that there are specific lessons about such networks that have been learned from MeerKAT, in
particular that switches chosen must have reasonable transmit buffering to safely handle packet collisions.
Such collisions may also be avoided by careful tuning and synchronisation of the packet transmission from the
digital Rx system but this may require costly FPGA development. Purchasing switches with deep transmit
buffers eliminates the problem of packet collisions without requiring special behaviours from the digital Rx.

The mid and low frequency arrays of the Square Kilometre Array use a different networking solution that
shares a similar topology but uses different technology. There, instead of using standard Ethernet switches,
they use P4 switches. These are hardware programmable switches that allow for extremely fine-grained
network control. The intended use-case for such switches is primarily hyper-scale data centres with highly
dynamic network requirements. Such switches are more expensive per unit than standard Ethernet switches
and incur a higher operating cost due to the need to maintain the P4 software used to define the network
behaviour. However, they can also achieve higher power efficiencies than standard Ethernet switches due to
their ability to restrict unwanted protocol traffic in the network. More information about the power savings
possible with P4 switches is required to understand if P4 may be of benefit to ARGOS.

Conclusion
Simulation of the scaling behaviour of a modified Clos network shows that the architecture is well suited to
handling the data rates expected for the ARGOS telescope. The architecture is flexible enough to be capable
of handling situations requiring the ARGOS backend to be composed of a very large number of relatively low
bandwidth processing endpoints. Similar architectures have been successfully deployed at the MeerKAT and
the Effelsberg radio telescopes.

3. Beamforming Strategies

Problem statement
The provisioning of wide-field, time-domain survey capability is one of the most important science
requirements for ARGOS. This necessitates the real-time formation of a large number of tied-array beams
using as many antennas is possible. There are multiple strategies for forming such beams and the relative merits
of these are strongly dependent on the array geometry. Here we simulate how the cost of beamforming with
different strategies varies as a function of array geometry.

Array geometry
The geometric configuration of the antennas is the main determinant of the optimal beamforming strategy.
Here we present several array layouts and discuss the constraints they impose on the beamforming strategy
used for the telescope. The computing cost and baseline samples of different array types are listed in Table 3.1.

Note that we do not consider visibility beamforming (i.e. beamforming by summing visibilities as opposed to
voltages) to be a viable strategy for an array of the expected size of ARGOS. For such a strategy to be viable
(i.e. superior to other approaches), the number of integrated visibilities in the correlator must be > (Na + 1) /
2, where Na is the number of antennas. For an ARGOS size array this implies integration times of > 286
microseconds which is insufficient to meet the time resolution requirements for time-domain science (see
REQ-ARGOS-BE-13 and REQ-ARGOS-BE-32). Detailed investigation of the scientific impact of the choice
of array geometry is out of scope for this document.

Regular arrays: Arrays of antennas placed in a regular grid are known as regular arrays (see Figure 3.1).
Examples of such arrays include the Murchison Wide-field Array (MWA), the Hydrogen Intensity and Real-
Time Analysis eXperiment (HIRAX) and the Canadian Hydrogen Intensity Mapping Experiment (CHIME).
One of the most enticing features of a regular array is that it enables efficient Fast Fourier transform (FFT)-
based beamforming. In this method we may directly FFT the gridded voltages at the positions of the receiving
elements to Nyquist sample the spatial power distribution on the sky. Due to the wide applicability of FFTs,
high performance FFT implementations have been developed for a large selection of hardware platforms.
Using hardware acceleration, this technique can generate a large number of beams effectively at relatively low
computing cost. Furthermore, the regular gridding creates a large number of redundant baselines, which
significantly reduce the number of operations needed to image the field compared to an irregular array. For
example, the unique baseline fraction of a regular array can be as low as 0.3%. The most obvious downside of
such array is that it produces sparse and clustered baseline samples, thus the UV plane (the spatial-frequency
sampling of the sky) is potentially sampled neither sufficiently nor evenly for the needs of a given science case.
This particularly affects the dynamic range of the data which is crucial in imaging and studying small scale
structure.

Direct FFT beamforming has several drawbacks:

• Beams cannot be arbitrarily placed on the sky.
• The number of beams produced is dependent on the number of antennas.
• The position of beams is depending on observing frequency.

The latter drawback can be minimized by the post-beamforming combination of different beams at different
frequencies to create beams that have a similar pointing centre at all frequencies. The drawback here is that
the sensitivity as a function of frequency is no longer mathematically smooth.

The big-O complexity of FFT beamforming by this method is Na log2 Na, where Na is the number of antennas.

Irregular array: These arrays do not place antennas on a predefined grid but at positions determined by some
optimisation target function (usually the completeness of the UV sampling required for some scientific
experiment). Example are MeerKAT, the Square Kilometre Array, the Next Generation Very Large Array

(ngVLA), the Deep Synoptic Array (DSA-2000) and the Atacama Large Millimeter/submillimeter Array
(ALMA). Such arrays are often composed of multiple antenna distributions. For example, the MeerKAT
telescope is composed of a Gaussian distributed core and a set of spiral arms (shown in Figure 3.2). These
configurations have the benefit that they can support the UV-sampling needs of multiple science cases (e.g. a
dense core for time-domain survey work and long spiral baselines for high-dynamic-range imaging). Unlike
with a regular array there is no trivial FFT-based solution for beamforming an irregular array. In this case, the
beamformer has to sum the voltages of each antenna with the appropriate complex weighting for each beam
position in a method referred to as “brute force” beamforming. Additionally, there are usually no redundant
baselines in such an array, which increases the computational cost of imaging.

Unlike FFT beamforming, brute-force beamforming is agnostic about the number or placement of the antennas
in the array and by default aligns beam pointing positions at all frequencies. However, the big-O complexity
now scales with the number of beams, Nb, and number of antennas, Na, as Na × Nb. This is more efficient
than FFT beamforming when creating Nb << Na. However, when creating large numbers of beams where
Nb >~ Na, FFT beamforming is ~ Nb / (log2 Na) times more efficient.

Hybrid array: An array that contains both regular and irregular placements of elements can provide some of
the advantages of both array types. An example of such array is shown in Figure 3.3. It contains 1120 dishes,
of which 75% are used to form a regular core grid, the rest are Gaussian distributed. It consists of 626640
baselines, of which 275044 are unique, making the unique baseline fraction as 0.4389.

The corresponding UV sample distribution is shown in Figure 3.4. As can be seen, the UV samples are
distributed rather evenly thanks to the mixture of regular and Gaussian placing of the antennas.
A possible use case of such an array is to use only the grid core for wide-field time-domain survey experiments,
using FFT beamforming. The full array would then be used for forming images or forming a small number of
high spatial resolution beams at specific positions (e.g. for pulsar timing), using brute-force beamforming.
Additionally, the core can be further divided in multiple sub-section with different phase centres to obtain even
larger field of view.

Figure 3.1: Regular array

Figure 3.2: Gaussian-spiral array

Figure 3.3: Hybrid configuration Figure 3.4: UV samples for Hybrid configuration

Table 3.1: A comparison of computing cost and baseline samples of different array type.

Data rates
The ARGOS beamformer and correlator system must be capable of handling an incoming data rate of:

Rd = BW × Na × Npol × Ndim × Ro × Nbit

Where Rd is total data rate for a full array in bits/second, BW is the bandwidth of the digitizer in Hz, Na is the
number of antennas in the ARGOS array, Npol is the number of the polarization used, Ndim is the number of
dimensions in each sample (1 for real-valued samples and 2 for complex samples), Ro is the oversampling
ratio used by the channelisers and Nbit is the number of bits used to represent each numerical value. For the
current ARGOS design:

• BW = 2 GHz
• Na = 1120
• Npol = 2
• Ndim = 2,
• Ro = 32/27 ~ 1.1851
• Nbit = 8

With this set of parameters, the total data rate Rd is 84.954×1012 bit/s or approximately 85 Tb/s. Based on the
performance of the beamformer prototype presented later in this document, we may make an estimate of the
number of processing nodes required to handle the full ARGOS data rate.

The number of processing nodes needed for a given number of channels can be calculated as follows:

Array type Computing cost UV samples Application
Regular grid low sparse, uneven wide-field transient

search
Gaussian-spiral high smooth, even high dynamic range

observations
Hybrid low smooth, even multiple

 Nnode = ceil(Nch / floor(Nch × Rnode / Rd))

Where Nnode is the number of the processing nodes, Nch is the number of the channels produced by the digital
Rx channeliser system and Rnode is the maximal data rate a processing node can ingest. Prototyping results
suggest that beamformer nodes running current generation hardware should be capable of ingesting
approximately 166 Gb/s of data. Assuming that the channelisers produce 1024 frequency channels over the
full 2-GHz band, this would allow each processing node to ingest two frequency channels for all antennas.
Using the equation above we find that 512 processing nodes would be needed to satisfy the full data rate of the
channelisers.

Conclusions
Two main beamforming approaches are available to ARGOS: FFT-based and brute-force. The applicability of
the FFT-based method is dependent on the antenna placement being regular while the brute-force method is
universally applicable to all array geometries. The FFT-based method can be significantly more
computationally efficient than the brute-force method allowing it to produce large numbers of beams with
relative ease, albeit with the downsides that the number and positioning of beams cannot be arbitrary and the
beams have different pointing positions as a function of frequency. Despite these constraints, this method can
be useful for performing wide-field survey work. For anything but a fully regular array, the brute-force method
is the only viable beamforming approach that can use all antennas.

Assuming current hardware and a GPU beamformer, beamforming an 1120-antenna ARGOS array would
require 512 processing nodes. Here a processing node does not imply a physical server, but instead a single
network endpoint with processing capability (as such several processing nodes could be hosted in a physical
server). The amount of compute resources required by each processing node will depend on the beamforming
approach and thus the array geometry.

4. Prototyping overview

As part of Task 6.2, the ARGOS-CDS grant agreement states that WP6 will perform prototyping activities on
real hardware with the goal of determining robust in-project estimates of the performance of the various COTS
components that may comprise the backend. In the following section we present the results of prototyping
beamforming and correlation on GPUs and of building a digital receiver system on RFSoC.

Objectives
WP 6 has identified the following critical prototyping activities necessary to evaluate the performance and
suitability of COTS components similar to those that may comprise the ARGOS backend:

• Prototyping of digital receiver hardware
• Prototyping of Tensor Core-enabled beamforming

Prototyping of digital receiver hardware focuses on the evaluation of the Zynq Ultrascale+
RFSoC XCZU48DR-2FFVG1517E Field Programmable Gate Array (FPGA) chip. This is a member of the
new family of Radio Frequency Systems on a Chip (RFSoC) processors that incorporate analogue to digital
conversion onto the same silicon on which the FPGA is implemented. The objective of this prototyping activity
is to assess the performance, cost and energy efficiency of the RFSoC processors for the ARGOS array.

Prototyping of the compute accelerators for beamforming focuses on the evaluation of both Tensor-core
capable GPUs and PCIe-mounted FPGAs for beamforming and correlation. The objective of this prototyping
activity is to compare between GPU and FPGA solutions for ARGOS, considering performance, cost and
energy efficiency.

Assumptions and constraints
We continue to use the assumptions laid out in the Simulation section with the addition of the following:

• We assume that all ARGOS array configurations are equally valid and no consideration is taken as to
the science impact of a given array configuration.

• We assume that no ARGOS data products pre-beamformer/correlator require more than 8-bits to
represent a single sample (16 bits in the case of complex numbers).

Previous work
In Esser & Men (2024), hardware accelerators for beamforming (e.g. GPU and FPGA) were evaluated taking
compute density, cost, power consumption, flexibility, interfaces and development cost into account. The study
is based on prototyping activities of a beamformer used for Phased Array Feed (PAF) receivers. According to
the document a GPU-based beamformer is the preferred, due to its flexibility, re-use for other computing task
(e.g. correlator, post-processing tasks), faster prototyping and usage of Tensor Core processors.
The instrumental differences of a PAF compared to single feed telescope array (e.g. ARGOS) are significant.
However, the process of beamforming is almost identical for a PAF as it is for an ARGOS-like array.

Note that we do not provide prototyping results for the correlator in this document. The intention is to use the
high-performance Tensor Core Correlator (see Romein, 2021). The performance of this software is already
well known from the literature and we have been in extensive communication with the author to ensure the
software’s viability for ARGOS. Work is ongoing to integrate this software into the prototype beamformer
pipeline, but at the time of writing no concrete results are available. Reporting on the combined performance
of the beamformer and correlator will be the subject of future work.

5. Digital Rx Prototyping

Description
The digital Rx system samples the voltages at the antenna and processes the data using an oversampled
polyphase filter bank (OS-PFB). To handle the 1-3 GHz ARGOS band, each channelizer will process two
frequency bands (1-2 GHz and 2-3 GHz) and two polarizations (X and Y). Our design employs a sampling
rate of 2 Gsps for each input. The resulting digitised data rate is calculated as 2 (bands) x 2 (polarizations) x 2
GHz x 8 bits = 64 Gb/s. The primary objective of this prototyping effort is to assess the feasibility and
performance of the RFSoC 4x2 board for developing the digitizer and channelizer for the ARGOS project,
including validating the functionality, performance, and integration of various FPGA IPs. The prototyping
effort also identifies and addresses potential issues early in the development cycle, reducing risks and
uncertainties in the larger ARGOS project.

Scope
The following are considered in-scope for this prototyping activity:

1. Design and implementation

1. Development and implementation of a channeliser capable of processing two frequency bands (1-2
GHz and 2-3 GHz) and two polarizations (X and Y).

2. Utilization of Xilinx and custom HLS IPs for ADCs, oversampled FIR filters, FFT, quantization,
buffering, and network modules.

2. Testing and validation
1. Performing C simulations, RTL simulations, and hardware testing for all developed IP modules.
2. Validation of the timing closure and resource usage on the RFSoC 4x2 board.
3. Testing the 1PPS trigger functionality to ensure precise time-stamping.
4. Verification of the DDR4 memory's capability to handle the required data rates for buffering.

3. Integration
1. Integration of all IP modules to work together within the channeliser framework.
2. Ensuring compatibility with subsequent beamforming and correlation stages in ARGOS.

4. Performance Metrics
1. Measurement and reporting of the performance metrics of the channelizer, including data throughput,

latency, and accuracy.

The following are considered out-of-scope for this prototyping activity:

1. Production-ready design

1. The prototype will not be optimized for mass production or long-term deployment.
2. Reliability and robustness for deployment in various operational environments are not covered.

2. Full ARGOS system integration
1. While the channelizer's compatibility with ARGOS beamforming and correlation stages will be

ensured, the complete integration (including physical integration) with the entire ARGOS system is
out of scope.

System requirements

This prototyping activity is intended to de-risk several requirements on the ARGOS backend. Here we
paraphrase the corresponding requirement and provide the requirement ID:

1. The system must handle two frequency bands (1-2 GHz and 2-3 GHz) and support processing of two
polarizations (X and Y) to meet the RF frontend design. (REQ-ARGOS-BE-01)

2. An OS-PFB is required to enable compatibility with existing VLBI networks. The OS-PFB provides
a flat frequency response across the whole band and is trivially invertible to allow for the production
of wide-band time-domain data after beamforming. (REQ-ARGOS-BE-05)

3. The system must have 1PPS synchronization to obtain precise timetsamps. Such timestamps are
required for the astronomical applications such as high-precision pulsar timing. (REQ-ARGOS-BE-
14)

We explicitly do not test here the frequency stability of the digitiser (REQ-ARGOS-BE-15) or the delay
buffering and boresight steering capabilities required of the digital Rx (REQ-ARGOS-BE-04).

Hardware selection

The RFSoC 4x2 board is a state-of-the-art FPGA development platform designed by Real Digital. It integrates
Xilinx's RFSoC technology, combining the FPGA fabric with high-speed ADCs and DACs on a single chip.
Key features and specifications of the RFSoC 4x2 board include: (1) Four ADC inputs capable of sampling at
up to 5 GHz with 14-bit precision; (2) A QSFP28 interface supporting high-speed Ethernet connections,
offering flexible data transmission rates (4x25 Gbps, 2x50 Gbps, or 1x100 Gbps); (3) Two DDR4 memory
modules (4GB each, 64-bit, 2400 MHz). The RFSoC 4x2 board is well-suited for the channelizer application,
accommodating up to four inputs sampled at 2 GHz and supporting an output data rate up to 100 Gb/s.

Development environment

Development of the digital Rx prototype was conducted at the Max-Planck Institute for Radio Astronomy in
Bonn. The following tools were used in development: (1) Vitis HLS was used for developing the HLS-based
IPs; (2) Vivado was used for integrating the different types of IPs (e.g. HLS IPs and Vivado IPs), synthesis of
the design and generation of the bitstream file that runs on the FPGA; (3) Python and the PYNQ frameworks
were used the development software to run on the ARM CPU that performs the setting up the peripheral
equipment and the control of the data transfer between the programmable logic and processing system on the
RFSoC.

Figure 5.1: Photograph of a RFSoC4x2 board on a bench at the MPIfR

System architecture

Block diagram

Detailed design

The system design contains the custom HLS IPs and Xilinx IPs, including:

RFDC: This is the Xilinx IP for the ADCs and DACs on the RFSoC chip, capable of setting up the sampling
frequency, mixer configurations, and more. The IP has already been tested on the board.

OFIR: This is the oversampled FIR filter of the OS-PFB. The current design employs 8 taps and an
oversample ratio of 32/27. The module is implemented using HLS, with fixed coefficients in the firmware.
The C simulation has been successfully completed. The RTL simulation and hardware testing are pending.

FFT: This is the Xilinx SSR FFT IP, which handles complex inputs with multiple samples per clock. Our
current design uses a 2048-point FFT.

Quant: This is the quantization module, which converts the FFT output to an 8-bit range. This module will
be implemented using HLS and is pending.

Buffering: This module transforms the FFT output from TxF format to FxT format. It requires a large buffer
(4*1024*1024*2B=8 MB), which exceeds the FPGA's RAM resources, so the onboard DDR4 (64-bit, 2400
MHz) will be used. Although the bandwidth is theoretically sufficient, verification is pending. The module
will be implemented using HLS.

Network kernel: This module comprises a UDP IP and CMAC IP. The module has been implemented and
tested.

Figure 5.2: Block diagram of RFSoC-based digital Rx design

Data flow

The connection between modules is using the AXI4-stream interface, and the data flow can be described as
follows:

1. The four inputs will be sampled on the RFSoC chip at a clock frequency of 2 GHz, producing four
data streams. Each output stream is 128 bits wide, including 8 samples from one input.

2. Each output data stream from the ADC module then goes through an oversampled FIR filter,
maintaining the same format as the input.

3. Each output data stream from the OFIR module then goes through the Xilinx SSR FFT module,
producing an output data stream with 8 channels per clock cycle. The output is in complex
ap_fixed<25,12> format.

4. The data stream then passes through a quantization module to cast the data range to -128 to 127
(complex int8).

5. The data stream is buffered in the DDR4 memory and outputs 8 samples of one channel per clock
cycle. The output data stream contains 1024 samples for each successive channel in one frame.

6. Finally, the data stream is packetized in the SPEAD format and transferred through the QSFP28
interface.

Algorithm development
The details of the algorithm behind the of OS-PFB can be found in Smith et al. 2020. A visualisation of the
difference between critically sampled and oversampled frequency channels is shown in Figure 5.3.

Figure 5.3: Frequency response of data after critical sampling vs after oversampling.

FPGA programming
The main programming effort includes the development of the oversampled FIR filter using HLS, and
integrating it with Xilinx IPs (e.g. RFDC and FFT) in the Vivado block design. Then, the RTL simulation and
synthesis are done in Vivado,

Software development
The primary software development involves Python scripts utilizing the PYNQ library, which provides a
wrapper for drivers to communicate with all peripheral devices. Below is an example of RFDC testing.

import matplotlib.pyplot as plt
import numpy as np
import xrfclk
import xrfdc
from pynq import Overlay
from pynq import allocate
from time import sleep
import asyncio

xrfclk.set_ref_clks(lmk_freq=245.76, lmx_freq=409.6)
overlay = Overlay("/home/xilinx/design_1.bit", ignore_version=True)
overlay.download()

py_buffer = allocate(shape=(4096,), dtype=np.int16)
print("py_buffer physical address {}".format(hex(py_buffer.physical_address)))
overlay.dma.axi_dma_2.recvchannel.transfer(py_buffer)

refresh snapshot
overlay.snapshot.snapshot_2.write(0x10, 0x0)
overlay.snapshot.snapshot_2.write(0x10, 0x1)
sleep(1)
overlay.snapshot.snapshot_2.write(0x10, 0x0)

py_buffer.sync_from_device()

Test plan

ADC Testing

1. Input known signal waveforms to ADCs.
2. Capture and analyze digitized output from ADCs.
3. Verify the output matches the input signals.

OFIR Filter Testing

1. C simulation and RTL simulation
1. Input noise data to the kernel.
2. Compare the output with reference data calculated from pure python code.

OFIR Filter + FFT + Quant Testing

1. C simulation and RTL simulation
1. Input noise data to the kernel.
2. Compare the output with reference data calculated from pure Python code.

2. Hardware test (not done yet)
1. Input a single-tone signal into the ADCs.
2. Capture the output stream and transfer to ARM CPU memory.
3. Verify the output spectrum.

Buffering test (pending)
1. C simulation and RTL simulation

1. Input noise data to the kernel.
2. Compare the output with reference data calculated from pure Python code.

2. Hardware test
1. Input a single-tone signal to the ADCs.
2. Capture the output stream and transfer to ARM CPU memory.
3. Verify the output spectrum and test the throughput.

Packetization and Network Transmission Testing

1. Hardware test
1. Generate counter number by a module and input to the network kernel.
2. Capture the output packet in the network.
3. Verify the output network packet.

1PPS synchronization Testing (pending)

1. Hardware test
1. Input the 1PPS signal to ADC and 1PPS port.
2. Capture the data of ADC and 1PPS on FPGA.
3. Verify if the data are synchronized.

System Integration Testing (pending)

1. Hardware test
1. Input a single-tone signal to the ADCs.
2. Capture the output packet in the network.
3. Verify the output network packet.

Metrics Used for Validation

1. Data throughput (Gbps) and latency (ms) of the system.
2. Timing accuracy of 1PPS trigger.
3. Resource Utilization
4. Power consumption

Test setup
For the test setup, we use the following devices to support the experiments on RFSoC 4x2 board:

• The signal generator (Rohde & Schwarz SML02) is used to generate a test signal with a frequency
range from 9 kHz to 2.2 GHz;

• The digital oscilloscope (Tektronix DPO 4034) is used for visualization and analysis of signal
waveforms from DACs of RFSoC 4x2 and the signal generator;

• The 1 GbE network is used for communication between the on-chip ARM CPU and laptop;
• The JTAG is used for hardware debugging of the FPGA design;
• The QSFP28 transceiver and optical fibre are used for testing the 100 GbE network.

Results
1. We have tested the ADC on the RFSoC. The plot below shows the spectrum of the data captured from the
ADC output. A 600 MHz single-tone signal was input, and the sampling rate was 2.048 GHz.

Figure 5.5: Spectrum of the captured data of RFSoC ADC.

Figure 5.4: Testing setup showing the signal generator, oscilloscope
and power supply used.

2. The custom oversampled FIR filter has been tested in HLS C simulation with a custom FFT IP. The plot
below compares the frequency response of an 8-tap PFB with a Hamming window between the simulation and
the theoretical calculation.

Figure 5.6: Comparison of the PFB channel response between the HLS C simulation and theoretical calculation.

Resource utilization
The resolution utilization of the design is derived from the synthesis of the IPs in Vivado. This provides only
an estimate of the utilization, which may differ after the final implementation.

Table 5.1: Resource Utilization. In the table, LUT means Lookup Table, FF means Flip Flops, BRAM means Block
RAM and DSP means digital signal processor.

Module LUT FF BRAM DSP

RFDC 1.5% 0.6% 0 0

OFIR 4x 5% 4x 0.7% 4x 3% 4x 1.5%

FFT 4x 5% 4x 3% 4x 0.3% 4x 1.5%

Quant - - - -

Buffering - - - -

Network 3% 2.8% 5.3% 0

Total <50% <20% <20% <15%

Challenges and solutions

Technical challenges

1. Buffering: Buffering the output stream and transposing the data from TxF format to FxT format is
challenging because as requires a large buffer (at least 8 MB) to stream the data in real-time. The
buffer size exceeds the available memory on the FPGA.

2. Timing Closure: The total LUT resource usage is nearing 50% will pose challenges for achieving
timing closure.

Problem-solving approaches

1. Buffering: The DDR4 memory on the RFSoC4x2 board will be utilized to address this challenge,
and thorough testing of its functionality is necessary.

2. Timing closure: The required clock frequency is less than 300 MHz, which should help in achieving
timing closure. Rigorous testing is essential to confirm this.

Conclusions

Summary

The prototyping effort focused on developing a channelizer using the RFSoC 4x2 board, integrating various
FPGA IPs and custom modules. Here are the key findings and outcomes:

1. The ADC has been successfully tested and shown to operate at 2 GHz sampling rate with 14-bit
precision.

2. A custom oversampled FIR filter has been developed using HLS, and both C simulation and RTL
simulation have been successfully passed.

3. A wrapper for the Xilinx Super Sample Rate (SSR) FFT module has been implemented with an
AXI4-stream interface and tested in RTL simulation.

4. A custom HLS SSR FFT module has been developed for C simulation testing of the oversampled
FIR filter.

5. Resource usages for these modules have been obtained and are detailed in the resource utilization
section.

Lessons learned

Image building
1. Building a custom Linux image for the RFSoC FPGA can be challenging. A more practical approach

is to use the official Linux image and develop custom overlays on top of it.
2. For remote connection to the RFSoC 4x2 board via DHCP, running a SOCKS proxy is necessary to

ensure proper operation of JupyterLab.

Zynq development

1. DMA (Direct Memory Access) can facilitate high-throughput data transfer between the Programmable
Logic (PL) and Processing System (PS) on the chip.

RFDC

1. Due to PLL configuration restrictions of the RFDC module, a 2 GHz clock frequency may not be
supported using the internal reference clock, whereas 2.048 GHz is supported.

2. The PYNQ library provides a wrapper for drivers that enables control and configuration of the ADCs
and DACs.

HLS development

1. Clock-level triggering may not be supported in HLS because the trigger signal is sampled at one stage
of the internal state machine, rather than every clock cycle.

FFT

1. There are three FFT IPs provided by Xilinx: Vitis HLS SSR FFT library, Vivado FFT IP, and Vitis
Model Composer SSR FFT module. The latter is the preferred choice as it supports SSR FFT and has
lower resource usage.

2. To ensure the central frequency of the output bandpass is at the center, the oversampled FIR filter
requires shift and overlap adjustments.

3. For a 2048-point FFT with ap_fixed<14,1> input, the maximum value of each stage increases by a
factor of 2. Given this scenario, scaling is not necessary because the output value of each stage should
remain within 27 bits, which is a restriction of the DSP on the FPGA.

Future work

Areas for future improvement or further development based on the prototyping effort include:
1. Perform hardware testing for the HLS OFIR module combined with the Xilinx SSR FFT.
2. Implement the quantization and buffering modules using HLS.
3. Validate DDR4 throughput capabilities to ensure it supports the buffering module requirements.
4. Test the functionality of the 1PPS trigger for precise timestamping.
5. Validate the network kernel functionality on the RFSoC 4x2 board.
6. Conduct integration testing with the network kernel to ensure seamless operation within the

channelizer system.

Additional documentation

Below we include links to additional documentation and data sheets relevant for this prototyping activity.:

https://www.realdigital.org/hardware/rfsoc-4x2
https://pynq.readthedocs.io/en/latest/
https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm
https://docs.amd.com/r/en-US/pg269-rf-data-converter
https://docs.amd.com/r/2022.1-English/ug1483-model-composer-sys-gen-user-guide/Vector-FFT

https://www.realdigital.org/hardware/rfsoc-4x2
https://pynq.readthedocs.io/en/latest/
https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm
https://docs.amd.com/r/en-US/pg269-rf-data-converter
https://docs.amd.com/r/2022.1-English/ug1483-model-composer-sys-gen-user-guide/Vector-FFT

6. Beamformer Prototyping

Description
Prototyping activities for the ARGOS beamformer have focused on the development of Tensor-core enabled
beamforming software that can make maximally efficient use of GPU hardware. The goals of this prototyping
activity were to:

1. Design and test a beamformer pipeline for ARGOS
2. Demonstrate that there are beamforming algorithms that can make use of Tensor cores.
3. Benchmark the performance of the pipeline components.
4. Estimate the computing resources required to beamform a full-size ARGOS array.

Software development
The prototype beamformer for ARGOS was developed in C++ / CUDA and builds upon the PSRDADA_CPP
library (https://gitlab.mpcdf.mpg.de/mpifr-bdg/psrdada_cpp).

Pipeline design

Figure 6.1: Prototype beamforming pipeline.

Figure 6.1 shows the beamformer pipeline design used for the prototype beamformer. The pipeline is
principally composed of 4 stages:

Stage 1: Data arriving from network or file go thorough unpacking and reordering to be converted into the
internal representation required by downstream components of the pipeline. This stage is performed partly in
network capture code and partly by applying a multidimensional asynchronous memory copy from the host to
the GPU. The asynchronicity allows for overlapping of the memory copies with the subsequent processing
stages.

Stage 2: The actual beamforming is a complex general matrix multiplication (CGEMM). To perform the
CGEMM, Tensor Cores are utilized. After this stage dual-polarized voltage beams are computed. The outputs
of the CGEMM are dual-polarisation voltages beams. As subset of these beams are required for specific science
cases (VLBI and pulsar timing) and are retained at full resolution. The remaining beams continue to stage 3.

Stage 3: A synthesis filter is applied to the output of the CGEMM to undo the oversampling of the channelizer,
converting the data into its critically sampled equivalents. Currently, the synthesis filter is implemented by
applying a 32-point forward FFT and discarding the edge bins with respect to the oversampling ratio (e.g. for
a 32/27 oversampling we discard 5 edge bins).

Stage 4: The outputs of the synthesis filter are detected and integrated in two substages to produce a full
Stokes output and a Stokes I only output (see below for details).

Output products
One design requirement of the beamformer is to provide different output products to satisfy different science
use cases simultaneously. The three beamformed outputs produced by the pipeline are described below.

Dual-polarisation voltage beams are used for science cases that rely on having voltage data (e.g. VLBI and
pulsar timing). As no integration takes place, the voltage beams produce the highest data volume per beam.
The data rate of a single beam is equal to the data rate of a single antenna. To keep the output data rate of the
beamformer low, only 16 voltage beams are produced.

The full-Stokes beams provide high spectral resolution by further channelizing the data. This data product is
used for spectroscopic observations. Assuming a coarse channelization of 1024 channels with an oversampling
ratio of 32/27, the full Stokes spectrum of the prototype beamformer has a frequency resolution of 72 kHz.
This is achieved by not performing any frequency integration on the data in after the synthesis filter, resulting
in 1024 x 27 = 27648 channels across the 2 GHz band. In future, the resolution will be made more flexible by
supporting different fine channelization modes with different FFT lengths in the synthesis filter (e.g. 128, 512
and 1024) up to a frequency resolution of 2.2 kHz. The spectra produced in this mode are integrated over a
user-defined interval.

The Stokes I high temporal resolution beams are primarily intended to be used for fast transient searching.
In contrast to the full-Stokes beams, the high time resolution beams are integrated in frequency. The FFT
length in the synthesis filter determines the time resolution of this data product. For instance, when using a 32-
point forward transform in the synthesis filter (the minimum for a 32/27 oversampling ratio) the minimum
corresponding time resolution is 14 µs. These data may also be integrated in time to produce coarser resolution
beams.

Note that by increasing the number of FFT points used in the synthesis filter the time resolution of the Stokes
I beams becomes coarser, while the frequency resolution of full Stokes beams becomes finer. A trade-off
between the two data products has to be made on an individual observation basis.

Benchmarks
The following benchmark assumes the following batch properties processed by a single node (GPU):

• Number of antennas: 1120
• Number of polarizations: 2
• Number of channels: 2
• Number of samples: 262.144
• Number of integrated spectra: 32
• Number of FFT points in synthesis filter: 32

The benchmarks were carried out on an NVIDIA L40 GPU hosted in a SUPERMICRO A+ Server AS-
4125GS-TNRT with dual 32-core AMD EPYC Genoa 9334 CPUs and 768 GB of RAM.

The benchmarks show the performance of the beamformer as a function of the number of computed beams.
For numbers of beams fewer than 272 and 512, the beamformer operates faster than the theoretical PCIe5 and
PCIe4 throughputs, respectively (i.e. beyond these numbers we are performance capped by the PCIe bus). The
beamformer operates most efficiently for certain numbers of beams (e.g. 1120, 1536), which is visible where
the computational throughput peaks or before the execution time steps up. This is due to the performance of
the underlying CGEMM operation changing with input matrix dimensions. From the presented benchmark we
can estimate the number of GPUs that are required to produce N beams for the full ARGOS array. This is
shown in Figure 6.3.

Figure 6.2: Beamformer benchmark on a Nvidia L40 GPU, 50 iterations per data point. (1) shows the averaged
time to execute the GPU-kernel, (2) shows the maximum ingest sample rate the beamformer can process, (3) shows
the computational throughput (note that this is not the absolute throughput in TOPS but is scaled by some unknown
constant).

Conclusion

Summary

This prototyping activity focused on the development, testing and benchmarking of a Tensor Core capable
C++ / CUDA beamformer for ARGOS. This development was a success, providing a means to benchmark the
beamformer performance and estimate the compute resources required to form different numbers of beams for
the full ARGOS array. We see that with approximately 1000 GPUs it is possible to form upwards of 1500
beams for wide-field survey work.

Lessons learned

• CUDA Tensor Cores are not currently natively aware of complex numbers and as such CGEMMs
must be written as a combination of GEMMs.

• Manual JIT (just-in-time) compilation or JIT compilation using the Nvidia Runtime Compiler
(NVRTC) can offer significant performance improvements when certain parameters are known ahead
of time.

• The spectroscopic outputs of the beamformer pipeline are likely not required for ARGOS as the use
case they satisfy is also satisfied by imaging. Removing this branch of the pipeline would result in a
small increase in performance.

• For a sufficiently large number of beams, the beamformer performance approaches the GPUs
theoretical performance limit, indicating that the code can make maximal use of the hardware.

Future work

In order to turn the prototype pipeline into a working pipeline for the ARGOS pathfinder array, several
additional pieces of software will be required. Some of these, like the code to produce beam weights are already
developed and in operation at other facilities but others are not commonly used elsewhere and require careful
development. In particular, effort is required to de-risk the filterbank inverter that will be required to convert
the channelised dual-polarisation voltage beams back into pure wide-band time-domain signals as is required
for their use in VLBI experiments. This work has already begun and results are expected in a few months.

Figure 6.3: Number of GPUs vs number of beams

References

1. J. P. Smith et al., "A High-Throughput Oversampled Polyphase Filter Bank Using Vivado HLS and PYNQ on
a RFSoC," in IEEE Open Journal of Circuits and Systems, vol. 2, pp. 241-252, 2021, doi:
10.1109/OJCAS.2020.3041208.

2. Romein, J. W., “The Tensor-Core Correlator” in A&A, 656, A52, 2021, dio: 10.1051/0004-6361/202141896
3. N. Esser, Y. Men, 2024 “Device Evaluation for the CryoPAF CBF”, Unpublished internal institute document,

https://argos-cloud.ia.forth.gr/index.php/s/nBmHAX76oLSPDMP

