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Abstract  

This deliverable discusses the state-of-the-art related to the use cases considered in the project, as 
well as relevant synthetic data modelling techniques to be used for elaboration of use cases. Based on 
multiple data-, modelling-, and stakeholder-related criteria, two promising use cases were selected for 
further elaboration in the project. The literature review serves as a starting point for the activities in 
WP3 (Synthetic Data Generation for Multivariate Time Series for ATM-automation) and WP4 (Universal 
Time Series Model for Prediction and Data Generation for ATM-automation), based on the selected 
use cases. 
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Executive summary 

This document describes the state of the art on the use cases considered in SynthAIr project, as well 
as on synthetic data modelling techniques to be applied for these cases. Five use cases were introduced 
in the SynthAIr Description of Action: prediction of turnaround time (UC1), flight delay prediction 
(UC2), passenger flow prediction (UC3), synthetic traffic generation (UC4), and flight diversion 
prediction (UC5). The related work on these use cases was reviewed both with respect to synthetic 
data generation approaches, as well as downstream tasks such as prediction and forecasting.  

We can conclude from the literature review study that synthetic data generation in relation to the 
considered use cases was mostly done using classical statistical and simulation-based approaches. AI-
based synthetic data generation approaches have been used only to a limited extent, mostly for 
generation of air traffic (UC4). On the other hand, many studies were performed for the downstream 
tasks related to the considered use cases, such as prediction and forecasting, which are however, not 
the central problems considered in SynthAIr. Therefore, although we provide a review of existing 
literature related to the downstream tasks in the context of the considered use cases, we do not aim 
at completeness. We also review open aviation databases that could be useful for training synthetic 
data generation models. 

The state-of-the-art review was also done for synthetic data generation methods. Next to more 
traditional approaches, based on statistical analysis and simulation, we also reviewed more recent AI-
based generative modelling techniques, such as autoencoders, Generative Adversarial Networks, and 
diffusion models, to be used in this project. Furthermore, we described some exemplary applications 
of generation modelling techniques in other domains. 

Based on multiple selection criteria divided in 5 categories: Data, Analysis and Modelling, Integration, 
Stakeholders, and Validation, the most promising use cases were selected for further elaboration in 
the project. For this selection, an important contribution was obtained from interviews with several 
aviation stakeholders (airports, airlines, air navigation service providers, air transport researchers). For 
further elaboration we selected two use cases: flight delay prediction (UC2) and flight diversion 
prediction (UC5). UC4 might be considered in the future as an extension of UC2. UC3 is also considered 
as an option, because of its relevance to many stakeholders, however, it highly depends on the 
availability of data for model training, which is both confidential and privacy-sensitive. In addition, U-
space-related cases might be considered in SynthAIr, which were not a part of the original proposal. 
We will apply state of the art generative modelling techniques to the selected use cases in WP3 
(Synthetic Data Generation for Multivariate Time Series for ATM-automation) and WP4 (Universal 
Time Series Model for Prediction and Data Generation for ATM-automation). 
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1 Introduction 

1.1 Purpose of this document 

This deliverable introduces the problem of synthetic data generation using AI techniques and provides 
an overview of related work on the topics related to the project. More specifically, we review related 
work on the use cases considered in SynthAIr: prediction of turnaround time (UC1), flight delay 
prediction (UC2), passenger flow prediction (UC3), synthetic traffic generation (UC4) and flight 
diversion prediction (UC5), and open data that could be used for these cases. Moreover, we describe 
modelling and computational AI techniques for synthetic data generation, which could be used in the 
context of the considered use cases. We also reviewed other projects related to SynthAIr to identify 
possible links and learn from their results. Furthermore, based on a number of selection criteria and 
using findings from related work, we choose use cases which will be further elaborated in SynthAIr.  

1.2 Scope 

The state of the art review is done for both the use cases described in the SynthAIr project proposal, 
as well as AI modelling techniques for synthetic data generation, which could be used for these use 
cases. While reviewing the use cases in the existing literature, we considered both existing synthetic 
data generation approaches which were used for these use cases, as well as the downstream tasks, 
such as prediction and forecasting related to these cases. We also reviewed existing research on how 
synthetic data generation techniques were used in other application domains. We reviewed aviation 
open data sources that could be used for the use cases. Based on all this related work, using a number 
of selection criteria, which include modelling-related, data-related, and stakeholder-related 
categories, we chose use cases to be further elaborated in the SynthAIr project. 

1.3 Structure of the document 

In Section 2 basic principles of synthetic data generation are explained. The state of the art on the use 
cases considered in SynthAIr is discussed in Section 3. Section 4 considers open databases which could 
be used for modelling of the use cases. In Section 5 a state of-the art of existing AI-based synthetic 
data generation techniques is provided, also considering their application in other domains. Section 6 
discusses the selection of use cases to be further considered in the project, based on the reviewed 
related work. Finally, related projects are considered in Section 7. 
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2 Motivation for synthetic data generation 

In the area of Artificial Intelligence (AI) and Machine Learning (ML), data are fundamental for algorithm 
development and effectiveness. The surge in data-centric technologies has escalated the demand for 
extensive datasets that are not only important for algorithm training but also for ensuring their 
performance. This increasing need for large volumes of data is met with considerable challenges. Strict 
data privacy laws, such as the General Data Protection Regulation (GDPR), regulate the use of personal 
data stringently. In parallel, the difficult of data access in some domains, coupled with biases in existing 
datasets, can severely constrain the capacity and expansiveness of AI and ML applications. More in 
detail, the advancement and adoption of AI and ML is related to the data access problem that refer to 
the problems of data quality, scarcity, privacy, and fairness. More in detail: 

- Data Quality: The assurance of high data quality remains a challenge. Models trained on data 
that is noisy, incomplete, or incorrect are prone to produce unreliable or inaccurate 
predictions. This misleads the training process, resulting in algorithms that are unable to 
generalize well to new data, thus compromising their utility in real-world applications. 

- Data Scarcity: A substantial obstacle in AI development is the lack of sufficient data. Many 
domains suffer from a dearth of accessible datasets, either due to the nature of the field or 
prohibitive costs associated with manual data labelling. This scarcity hampers the ability to 
train models effectively, especially for tasks that require extensive data to capture the 
characteristics of complex patterns. 

- Data Privacy and Fairness: Privacy concerns and the imperative for fairness restrict the 
availability of datasets in various sectors. Legal and ethical considerations often preclude the 
public release of data that could reveal sensitive information about individuals. This limitation 
has propelled the exploration of synthetic data as a feasible alternative. Synthetic data 
generation, when executed with rigor, can yield anonymized datasets that retain the statistical 
properties of the original data while adhering to differential privacy standards. These efforts 
are crucial for maintaining user privacy and ensuring that the resulting models do not 
perpetuate or amplify biases. 

Addressing these challenges is necessary to harness the full potential of ML. Ensuring that data is of 
high quality, readily available, and used ethically is fundamental for the adoption and evolution of AI 
technologies and their successful deployment across industries.  
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3 State of the art on the use cases 

In the Description of the Action, 5 use cases (UC) related to the operations of airports, ANSP and airlines 
were identified to be considered in the project: prediction of turnaround time (UC1), flight delay 
prediction (UC2), passenger flow prediction (UC3), synthetic traffic generation (UC4) and flight 
diversion prediction (UC5). Literature related to all these cases will be reviewed in the subsequent 
sections 3.1-3.5.  

Furthermore, based on multiple selection criteria divided in 5 categories (refer to Table 8): Data, 
Analysis and Modelling, Integration, Stakeholders, and Validation, the most promising use cases will 
be selected in section 6 for further elaboration in the project. 

So far, synthetic data generation using generative AI methods in application to air transport has been 
considered only to a limited extent. Therefore, most of the related work reviewed in the following 
subsections is on downstream tasks, such as prediction and forecasting, which is however, not the 
central problem considered in SynthAIr. Therefore, although we provide a review of important 
examples of downstream tasks in the context of the considered use cases, we do not aim at 
completeness. 

 

3.1 UC1: Prediction of turnaround time  

Turnaround time is the time between the aircraft is on-chocks until it is off-chocks, and is affected by 
several factors including the aircraft, the airline, the airport, weather and airport infrastructure.  Since 
the last decade, according to yearly EUROCONTROL’s Performance Review Reports, more than 40% of 
primary delay at airports is generated by the turnaround process. Past ATM research projects under 
and beyond SESAR have considered aircraft rotation at airports in a relatively aggregated way, i.e., 
from in-block to off-block, but rarely scrutinised the details of ground handling and turnaround 
process. At the same time, it is recognised in the European ATM Master Plan that there is a need to 
provide the airport stakeholders with early warning indicators of possible delays along the critical paths 
during the turnaround process, under the Operational Improvement AO-0818 on Extended 
Turnaround monitoring. Also, recent validation exercises on A-CDM, such as at Alicante regional 
airport reinforced the urgent need to increase the accuracy of the information exchanged with the 
Network Manager (NM) on the progress of the turnaround process to improve NM’s planning. For the 
accuracy improvement better prediction of the turnaround process is needed. Better turnaround time 
estimates allow smaller deviations from the actual turnaround times, resulting in reduced delays [1].  

The schedule of an aircraft turnaround can be divided into 5 main steps: boarding, fuelling, catering, 

cleaning and deboarding. Some steps are being executed in a strict sequence due to technical, legal or 

operational constraints. Other steps may be executed in parallel, such as boarding and baggage 

loading. The shortest path, measured in units of time, of parallel and sequential events yields the 

shortest turnaround time and is called the critical path. When processes on the critical path are 

delayed, the whole process is delayed. Each step of the turnaround procedure is a stochastic process 

depending on multiple factors, making the prediction of turnaround time a challenging problem. 

Turnaround time can be modelled at different levels of granularity for a given scope. The granularity 

spans from airport level to the level of each individual flight. While the scope can be as limited as the 

flights of a single airline in a single airport, or as general as all flights for a given category of airports.   
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A microscopic simulation-based approach to study turnaround and its impact on flight delays is 
proposed in [2]. Many important random factors influencing the duration of the turnaround were 
identified and quantified in this work. However, a limited dataset with aggregated data was used to 
calibrate the model at the microscopic level, which may impact the accuracy of the model predictions. 
Furthermore, it is not clear how generalizable is the developed model.  

Methods based on machine learning techniques, neural networks in particular, were used to predict 
turnaround time [3]. For the airport under study, the authors were able to achieve the prediction 
accuracy up to 10 minutes. The authors used Artificial Neural Networks (ANN) to predict the flight 
turnaround time of flights at a large international hub airport in China. In the ANN model only 7 
features are considered, namely: (1) aircraft stand (to account for distance for support vehicles), (2) 
aircraft type, (3) type of flight (domestic or international, accounting for immigration and custom 
inspections), (4) aircraft ground handler, (5) flight arrival time (to account for high turnaround 
demand), (6) number of arriving passengers and (7) number of departing passengers. With this low 
number of variables, the model was able to find the general trend in the data. It was not investigated 
whether or not the model can be generalizable for other airports too. 

In collaboration with an aircraft ground handler, Van Hassel [4] proposes a Process Structure Aware 
Prediction (PSAP) approach to predict the taxi-in and turnaround duration for Boeing 737 flights of a 
major European low-cost carrier at Eindhoven Airport in an interpretable manner. In the PSAP 
approach, the turnaround process is split into a set of activities of which the cycle time is predicted. 
For this, Van Hassel considers two algorithms: (1) Random Forest and (2) Multilayer Perceptron (MLP). 
In the PSAP framework, Van Hassel found that the performance can be considered equal between the 
models. In an aggregated approach, when the process structure is not explicitly defined, MLP proved 
to be more capable in estimating the turnaround duration. However, Van Hassel only considers a 
handful of processes and factors in his research. For example, transfer passengers are not included in 
the model, nor is aircraft catering and cleaning considered.  

Fricke and Schultz [1] present a statistical approach to determine the turnaround process duration. In 
the model, the turnaround process is split into five sub-processes, namely: (1) de-boarding, (2) cabin 
cleaning, (3) catering, (4) fuelling and (5) boarding. For every process, a Weibull or Gamma distribution 
(whichever describes the process best) is fit using operational data from a regional airport in the United 
States. Next, the critical path method (i.e. considering the sequential and parallel dependencies 
between turnaround steps) is used to obtain total turnaround process duration. In such a simplified 
model, only a handful of processes are considered, neglecting the influence of key turnaround process 
such as baggage and cargo (un)loading.  

Asadi et al. [5], based on research in [1], propose a novel analytical convolution method to predict the 
Target Off-block Time (TOBT) of a flight, taking into account uncertainties in the turnaround process. 
The turnaround process is split into various sub-processes. For each process, the authors use and, in 
some cases, (re)parameterize the Weibull or Gamma distributions obtained in [1]. Next, using 
analytical convolution the stochastic process times were obtained. Taking into account the parallel and 
sequential dependencies between the various processes, Asadi et al. apply analytical convolution to 
obtain the Estimated Off-Block Time (EOBT).  

Zhou et al. [6] present a deep learning approach using Gated Recurrent Units (GRU) to predict the 
departure time of a flight. Zhou et al. [236] train the model on data from a spoke airport in eastern 
China, comparable in size and passenger numbers to London Luton. In the model, Zhou et al. take the 
following into account: basic flight information (e.g. actual landing time, actual departure time), airport 
parameters (e.g., number of flights arriving and departing), weather and airline parameters. This 
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indicates that variables directly influencing the turnaround process are not taken into account. With 
respect to standard ANNs and Long Short-Term Memory (LSTM) neural networks, Zhou et al. found 
that neural networks with GRUs show higher predictive performance on their data sets. 

In collaboration with a small (non-hub) airport and a Scandinavian full service carrier, Halmesaari [7] 
presents an explainable aggregated machine learning approach to predict the aircraft ground handling 
process duration. The approach consists of two steps: (1) obtaining a prediction of the turnaround 
process duration using a gradient boosted tree-ensemble regression model, XGBoost, and (2) 
extracting explanations from the model using a post-hoc explanatory framework, SHAP. One of the 
limitations in Halmesaari’s study is the lack of data. Although the author found that in most cases the 
turnaround duration can be described by only a few variables, in cases where the turnaround is 
significantly longer than the scheduled duration the available data is not able to describe this 
discrepancy. Furthermore, provided the size and (special) characteristics of the airport considered in 
Halmesaari’s work, it is doubtful that the proposed model and findings could be well generalized to 
other airports. 

In their work, Luo et al. [8] aimed to forecast the duration of the turnaround process and aircraft off-
block adherence in two separate models. To this end, they used data on the duration of the turnaround 
sub-processes obtained using computer vision techniques applied on camera images. These data, 
which were partial and prone to errors, were extended with a synthetic dataset obtained using an 
agent-based simulation model, which simulated the turnaround (sub-)processes based on actual data 
and domain knowledge. Unfortunately, due to data confidentiality, no further details were provided 
on the performance of the model. To forecast the duration of the turnaround process and confirm off-
block adherence, Luo et al. trained various tree-based models on the synthetic and available data. As 
a side result, Luo et al. found that representing the (sub-)process durations by separate features (e.g. 
first passenger in, last passenger in) yields higher model performance. 

Asadi and Fricke [9] employ fuzzy logic to predict the turnaround time of a flight. First, they 
transformed the probability distributions of (sub-)processes into a cumulative density function, which 
is mathematically equivalent to the fuzzy membership function. Next, they combined fuzzy logic and 
the critical path method to make an estimate of the turnaround time of a flight, taking into account 
the main turnaround processes. However, the approach suffers from some significant limitations. For 
example, only triangular and trapezoidal fuzzy membership are considered in the model, yielding an 
inherent loss of accuracy, as not every cumulative density function can be accurately described by such 
functions. 

There are only few airports and airlines which collect detailed quantitative data about the steps of the 
turnaround process. Among them is Schiphol airport with its Deep Turnaround project. Furthermore, 
in [10] an approach based on deep learning and computer vision is proposed for detecting and 
monitoring turnaround activities. However, datasets collected using such approaches are not openly 
available. An approach described in [11] merges OpenSky data with EUROCONTROL’s CPR data to 
produce off-/on-block time among other estimates.  In this case, the turnaround process is modelled 
at a higher aggregation level. 

In the reviewed literature, synthetic data is generated using (agent-based) simulation models, 
calibrated using limited real datasets and expert opinion. 

3.2 UC2: Flight Delay Prediction 
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Flight delay is widely recognized as a critical performance indicator of air transport systems in aviation 
industry [12]. In literature, primary and secondary delays are distinguished. There exist several 
definitions for primary delay. 

Beatty et al. [13] described it as initial delay, the delay which is initially created by the aircraft itself or 
its conditions. Furthermore, AhmadBeygi et al. [14] referred to this delay as root delay - the source of 
propagation throughout the network. This root delay is independent of any other delay created earlier 
on.  

Propagated delay can be caused by four main reasons, namely, aircraft rotation, aircraft equipment, 
crew rotation, and transferring passengers. Lan et al. [15] defines propagated delay as delay that 
occurs when the aircraft is delayed on a prior flight. However, this definition only covers aircraft 
rotation and ignores the effects of crew rotation or transferring passengers. Kafle and Zou [16] stated 
that propagated delay occurs if connected resources are delayed in a flight downstream. This definition 
is more broad and is able to cover, not only delay caused by aircraft rotation, but also crew, passenger 
and airport resources. In Europe, the term reactionary delay is commonly used, whereas in the U.S., 
the term propagated delay or delay propagation is generally used. 

According to the Bureau of Transportation Statistics of the US, the causes of delay can be categorized 
in five main categories, namely, air carrier delay, extreme weather delay, National Aviation System 
(NAS) delay, security delay, or late-arriving aircraft [17].  

In the category air carriers, delays arise due to circumstances which are accountable to the operating 
airline, such as maintenance or crew uncertainties, unloading of baggage, aircraft cleaning, or other 
day-to-day operations, which involves the preparation of next flight. According to the Bureau of 
Transportation Statistics of the US, the category air carrier is the largest category and accounts for 32% 
of delays in the year 2022. 

The extreme weather category presents all delays caused by significant meteorological conditions, 
which prevent the aircraft from flying or could delay the flight, such as tornadoes, blizzards, or 
hurricanes. Extreme weather is accountable for approximately 3% of flight delays. 

The NAS category covers a broader set of causes which are all related to the national aviation system, 
such as non-extreme weather, volume restrictions, equipment problems, closed runway, or other 
reasons. The National Aviation System delays are monitored by the FAA and are recorded in a different 
database, called the Operations Network (OPSNET). This category is accountable for approximately 
21% of flight delays. All non-extreme weather conditions, which are included in this category, could be 
mitigated, if improvements would be made to the NAS’s capacity. 

The fourth category of delay is due to aircraft arriving late, causing the flight at hand to depart late. 
This category accounts for roughly 30% of all delays in the national aviation system. 

The last and the smallest part of delays is triggered by a security breach and only account for 0.3% of 
all delay caused in a year. 

Jacquillat and Odoni [18] identified that delay propagation models fit in three main categories, namely, 
microscopic, mesoscopic, and macroscopic models. Microscopic models treat aircraft separately and 
consider a detailed layout of the analysed airport and its movements on the ground. Due to this high 
level of complexity, microscopic models are not well-suited for analysing the dynamic behaviour of 
delays of the overall network. 
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Mesoscopic models predict airport operations by using operational data, such as the runway 
configuration in use, the short-term demand or the ground vehicle schedule. Many machine learning 
studies fit into this category. Mesoscopic models heavily rely on operational data per airport and are 
therefore less suitable when modelling delay propagation on a larger scale. 

Lastly, macroscopic models are defined at an airport level and thus make it possible to capture the 
effects of the whole network on for example flight schedules, airports capacities and the propagation 
of delays. In the literature, these models have been used to model a network of airports [19], often 
using machine learning-based studies. 

Comprehensive reviews on flight delay prediction methods can be found here [12], [20]. 

A flight delay prediction model, if employed appropriately, can help commercial airports to reduce 
negative impacts of undesirable congestion, without necessarily investing in logistics and airport 
capacity development. The resulting decision support system is expected to be embedded within the 
flight information systems of commercial airports and integrated with their existing delay prediction 
engine. This ultimately can enable connected airports to collectively alleviate flight delay propagation 
within their network through collaborative efforts, such as sharing relevant information and 
synchronizing their delay predictions at regular intervals. 

In most of the papers reviewed, real data were used to train and validate flight delay prediction models 
from open databases such as Airline On-Time Performance Data at http://www.transtats.bts.gov and 
EUROCONTROL R&D archive. No generative AI methods in application to this use case were found in 
the reviewed literature.  

 

3.3 UC3: Passenger Flow Prediction 

Passengers are an important source of uncertainty in air traffic management and airport operations. 
More than 50% of delayed flights are caused by passengers boarding late or not at all. These delayed 
flights cause instability in the overall air traffic planning. In particular, recurring issues with 
management of passenger flows at Amsterdam Schiphol Airport in summer 2022 resulted in 
cancelation of thousands of flights. In recent years, with the rapid growth of airport passenger flow, 
airport terminal processes such as security inspection, emergency response, check-in, baggage 
handling are facing tremendous pressure. In the process of transforming airports into ‘smart’ and 
‘digital’ operations, airports must accurately anticipate changes in the number of passengers and their 
flows in the terminal to improve the quality of service, achieve efficient business operations and 
rationalize the allocation of resources.  

Airport terminals serve as a gateway between the landside and the airside, with security procedures 
forming the interface between these two areas. The landside is freely accessible to everyone, while 
the airside can only be accessed by passengers and employees after passing through the security 
checkpoint. Important airport terminal activities include: 

- Passenger arrival at the airport 

- Check-in: the flight ticket and passport/ID of a passenger are submitted at the counter. Nowadays 
only the passport/ID is sufficient to allow the passenger to be checked-in and to hand over the boarding 
pass. Additionally, the luggage that must be checked-in is weighed and, if the weight limit is not 
exceeded, transported away by the baggage handling system. When the weight limit is exceeded, an 
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additional fee needs to be paid. To speed up the process, automatic self service check-in kiosks are 
increasingly used. Check-in may create a bottleneck in the flow of passengers when insufficient 
resources are allocated to it. 

- Security check: at a security checkpoint, passengers and their cabin luggage are being checked for 

illegal items, such as weapons and flammable fluids. The screening of passengers and their luggage is 

done by both detection machines (e.g., X-ray machines) and manual checks by security agents. In some 

cases, additional, manual check of cabin luggage is required. The security checkpoints often represent 

an important bottleneck in a passenger flow. Even before the 9/11, security checkpoints naturally 

created a bottleneck in passenger flow, as all passengers had to pass through them. However, post 

9/11, due to significantly heightened scrutiny, throughput rates drastically decreased. Airports attempt 

to maintain the minimum number of open lanes necessary to meet throughput requirements; 

however, this often leads to long queues, with 70% of passengers reporting such a perception. Being 

able to predict queueing time of passengers and to allocate airport resources accordingly is important 

for the performance improvement of the airport terminal. The prediction accuracy depends on many 

factors, among which delayed flights, issues with other connected modes of transportation such as 

trains, insufficient airport capacity, passenger characteristics, uncertainty related to connected 

passengers. 

- Passport control: during the passport control, the identity of the passenger is checked, and security 

is ensured. This activity may also create a significant bottleneck in the flow of passengers. Airports 

cannot control this activity directly, as it is under the responsibility of the national gendarmerie and 

national police forces, for which security, and not necessarily efficiency, is the main priority.  

- Discretionary activities such as retail, food, and beverages generate a significant amount of non-

aeronautical revenue within the aviation industry. Discretionary activities affect passenger flow and 

global airport terminal performance. 

- Passenger boarding/deboarding: During boarding, the boarding pass and ID of the passenger is 

checked one final time and most of the time, the passenger can then board the aircraft. Sometimes 

however, the operator responsible for boarding can ask the passenger to check-in the cabin luggage 

such due to a lack of cabin space. When this occurs, the boarding process is disrupted which can cause 

problems in terms of delays. 

To model and analyse airport terminal processes often two classes of models are used: simulation-

based models [21], [22] and data-driven models [23], [24]. Some of these models aim at prediction of 

passenger flows. In [25] four types of passenger flow prediction were identified: time series models, 

causal models, artificial intelligence models, and hybrid models. 

Time series forecasting techniques comprise a wide array of statistical methods designed to predict 

future values using historical data. These approaches span from basic moving average models to 

intricate ARIMA and GARCH models. In [26] Dynamic Tobit models and Generalised Autoregressive 

Conditional Heteroskedasticity (GARCH) were employed to forecast monthly arrivals of domestic and 

international passengers at Corfu Airport in Greece. The combined model utilised 20 years of time 

series data, incorporating variables such as the number of arrivals, European GDP per capita, Greek 

GDP per capita, and disposable income. In [27] a SARIMA model was used, which combines 

autoregressive, moving average, and seasonal components to predict arrivals at the security 
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checkpoint. However, this method is inherently incapable of utilising flight schedule information, 

which carries significant value for refining arrival rate estimates. In [28] the authors focused on 

forecasting monthly passenger arrivals on a longer time horizon by employing methods such as moving 

average, single exponential smoothing method, Holt method, and Holt-Winter method. The objective 

was to estimate the required daily shuttle service levels, using relatively simple time series techniques 

as input to enhance operational and strategic level resource allocation. 

In [29] boarding card data are used to estimate individual passengers Time To Departure arrival 

distributions for individual flights, which are then combined to determine the overall short-term arrival 

rate at a checkpoint. The study found that the Weibull distribution provides the best fit to the TTD 

arrival distribution from among Gaussian, Poisson, Gamma, and Lognormal distributions. However, the 

goodness of fit for the Weibull distribution is not thoroughly investigated.  

In [30] proposed a causal approach to forecasting arrival rates, based on system dynamics. This 

technique employs historical data to estimate dwell times in three primary airport areas: check-in hall, 

security area, and departure hall. A gamma distribution is fitted to represent the probability of the 

duration a passenger spends in each section of the airport. Using scheduled flight departures and the 

estimated number of passengers, it becomes possible to estimate the arrival rate in each airport area. 

However, this approach assumes homogeneity of all passengers. Furthermore, the dwell time 

distributions are assumed to be static, without any variation throughout the day.  

In general, while causal models present opportunities for improving short-term forecasting by 

incorporating external information and capturing non-linear relationships, their limitations, such as 

the need for high-quality input variables, their selection and extensive fine-tuning, are often 

problematic.  

Detailed real data on passenger flows at airports are rarely available in open access. In [31] timing data 

on the security checkpoint process was provided. The reported data are related to passenger arrival 

times, X-ray image inspection times, decision type (cleared or not-cleared), physical search service 

times, and explosives trace detection service times. However, they do not report data that specifies 

how long passengers take to drop or collect luggage. Furthermore, the passenger type is not included 

either in their dataset. The authors only provide summary figures that describe the data, but do not 

provide the raw data. To the best of our knowledge, no security checkpoint dataset with a large 

amount of details exists is available in literature. One of the exceptions is a limited dataset provided in 

[23]. Data was collected for 13 different security checkpoint lanes, in 11 blocks of time. In many of 

these time blocks, data for a single lane was collected, while multiple lanes were open. A total of 2277 

passengers, flying to 16 different destinations with 48 flights were followed. Three types of lanes were 

considered: standard, normal and service lanes. Data for standard lanes was gathered between 23 

February 2018 and 17 April 2018, while data for normal and service lanes was collected on the 

experimental days: 17 December 2018 and 18 December 2018. Their analysis showed important 

differences between six identified passenger types.  

Obtaining real data for passenger flow prediction is often problematic, as many existing airports are 
not equipped with necessary sensor technology to track passenger flows. Furthermore, passenger 
privacy aspects may also create additional obstacles for data collection. Detailed data about passenger 
flows are not publicly available. Existing passenger flow prediction models are often based on 
simulators calibrated using limited sets of real data. 
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3.4 UC4: Synthetic traffic generator for (fast and/or real-time) simulations 
purposes 

Real-time simulations, on the one hand, commonly consist of a sequence of exercises. Each exercise 
represents a particular combination of conditions referred to as organisation (e.g., todays vs. advanced 
ATC tool support) and each organisation is commonly repeated multiple times across the whole 
sequence of exercises.  

Performance metrics are computed for each organisation by computing a statistic (e.g., mean or 
median workload scores) across all the exercises within an organisation for the participants operating 
the controller working positions of sectors of the measured airspace. Inferences regarding 
benefits/concerns related to the change elements under scrutiny are sought by comparing 
performance metrics between organisations. In experimental design terminology, a real-time 
simulation is most often executed as a repeated measures experimental design. This means that the 
same group of participants perform the exercises of all conditions. Inferences on the differences 
between conditions, here organisations are complicated by the presence of systematic sequential 
effects. For instance, controllers become more and more familiar with the simulated traffic situations. 
They recognise previously experienced traffic patterns; they more easily anticipate the evolvement of 
traffic and hence identify and resolve conflicts with less effort and a higher degree of situational 
awareness. A solution to counteract the invalidating impact of sequential effect consists of using 
adequate traffic samples. Generating new traffic conditions with similar complexity, however, is a very 
tedious and time-consuming tasks currently performed by human experts.  

Fast-time simulations, on the other hand, are frequently employed to test new ATM concepts (e.g., a 
new airspace design) or train reinforcement learning algorithms (e.g., to develop decision-support 
tools for air traffic controllers).  

In the former case, Monte Carlo experiments with variable traffic conditions are widely applied to 
produce statistically significant results, with the parameters that determine a traffic condition 
rigorously randomised according to pre-defined probability distributions. In the latter case, variability 
in traffic conditions is essential for achieving a policy that generalises across multiple scenarios (even 
those not seen during the learning process). However, generating random yet representative traffic 
conditions is difficult and requires a thorough understanding of the characteristics that describe traffic 
conditions including their distributions. As a result, the appropriateness of the parametrisation as 
defined by the humans who design the experiment limits the representativeness of the created traffic 
conditions. 

One of the most commonly used approaches for synthetic air traffic generation is based on generating 
simplified flight trajectories from extrapolated flight plan databases [32] using statistical methods. It 
provides a good balance between constant aircraft sets and recorded real data. More specifically, the 
following approach is followed in [32]: For each hour of a reference day, the number of flights between 
any two European airports is used as basis for the calculation of the hourly aircraft generation rate for 
each pair of source and destination airports. The number of flights is extrapolated by applying growth 
factors to the aircraft generation rates. On the basis of the hourly aircraft generation rates and the 
per-country EUROCONTROL growth factors, a reference day of synthetic average European air traffic 
for a year was generated. Flights were simulated in an asynchronous distributed way. The simulation 

https://www.sesarju.eu/


D2.1 STATE OF THE ART 
Edition 00.02.00  

Page | 17 

© –2024– SESAR 3 JU 

 

of each flight trajectory was implemented in an asynchronous time-stepped manner. Similar 
approaches for traffic generation were proposed in [33], [34]. 

In [35] an air traffic generator is proposed, which uses traffic patterns from real data, and produces a 
set of synthetic flights consistent with these data. Traffic pattern data contain a list of deterministic 
and probabilistic patterns with respect to several aspects such as flight periodicity, route and 
significant points. 

Generative AI methods have also recently been used for air traffic generation. In particular, variational 
autoencoders were used in [36] to generate 4-dimensional aircraft trajectories modelling using 
Temporal Convolutional Networks and a prior distribution composed of a Variational Mixture of 
Posteriors. The proposed model has been trained on trajectories in the Terminal Manoeuvre Area of 
Zurich airport. The model has demonstrated abilities to generate complex and realistic trajectories. 
However, the authors note that the approach has difficulties generating trajectories based on 
uncommon events (e.g., go-arounds). In particular, the approach can generate realistic tracks based 
on events which are common in training data like holding patterns, but not go-arounds. 

3.5 UC5: Flight diversion prediction 

When an aircraft is unable to land at its original destination airport, it is diverted to an alternate airport. 
This event has economic and operational implications for airspace users. The fleet and crew schedules 
may be severely disrupted, and passengers and/or cargo must be transported as soon as possible to 
their original destination.  

Diversions are also undesirable from the standpoint of the airport. When a massive number of flights 
are diverted to airports that are operating at or near capacity, they risk becoming critically overloaded. 
Diversions are triggered by many reasons, including adverse weather (e.g., low visibility), medical 
emergencies, unruly passengers, and technical problems. Recent work proposed a model that could 
assist in determining flights that are likely to divert because of adverse weather conditions at the 
destination airport. The model was trained via confident learning on four years of historical data, with 
the goal of pruning flight diversions caused by events other than weather. The reasoning was that 
these diversions are likely to be unpredictable, so the model should not attempt to learn them. Each 
of the observations was labelled as positive if the corresponding flight was diverted and negative 
otherwise, i.e., the model solved a binary classification task. According to aggregated performance 
metrics, the model has a high precision with a moderate recall, indicating that it is conservative but 
could miss some of the diversions. These limited performance indicators could be attributed to an 
underrepresentation of positive observations, which account for only 0.2% of the whole training 
dataset. 

Machine learning models were used for flight diversion prediction. In particular, in a tree-based model 
was proposed in [37] which learned which flights are more likely to be diverted due to adverse weather 
conditions at the destination airport using historical traffic and weather data. The proposed model 
demonstrated high precision and moderate recall. 

In supervised clustering method is proposed in [38] which combines feature attribution, dimensionality 
reduction, and clustering algorithms to identify the most representative features for characterising 
flight diversions due to weather and highlighting situations where predictions require careful 
consideration.  
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In [39] an approach for automated detection and prediction of diverted flights is proposed based on 
Support Vector Machines using publicly available data. The technique is able to classify a flight as 
diverted with a high accuracy, when the aircraft displays anomalous behaviour for an extended period 
of time. 

No related literature on using generative AI methods for this use case was found. 
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4 Available open data 

In this section we review several open databases available online and discuss their relevance to the 
use cases considered in SynthAIr. 

4.1 EUROCONTROL R&D Archive data 

EUROCONTROL shares flight data for research and development purposes, but users must agree to 
some rules. These include using the ATM Dataset only for research, not sharing or distributing it, 
acknowledging EUROCONTROL as the source, and understanding that the data comes as-is without 
any guarantees. The dataset covers historic commercial flights in fixed sample months of specific years, 
with a two-year delay before release. 

The information about flights and their paths over points and airspaces comes from the flight plans 
submitted by airlines and other aircraft operators to EUROCONTROL Network Manager (NM). The 
NM's ATFM systems also generate flight profiles. All instrument flight rules (IFR) flights within the NM 
Area are required to submit their flight plans to NM. However, the point and airspace profile data in 
the ‘actual’ version of the data includes some updates from radar observation of the flight’s path.  
Flight data only includes flights of ICAO types ‘S’ (scheduled) and ‘N’ (non-scheduled flight), excluding 
ICAO types of General aviation, Military and Other. 

This database is formed from data collected from commercial flights operating in and over Europe. 
Furthermore, the collected data is enriched with live data from air navigation service providers' flight 
data systems, radar, and datalink communications. Moreover, additional data sources are used such 
as information about the route network. 

Among the available datasets are: 

• Detailed flight information. 

• Flight trajectories (planned and actual). 

• Airspace structure. 

• Route network information. 

 

The content of the single datasets is described below. 

ECTL_ID Unique numeric identifier for each flight in EUROCONTROL PRISME DWH 

ADEP ICAO airport code for the departure airport of the flight. The ICAO airport code or 
location indicator is a four-letter alphanumeric code designating each airport around 
the world. These codes are defined by the International Civil Aviation Organization 
and published in ICAO Document 7910: Location Indicators. 

ADEP Latitude Latitude of departure airport in decimal degrees. 

ADEP Longitude Longitude of departure airport in decimal degrees. 
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ADES ICAO airport code for the destination airport of the flight. The ICAO airport code or 
location indicator is a four-letter alphanumeric code designating each airport around 
the world. These codes are defined by the International Civil Aviation Organization 
and published in ICAO Document 7910: Location Indicators. If a flight is diverted, 
then the ADES will be the actual airport where it landed. 

ADES Latitude Latitude of destination airport in decimal degrees. 

ADES Longitude Longitude of destination airport in decimal degrees. 

 

Filed Arrival Time Time of arrival (UTC) based on the last filed flight plan. It is the time at which the 
aircraft will land at the aerodrome according to the planned profile calculated for 
the flight. 

Actual Off-Block Time Off-Block Time (UTC) based on the ATFM-updated flight plan. The time that an 
aircraft departs from its parking position. This time may be known from flight data 
updates received by NM, or in the absence of such updates may be calculated from 
the known take-off time minus a standard taxi time value for the airport. 

Actual Arrival Time Time of arrival (UTC) based on the ATFM-updated flight plan. It is the time at which 
the aircraft lands at the aerodrome, reflecting the best picture that NM has based 
on available radar updates, ATFM messages received etc. 

AC Type The ICAO aircraft type designator is a two-, three- or four-character alphanumeric 
code designating every aircraft type that may appear in flight planning. These codes 
are defined by the International Civil Aviation Organization and published in ICAO 
Document 8643 Aircraft Type Designators. 

AC Operator Three-letter ICAO operator code. Aircraft operator codes are defined by ICAO and 
published in Document 8585. If the operator is unknown, not provided in the flight 
plan or not present in Document 8585 the value will be "ZZZ". 

AC Registration Aircraft registration. In accordance with the Convention on International Civil 
Aviation, all civil aircraft must be registered with a national aviation authority (NAA) 
using procedures set by each country. Every country, even those not party to the 
Chicago Convention, has an NAA whose functions include the registration of civil 
aircraft. An aircraft can only be registered once, in one jurisdiction, at a time. The 
NAA allocates a unique alphanumeric string to identify the aircraft, which also 
indicates the nationality of the aircraft, and provides a legal document called a 
Certificate of Registration, one of the documents which must be carried when the 
aircraft is in operation. 

ICAO Flight Type ICAO Flight Type: S – Scheduled, N - Non-scheduled commercial operation 

STATFOR Market 
Segment 

Market segment definitions can be found in 
http://www.eurocontrol.int/sites/default/files/content/documents/official-
documents/facts-and-figures/statfor/statfor-market-segments-rules-for-sid-2016-
definition.xls 

Requested FL Requested cruising flight level from the flight plan. 
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Actual Distance Flown 
(nm) 

Distance flown in nautical miles, corresponding to the ‘actual’ profile below. 

Table 1: Flights File - flight details from EUROCONTROL Network Manager flight plans in PRISME Data 
Warehouse (DWH) 

 

ECTL_ID As in Flights file above 

Sequence Number Numeric sequence number of the points crossed by the flight in chronological order. 
(Points can be not only known named waypoints, navaids, etc. but also intermediate 
points inserted by NM profile-generation processes.) 

Time Over Time (UTC) at which the point was crossed 

Flight Level Altitude in flight levels at which the point was crossed 

Latitude Latitude in decimal degrees 

Longitude Longitude in decimal degrees 

Table 2: Filed flight points. Actual flight points are also provided as for the filed ones 

 

ECTL_ID As in Flights file above 

Sequence Number Numeric sequence number of the airspace entered by the flight in chronological order 

FIR ID The identifier of the FIR 

Entry Time Time (UTC) the flight entered the airspace 

Exit Time Time (UTC) the flight exited the airspace 

Table 3: Filed flight airspaces. Actual flight airspaces are also provided as for the filed ones 

 

ECTL_ID As in Flights file above 

Sequence Number Numeric sequence number of the airspace entered by the flight in chronological 
order 

AUA ID The identifier of the AUA 

Entry Time Time (UTC) the flight entered the airspace 

Exit Time Time (UTC) the flight exited the airspace 

Table 4: Filed ATC unit airspaces. Actual ATC unit airspaces are also provided as for the filed ones 
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External ID Unique ID of the AIRAC cycle. AIRAC stands for Aeronautical Information Regulation 
And Control and defines a series of common dates and an associated standard 
aeronautical information publication procedure for States. It consists of four digits. 
The first two digits represent the year in which the AIRAC was published. The third 
and the fourth digits represent the sequential number of the AIRAC cycle. 

Date From First date at which AIRAC data is valid. 

Date To Last date at which AIRAC data is valid. 

Table 5: Information about AIRACs (Aeronautical Information Regulation And Control) 

 

Route ID Unique route identifier. According to ICAO Annex 11 basic designators for ATS routes 
shall consist of a maximum of five, in no case exceed six, alpha/numeric characters 
in order to be usable by both ground and airborne automation systems. The 
designator shall indicate the type of the route: high/low altitude, specific airborne 
navigation equipment requirements (RNAV), aircraft type using the route primarily 
or exclusively. A. The basic designator consists of one letter of the alphabet followed 
by a number from 1 to 999. The letters may be: 1. A, B, G, R — for routes which form 
part of the regional networks of ATS routes and are not area navigation routes; 2. L, 
M, N, P — for area navigation routes which form part of the regional networks of 
ATS routes; 3. H, J, V, W — for routes which do not form part of the regional networks 
of ATS routes and are not area navigation routes; 4. Q, T, Y, Z — for area navigation 
routes which do not form part of the regional networks of ATS routes. B. Where 
applicable, one supplementary letter shall be added as a prefix to the basic 
designator as follows: 1. K — to indicate a low level route established for use 
primarily by helicopters; 2. U — to indicate that the route or portion thereof is 
established in the upper airspace; 3. S — to indicate a route established exclusively 
for use by supersonic aircraft during acceleration/deceleration and while in 
supersonic flight. C. Where applicable, a supplementary letter may be added after 
the basic designator of the ATS route as a suffix as follows: 1. F — to indicate that on 
the route or portion thereof advisory service only is provided; 2. G — to indicate that 
on the route or portion thereof flight information service only is provided; 3. Y — for 
RNP1 routes at and above FL200 to indicate that all turns on the route between 30 
and 90 degrees shall be made within the tolerance of a tangential arc between the 
straight leg segments defined with a radius of 22.5 NM; 4. Z — for RNP1 routes at 
and below FL190 to indicate that all turns on the route between 30 and 90 degrees 
shall be made within the tolerance of a tangential arc between the straight leg 
segments defined with a radius of 15 NM. 

Sequence Number Numeric sequence number of a point on the route 

Latitude Latitude in decimal degrees of a point on the route 

Longitude Longitude in decimal degrees of a point on the route 

Table 6: Information about the routes 

 

Airspace ID Unique identifier of the FIR (could also be a UIR, Upper Information Region) 
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Min Flight Level Minimum vertical boundary of the airspace volume expressed as a flight level, 
repeated for each point 

Max Flight Level Maximum vertical boundary of the airspace volume expressed as a flight level, 
repeated for each point 

Sequence Number Numeric sequence number of a boundary point of the FIR's shape 

Latitude Latitude in decimal degrees 

Longitude Longitude in decimal degrees 

Table 7: Flight Information Regions (FIRs) 

 

EUROCONTROL R&D Archive data OpenSky can be useful as one for modelling use cases UC2, UC4 and 
UC5. 

 

4.2 OpenSky 

The OpenSky Network is a community-based receiver network which continuously collects air traffic 
surveillance data (specifically, ADS-B and Mode S messages) and makes it available to researchers. 
OpenSky works with off-the-shelf sensors run by volunteers distributed over Central Europe. As noted 
in [40], more than 30 % of Europe’s commercial air traffic is captured in OpenSky. In contrast to the 
existing services offering live visualization of air traffic on Internet (e.g., Flightradar24), OpenSky offers 
access to the historical raw data necessary for independent research. 

OpenSky collects the following primary data of ADS-B-equipped aircraft: aircraft identification, its 
position and velocity. In addition to the aircraft state vector, some aircraft also broadcast status 
messages that contain information on emergencies, priority, capability, navigation accuracy category, 
and operational modes. Furthermore, OpenSky stores metadata for each message, including 
timestamp of the reception, the receiving sensor’s ID, the ADS-B checksum, and the raw message as a 
hex string. 

OpenSky provides an initial abstraction of the data by separating messages from any aircraft into 
flights. It can be used represent real movement of aircraft in the air space, and thus, to model aircraft 
routes and traffic density. 

OpenSky database is not sufficient as the data source for any of the use cases considered in SynthAIr, 
however, it can be useful as one of the data sources for the use cases UC2, UC4 and UC5. 

4.3 BTS database 

Bureau of Transportation Statistics (BTS) of the US department of transportation collected diverse 
transport-related data, which can be openly downloaded from the website https://www.bts.gov/ and 
used. 

In relation to SynthAIr, the following databases are of interest: 
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Air Carrier Statistics (Form 41 Traffic)- U.S. Carriers (All Carriers): Contains monthly data reported by 
certificated U.S. (U.S. and foreign) air carriers on passengers, freight and mail transported. Also 
includes aircraft type, service class, available capacity and seats, and aircraft hours ramp-to-ramp and 
airborne. 

Airline On-Time Performance Data: Contains monthly data reported by US certified air carriers, 
specifically scheduled and actual arrival and departure times for flights. 

Airline Origin and Destination Survey: Origin and Destination Survey is a 10% sample of airline tickets 
from reporting carriers. Data includes origin, destination and other itinerary details of passengers 
transported. 

Intermodal Passenger Connectivity: The Intermodal Passenger Connectivity Database is a nationwide 
data table of passenger transportation terminals, with data on the availability of connections among 
the various scheduled public transportation modes at each facility. In addition to geographic data for 
each terminal, the data elements describe the availability of rail, air, bus, transit, and ferry services. 
This data has been collected from various public sources to provide the only nationwide measurement 
of the degree of connectivity available in the national passenger transportation system. 

BTS database is a useful data source for modelling use cases UC2, UC4 and UC5. However, it covers 
predominantly the air traffic over the US. 
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5 State of the art on synthetic data generation 

5.1 Synthetic Data: definition and type 

Synthetic data has been identified as an approach to overcome these challenges. It involves the use 
of algorithms to create data that statistically resembles real-world data but does not correspond to 
any real individuals or events. This method holds promise for maintaining the statistical validity of 
datasets while avoiding issues related to privacy and data access. Synthetic data generation (SDG) 
refers to methods and strategies that can mitigate these challenges, providing a pathway to more 
robust and equitable ML solutions.  

Synthetic data are algorithmically generated data that simulates the statistical characteristics of real-
world phenomena without replicating specific events or individual records. This form of data is a 
synthetic artifact, engineered to emulate the statistical distributions of actual data while avoiding the 
issues tied to real data collection and usage.  

Different kind of synthetic data can be generated, each tailored to specific applications in machine 
learning. Here a brief overview of the types of synthetic data that can be generated: 

- Tabular Synthetic Data: This kind of data mimics the structure of traditional databases or Excel 
spreadsheets. Its generation involves creating rows and columns of categorical and numerical 
data, which is instrumental for tasks such as data anonymization, imbalance correction in 
training datasets, or database testing without exposing sensitive information [41], [42], [43], 
[44], [45], [46]. 

- Image Synthetic Data: By leveraging generative models, synthetic images can be created to 
augment datasets where collecting real images is impractical or privacy-sensitive. These 
images are pivotal for training robust computer vision models, especially in domains like 
medical imaging or autonomous driving, where real data can be scarce or highly regulated [47], 
[48], [49], [50], [51]. 

- Text Synthetic Data: Artificially generated text data can serve to enhance language models' 
understanding and generation capabilities. This synthetic data supports tasks like chatbot 
training, sentiment analysis, and other NLP applications, often addressing the shortage of 
labelled data or the need to protect privacy in sensitive text corpuses. One prominent 
approach in this domain is the use of Generative Pre-trained Transformers (GPT), which have 
significantly advanced natural language processing (NLP) tasks by generating high-quality 
synthetic text data [52], [53]. 

- Audio Synthetic Data: Synthetic audio samples, including speech, music, or ambient sounds, 
can be created to train models for applications like speech recognition, audio classification, 
and virtual assistant technologies. Such data is particularly useful when real audio data 
collection is challenged by noise, privacy issues, or environmental constraints [54], [55], [56], 
[57], [58]. 

- Time Series Synthetic Data: This type of data is structured to reflect temporal dynamics and is 
crucial for models that predict stock market movements, weather patterns, or energy 
consumption forecasting. Its generation helps in creating diverse scenarios for model training 
without the wait for real-time data accumulation [59], [60], [61], [62], [63]. 
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- Spatial Synthetic Data: Artificial spatial data helps in geospatial analyses, urban planning, and 
environmental modelling. Generated to represent geographic locations and their attributes, it 
can be used in GIS systems and spatial data infrastructures where real data may be limited due 
to geographical constraints or sensitivity [64], [65], [66]. 

- Video Synthetic Data: This involves the creation of artificial footage that can train models to 
understand and interpret dynamic scenes, which is essential in security surveillance, sports 
analytics, and the development of interactive media. Generated videos can provide diverse 
and voluminous datasets necessary for complex model training, bypassing the lengthy and 
costly process of capturing real-world videos [67], [68], [69]. 

In conclusion, synthesizing data offers a regulated, expandable, and generally more ethical method for 
gathering data and training models across different fields, propelling advancements in machine 
learning while protecting privacy and diminishing the dependence on real-world data acquisition. 
Aligned with SynthAIr's mission and our specific field of interest, we have chosen to concentrate 
primarily on the synthesis of tabular and time series data. Hence, our forthcoming review of the state-
of-the-art will specifically address the progress in synthetic data generation techniques pertaining to 
these two categories of synthetic data. 

5.2 Applications and Use of Synthetic Data 

Synthetic data is emerging as a transformative solution across various domains and industries where 
there are issues in data access and data quality. In this section we will consider as example three main 
application domains where the use of synthetic data has been started to be considered: healthcare, 
finance and automotive and robotics. 

5.2.1 Synthetic Data in Healthcare 

The integration of synthetic data within healthcare research and practice has recently become an 
important aspect of modern medical innovation. This progression has been defined by some recent 
different literature review and scientific studies highlighting different aspect of using synthetic 
generated data in healthcare [70], [71], [72], [73]. Among the others these works: 

- delves into the creation and application of synthetic electronic health records (EHRs). This 
method provides a valuable solution for training diagnostic models, balancing the need for 
comprehensive data while safeguarding patient privacy. 

- highlights the role of synthetic data in enhancing drug development processes, particularly in 
clinical trial simulations. This approach assists in evaluating new treatments' efficacy and 
safety before proceeding to human trials, thus optimizing the research process. 

- reflects the application of synthetic data in medical imaging, a field where real data is often 
scarce or sensitive. This approach aids in developing and refining diagnostic tools, for example 
in areas like radiology. 

- addresses the challenge of data imbalance in healthcare datasets. They explore the generation 
of synthetic data to represent rare conditions, thereby aiding in the development of accurate 
diagnostic models. 

- underscores the enhancement of machine learning applications in medicine through synthetic 
data, especially in training models with limited real-world data. 
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5.2.2 Synthetic Data in Finance 

The use of synthetic data in finance has become increasingly prominent, offering solutions for various 
challenges such as data scarcity, privacy concerns, and the need for robust testing environments. This 
trend is evident in several key studies and applications within the domain. 

First of all, [74] offers a comprehensive overview of the potential and challenges in generating 
synthetic data for finance. This study provides insights into the opportunities synthetic data presents 
in finance, along with the practical challenges and considerations involved in its implementation. 

More specifically, [75] delves into generating synthetic financial transactions to enhance anti-money 
laundering models. This approach aids in creating realistic transaction datasets for testing and 
improving the efficacy of financial monitoring systems. In [76], synthetic data is utilized to augment 
training datasets for deep reinforcement learning models in financial trading. This study exemplifies 
the enhancement of predictive models in trading by leveraging synthetic datasets to simulate various 
market conditions. Similarly [77] presents a methodology for generating synthetic financial time-series 
data. This research is pivotal in simulating realistic market scenarios, which are essential for testing 
financial strategies and models under various market conditions. 

These studies together highlight the increasing relevance and varied uses of synthetic data within the 
financial sector. They demonstrate how synthetic data is being utilized to improve anti-money 
laundering processes and refine trading models. Additionally, the ability of synthetic data to emulate 
intricate financial scenarios showcases its essential role in the ongoing development of the finance 
industry. 

5.2.3 Synthetic Data in Automotive and Robotics 

In the automotive sector, the development of autonomous driving systems heavily relies on synthetic 
data. In [78], the authors discuss the importance of understanding the gap between synthetic and real-
world data in autonomous driving applications. This research is crucial for improving the reliability and 
safety of autonomous vehicles.  

In robotics, the integration of synthetic data for real-time applications is explored in [79]. This study 
addresses the challenge of detecting and interacting with humans in real-time using synthetic data, a 
critical aspect for developing responsive and safe robotic systems. In the same area, [80] presents a 
methodology for generating synthetic data to train and enhance machine learning models in robotics. 
This approach facilitates the development of more advanced and efficient robotic systems capable of 
complex tasks. 

The study [81] illustrates the use of synthetic data in creating virtual environments for testing and 
validating automotive systems. This approach allows for extensive testing under various scenarios, 
which would be impractical or unsafe in real-world settings. In [82]the focus is on procedural modelling 
techniques to generate synthetic data for automotive applications. This method provides a scalable 
and efficient way to create diverse datasets for testing and validation purposes. 

Lastly, [83] demonstrates the application of synthetic data in industrial settings, specifically for object 
recognition tasks. This is particularly relevant in robotics, where accurate object recognition is 
fundamental for various applications. 

These studies collectively underscore the growing importance and diverse applications of synthetic 
data in automotive and robotics. From enhancing autonomous driving systems and robotic 
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interactions to facilitating rigorous testing and object recognition, synthetic data has become an 
important tool in advancing these fields. 

 

5.3 Synthetic Data Generation methods 

The development of synthetic data has become increasingly sophisticated, with several methodologies 
emerging to create datasets that cater to a variety of analytical needs. Broadly categorized, the 
methods for synthetic data generation include statistical modelling, agent-based modelling (as 
mentioned in section 3.1), and generative modelling, each grounded in different principles of 
simulation and data synthesis. In this section, we will provide an overview of the different categories 
of synthetic data generation methods with more focus on generative modelling, which is the main 
methods we will use in SynthAIr project. 

5.3.1 Statistical Modelling 

Statistical modelling techniques have long been employed in synthetic data generation, particularly in 
fields where the underlying data distributions are well understood or can be accurately modelled. 
These methods typically benefit from using probabilistic models to generate synthetic data that closely 
resembles the characteristics of the original dataset. These methods encompass a range of 
approaches, including parametric and non-parametric models, as well as classical statistical techniques 
such as Monte Carlo simulations, bootstrapping, and resampling methods in addition to data 
augmentation methods such as Synthetic Minority Over-sampling Technique. 

Parametric models [84], such as linear regression [85], logistic regression [86] and Mixture Models or 
Copula [87] assume a specific functional form for the data distribution and estimate the parameters 
from observed data. These models are useful when the underlying distribution can be reasonably 
approximated by the chosen parametric form. Non-parametric models, on the other hand, make fewer 
assumptions about the data distribution and instead rely on flexible structures to capture complex 
patterns [84]. Techniques like kernel density estimation (KDE) [88] and nearest neighbour methods 
[89] fall into this category and are particularly advantageous in scenarios where the data distribution 
is unknown or highly non-linear. 

Monte Carlo simulations represent a versatile approach to synthetic data generation, especially in 
scenarios where there are complex interactions between variables or stochastic processes. It uses 
random sampling techniques to estimate complex numerical results by generating numerous random 
samples [90]. In the context of synthetic data generation, Monte Carlo methods can be utilised to 
generate synthetic datasets that mimic the statistical properties of the observed data. 

Resampling methods, such as bootstrapping, are another flavour of statistical techniques that involve 
sampling with replacement from the observed data to create synthetic datasets that mimic the 
properties of the original data [91]. These methods are particularly useful when dealing with small 
datasets or when there is a need to estimate sampling distributions or confidence intervals. 

Synthetic Minority Over-sampling Technique (SMOTE) [92] is a popular statistical method for data 
augmentation, especially for handling imbalanced datasets. It generates synthetic data of the minority 
class by interpolating between existing samples. A similar approach is Adaptive Synthetic Sampling 
(ADASYN) [93], which adaptively generates synthetic samples of the minority class, focusing on the 
harder-to-classify samples. While these methods can help balance the class distribution, they are 
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limited to generating synthetic data within the convex hull of the original data, which may not always 
capture the true underlying data distribution. 

Variants of SMOTE can improve the quality of the generated synthetic data. Borderline-SMOTE [94] 
adapts the SMOTE algorithm to focus on samples near the decision boundary, which are more likely to 
be misclassified. SVMSMOTE [95] uses a Support Vector Machine (SVM) to identify the borderline 
hyperplane separating the minority and majority classes and then generates synthetic minority 
samples along this hyperplane. However, especially in noisy datasets, generating synthetic samples 
near the decision boundary may introduce noise into the synthetic data. To address this issue, the 
Safe-Level SMOTE [96] introduces a safe-level parameter to control the generation of synthetic 
samples. Similarly, the KMeans-SMOTE [97] avoids noisy samples by using k-means clustering to 
identify safe clusters with a high ratio of minority observations and generate synthetic samples within 
these clusters. 

While statistical modelling techniques offer interpretability and control over the generated data 
distribution, they may struggle to capture the full complexity of real-world datasets, particularly in 
high-dimensional or non-linear settings. Additionally, the performance of these methods heavily relies 
on the adequacy of the chosen model assumptions and the quality of parameter estimation from 
limited observed data. Despite these limitations, statistical modelling remains a valuable tool in 
synthetic data generation, especially when combined with domain knowledge and expert judgment to 
tailor models to specific applications. 

5.3.2 Agent-Based Modelling 

Agent-based modelling (ABM) is a computational model that has gained popularity in various fields, 
including economics, sociology, biology, and ecology [98], [99], [100]. ABM entails creating models of 
autonomous agents, such as individuals, organizations, or other entities, and simulating their 
interactions within a specified environment. By modelling the behaviours and interactions of individual 
agents, ABM can be used to generate synthetic datasets that capture emergent phenomena at the 
macroscopic level. 

In ABM, agents typically follow a set of rules or algorithms that govern their behaviour and interactions 
with other agents and the environment [101]. These rules can be based on empirical data, theoretical 
principles, or a combination of both. By varying the parameters of the model or introducing random 
elements, ABM can generate diverse synthetic datasets that explore different scenarios or hypotheses. 

One advantage of ABM is its ability to capture complex, nonlinear dynamics that arise from the 
interactions between individual agents. By simulating the behaviour of multiple agents over time, ABM 
can generate synthetic datasets that exhibit emergent properties, such as self-organization, 
adaptation, and evolution. This makes ABM particularly useful for studying phenomena that are 
difficult to observe or replicate in real-world settings, such as the dynamics of social networks, the 
spread of infectious diseases, or the evolution of ecosystems. 

While agent-based modelling can potentially offer a powerful framework for generating synthetic data 
that provide valuable insights into the behaviour of complex systems and inform decision-making in 
various domains, it also presents challenges related to model complexity, computational resource 
requirements, and validation against real-world data. Additionally, ABM requires careful consideration 
of the underlying assumptions and simplifications made in modelling agents' behaviours and 
interactions, as these assumptions can influence the model's predictive accuracy and generalizability. 
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5.3.3 Generative Modelling 

Generative models in AI, particularly those utilizing deep learning approaches, have significantly 
advanced synthetic data generation. Techniques like Generative Adversarial Networks (GANs) [102], 
Variational Autoencoders (VAEs) [103] and Diffusion Models [104] have been pivotal in generating 
high-fidelity data across domains, including images, text, and tabular data. The generative aspect of 
these models is rooted in their ability to learn the distribution of the input data and produce new 
instances that could have plausibly come from the same distribution. Such capabilities are not just 
impressive but also practically valuable in augmenting datasets, especially when dealing with privacy-
sensitive or rare data scenarios. By bolstering datasets with synthetic yet realistic examples, these 
models help in training more robust and generalizable machine learning models. In the following 
subsections we will focus on the use of GAN, VAE and Diffusion model with focus on timeseries data. 

In time-series data, synthetic data generation is notably intricate due to inherent temporal patterns. 
The generative process must adeptly capture both feature distributions and temporal relationships. 
Deep learning techniques are particularly adept at modelling these multifaceted relationships. 
However, real-world scenarios often present limited time-series data, either in sample numbers or 
historical length. For instance, predicting stock market trends for newly public companies or 
forecasting staffing needs for newly inaugurated retail outlets can be challenging due to data paucity. 
Such scenarios necessitate a data generation technique that is robust despite limited data and allows 
for the introduction of specific time-series patterns pertinent to the use-case.  

5.3.3.1 Generative Adversarial Network (GAN)  

Some of the recent advancements in synthetic data generation have hinged on Generative Adversarial 
Network GANs, introduced in 2014 [79] especially those employing recurrent neural networks (RNNs) 
for both generation and discrimination [106], [107]. However, the inherent complexity of temporal 
relationships means that the conventional approach of binary discrimination between real and 
synthetic data falls short in capturing temporal dependencies. This has led to the exploration of 
specialized mechanisms within GAN networks, such as the fusion of supervised training, typically used 
in autoregressive models, with the unsupervised training of GANs [106].  

A comprehensive review [108] delves into the application of GANs for time-series data, highlighting 
the benefits of GANs as tools for data augmentation. These benefits range from addressing data 
shortage issues by augmenting smaller datasets, to data recovery, noise reduction, and the generation 
of differentially private datasets that safeguard sensitive information. The review also enumerates 
several state-of-the-art GAN models tailored for time-series data, such as C-RNN-GAN [109], RCGAN 
[107], TimeGAN [106], and SigCWGAN [110]. However, a persistent challenge with RNN-based GAN 
models is their inability to produce extended, realistic synthetic sequences. This limitation stems from 
RNNs processing time-steps sequentially, leading to more recent time-steps disproportionately 
influencing the generation of subsequent ones. This sequential processing makes it challenging for 
RNNs to establish relationships between distant time-steps within an extended sequence.  

The transformer architecture, characterized by its multiple self-attention layers [111], has recently 
gained prominence. Demonstrating superior performance over other neural network architectures, 
such as CNNs for images and RNNs for sequential data [112], [113], transformers have showcased their 
versatility across various tasks. Recent endeavours have sought to integrate the transformer model 
within GAN architectures to enhance synthetic data quality or streamline the training process [114]  for 
tasks like image and text generation. Given that transformers were originally designed to handle 
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extended text sequences and are immune to the vanishing gradient problem, they theoretically should 
outperform RNN-based models in time-series data generation.  

Building on this premise, a recent study [115] introduced a transformer-based GAN model, TTS-GAN, 
for synthetic time-series data generation. This approach trained a distinct GAN model for each dataset 
class. However, a limitation of this approach was its struggle to train GAN models for classes with 
limited training instances, making it challenging to generate realistic sequences for such classes. To 
address this, the study proposed a conditional GAN for time-series generation, termed TTS-CGAN 
[116]. This model was trained on data from all classes concurrently, allowing for controlled data 
generation for specific classes by priming the model with the appropriate input. This holistic training 
approach enabled TTS-CGAN to benefit from transfer learning effects between classes, facilitating 
better low-level feature representation learning. The deeper network layers simultaneously fine-tuned 
high-level features for each class. The study showcased TTS-CGAN's efficacy using novel similarity 
metrics and experiments that highlighted the impact of synthetic data augmentation on classification 
tasks.  

However, it has been demonstrated that GANs may capture less diversity compared to state-of-the-
art likelihood-based models. The training process of GANs is often fraught with challenges, including a 
tendency to collapse without correct chosen of hyperparameters and loss functions [117]. Additionally, 
GANs are known for their instability during training [118] and are susceptible to the mode collapse 
issue, where the model fails to capture the variety in data [119]. These limitations have prompted a 
shift towards alternative models like Variational Autoencoders (VAEs) and diffusion models, which 
offer more stability and diversity in synthetic data generation. 

5.3.3.2 Variational Autoencoder (VAE) 

The current state of the art in Variational Autoencoders (VAEs) for time series generation is marked by 
significant advancements that cater to the diverse challenges posed by time series data.  

One development is for example the integration of causal mechanisms within VAE frameworks, as seen 
in [120], which focuses on medical time series data. This approach not only enhances predictive 
accuracy but also adds an interpretive layer to the generated data, crucial in medical applications. 
Hybrid models that amalgamate VAEs with other forecasting techniques are also gaining prominence. 
For instance [121] combines VAEs with additional models to boost forecasting precision, indicating a 
trend towards leveraging the strengths of multiple machine learning techniques. Bidirectional priors 
in VAEs, as introduced in another study [122], represent a significant leap in generating complex time 
series patterns. This innovation opens avenues for generating more nuanced and accurate time series 
data, crucial for various applications. Addressing incomplete time series data, a challenge in real-world 
applications, has been tackled through models that integrate Neural Ordinary Differential Equations 
(ODEs) with VAEs, as demonstrated in [123]. This approach elegantly handles data gaps, preserving the 
integrity of time series analysis. 

In data augmentation, the efficacy of Beta-VAE has been explored, particularly in comparison to 
models like WGAN-GP, as shown in [124]. This comparison is crucial for understanding the best 
practices in time series data augmentation, especially for enhancing classification performance. 

The application of Koopman theory (Hamiltonian systems and transformation in Hilbert space) in VAEs, 
tailored for both regular and irregular time series data [125], marks a significant stride in bridging linear 
dynamical systems and nonlinear time series analysis. This method provides a new lens through which 
time series data can be understood and modelled. Finally, the generation of multivariate time series 
data, which is essential in handling complex, real-world scenarios, has been advanced through models 
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like TimeVAE [126]. This approach highlights the need for and effectiveness of specialized techniques 
in managing the intricacies of multivariate data. 

In conclusion, the landscape of VAEs in time series generation is characterized by a rich tapestry of 
methodologies, each addressing specific facets of time series analysis. From enhancing predictive 
accuracy with causal mechanisms to innovating in data completion and multivariate analysis, these 
advancements collectively push the boundaries of what can be achieved in this evolving field. 

5.3.3.3 Diffusion Models 

Diffusion models is a subset of deep learning-based generative models that recently gained interest in 
various machine learning applications due to their generative capabilities. Recent examples are  in 
image synthesis [127], video generation [128], and natural language processing [129].  

In recent years, diffusion models have been extended to time series-related applications, such as 
forecasting [130], imputation [131], and synthesis [132]. Time series forecasting involves predicting 
future data points based on historical observations, while imputation deals with filling in missing values 
in incomplete series. Time series generation, or synthesis, diverges from these by aiming to create new 
time series samples that maintain the characteristics of the observed data. 

In conclusion, the domain of synthetic data generation, especially for time-series data, is rapidly 
evolving. As the demand for data-driven solutions continues to grow, the development and refinement 
of generative models will play a pivotal role in shaping the future of various industries including the 
aviation domain.  
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6 Case selection and next steps 

In this section, based on multiple selection criteria divided in 5 categories (refer to Table 8): Data, 
Analysis and Modelling, Integration, Stakeholders, and Validation, the most promising use cases are 
selected for further elaboration in the project. The filled elements of the evaluation table are based 
on the analysis of existing literature and interviews with stakeholders (airports, airlines, ANSPs, air 
transport researchers). This assessment will be further refined and matured in the coming months, 
also taking into account the feedback from the first upcoming advisory board meeting, and the final 
version will be presented in deliverable D2.2 “Definition of use cases”. 

As an important input to this selection, we used feedback on the considered use cases from aviation 
stakeholders (airports, airliners, ANSPs, air transport researchers) obtained in the interviews we 
conducted in the first months of the project. In the following we discuss some important observations 
we obtained during the interviews in relation to the specific use cases. 

UC1: Turnaround time prediction 

Although turnaround time prediction is crucial for the optimization of air transport operations, the 
interviewed airport stakeholders did not consider this use case as particularly relevant to be 
considered in SynthAIr. In the past years more and more airports have been collecting (detailed) data 
about the durations of turnaround operations, which they use for prediction of their turnaround times 
either using statistical methods or machine learning models. These data are, however, usually 
confidential. Interviewed airlines confirmed the importance of this process for their planning. 
However, often they collect sufficient data about handling of their aircraft. They usually are able to 
make accurate turnaround time predictions on a short term, however long-term predictions are 
difficult, as many factors influence the turnaround processes, including propagated delays, passenger 
flows, ground handling processes. ANSPs recognized the relevance of this use case. Some airport 
stakeholders, as well as university researchers, identified the necessity of considering turnaround in 
relation to other related processes, such as passenger flow management in airport terminals. In such 
a way, the airport system could be considered and analysed in a holistic way. However, including all 
these processes substantially complicates the use case. 

UC2: Flight delay prediction 

The interviewed airport stakeholders identified the lack of real time data exchange between airports 

concerning their local traffic situation and delays. They pointed that if a flight was delayed at an origin 

airport, the lack of timely communication with the destination airport might cause issues with resource 

allocation (e.g., of ground service equipment, airport personnel) and suboptimal planning of operations 

at the corresponding destination airport. Currently, some airports develop own models to assess traffic 

situation and delays at other airports in their airport network.  

The interviewed airlines identified the general difficulty of predicting the reactionary, accumulated 

delay of their aircraft in the end of a day and confirmed the relevance of this use case for airlines. One 

of the airlines pointed to a high uncertainty associated with flight delays which impedes decision-

making of AOCC controllers, which makes this use also important for them. 

ANSPs also recognized the importance and relevance of this use case. Despite the fact that many delay 

prediction models and tools exist, one ANSP interviewee argued that it would be still useful to generate 

synthetic data representing diverse delay propagation scenarios for different disruptions. 
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UC3: Passenger flow prediction 

The airport stakeholders confirmed that passengers are an important source of uncertainty in the air 

transportation system. In particular, predicting flows of transfer passengers is problematic, because of 

the lack of data about them. It is also difficult to predict whether or not a passenger will be on time for 

boarding. Airlines collect information about passengers, such as the numbers of passengers on 

particular flight, demand data, check-in time, baggage check-in, in some cases, about the time when a 

passenger passed the security check. However, because of confidentiality and sensitivity of passenger-

related data, exchange of information between airports and airlines is quite limited. Thus, synthetic 

data generation of passenger flows would be useful for airlines. 

Airport passport control is another important bottleneck with a large uncertainty, since airports do not 

usually have control over this process. Many airports collect data about passenger flows, in particular, 

using camera’s, mobile phone signals and new LiDAR technology. However, these data are usually 

confidential.  

Interviewed university researchers working on (multimodal) passenger flow modelling indicated that 
they lack data on flight schedules, as well as passenger numbers and flows at the airport and individual 
flights (load factor). Synthetic data of these types would be useful for them. 

 

UC4: Synthetic Traffic Generator 

This use case is closely related to UC2. The interviewed ANSPs recognized that many traffic generators 
were developed in the past (many of them are not openly available), however, more synthetic traffic 
data could still be useful to generate, in particular for novel concepts of operations, such as UTM/UTS 
operations. 

UC5: Flight diversion prediction 

The airport and ANSP stakeholders confirmed that flight diversion prediction is a relevant case, which, 

however, to a lesser degree was considered in the related literature. This use case is however might 

be challenging to model, as flight diversions do not occur often, and there could be diverse causes, 

which are not always easy to understand from the available data. Furthermore, flight diversion often 

involves ad-hoc coordination among airlines, pilots, air traffic controllers and airports and is influenced 

by many factors such as airport capacity, airport departure/arrival sequencing, weather conditions, air 

traffic complexity. Thus, more data need to be collected or generated to better understand and 

represent flight diversion under different causes and conditions.  

When flight is being diverted, airlines usually do not have information about which other flights were 

diverted too and are often making reactive decisions based on air traffic controllers’ instructions and 

airport availability. Because of this, this use case is less interesting for airlines. 
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Criterion 
description 

UC1_Turnaround 
Time Prediction 

UC2_Flight Delay 
Prediction 

UC3_Passenger Flow 
Prediction 

UC4_Synthetic Traffic 
Generator for Fast and 
Real-Time Simulations 

UC5_Flight Diversion 
Prediction 

Data Availability Many airports and 
airlines collect detailed 
turnaround data. High 
level data about off-
block/on-block times 
of aircraft is openly 
available 

Historical flight data, 
including delays, is 
available in open 
databases 

Data is partially 
available (not openly); 
data about transfer 
passengers is limited; 
some areas of airport 
terminals are less 
represented in data; 
data exchange about 
passengers between 
airports and airlines is 
limited 

Historical flight data is 
available in open 
databases 

Historical flight data is 
available in open 
databases 

Confidentiality Detailed data about 
turnaround steps is 
usually confidential 

Historical data is 
openly available 

This data is usually 
confidential 

Historical data is 
openly available 

Historical data is 
openly available 

Required and 
available data 
types and format - 
Determine the 
types of data and 
the format in which 
data will be 
collected and 
stored, whether 
structured (e.g., 
databases), semi-
structured (e.g., 
JSON), or 

Openly available data 
are usually in csv 
format. 

The types of data 
required for high level 
modelling usually 
include on- and off-
block times of 
aircraft/flights. 

 

Data required for 
detailed modelling 

Openly available data 
are usually in csv 
format. 

The available types of 
data usually include 
Flight date, Flight 
number, Carrier code, 
Tail number, Flight 
origin and destination. 
In addition, the 
following data is often 
available: Flight 
Latitude, Longitude, 

(Aggregated) 
passenger flow data 
from camera’s and 
LiDARs; passenger 
check-in time; 
passenger security 
check-time; passenger 
baggage data. More 
detailed data about 
transfer passengers is 
needed. More detailed 
data about passenger 
discretionary activities 

Openly available data 
are usually in csv 
format. 

The available types of 
data usually include 
Flight date, Flight 
number, Carrier code, 
Tail number, Flight 
origin and destination. 
In addition, the 
following data is often 
available: Flight 
Latitude, Longitude, 

Openly available data 
are usually in csv 
format. 

The available data 
include date, flight 
number, flight origin, 
flight original 
destination, the 
airport to which the 
flight was diverted. 

Useful information 
about the diversion 
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unstructured (e.g., 
text documents) 

include the duration of 
all turnaround steps, 
as well as about the 
resources used for 
these steps 

Flight level data over 
time; flight on-block 
and off-block time; 
scheduled and actual 
arrival/departure 
time. 

 

The available data 
forms a good basis for 
this use case. In 
addition, airport- and 
weather-related data 
might be necessary for 
high quality delay 
prediction. 
 

is needed. Interviewed 
researchers indicated 
that even flight 
schedules are difficult 
to obtain. 

Flight level data over 
time; flight on-block 
and off-block time; 
scheduled and actual 
arrival/departure 
time. 
 

causes is often not 
available. 

Weather information 
is highly relevant for 
this use case. 
 

Quality - Define the 
level of data 
accuracy, 
completeness, and 
reliability required 
(consider data 
cleansing and 
validation 
processes) 

The data quality varies; 
detailed data often 
contain a significant 
amount of missing and 
incorrect entries; high 
level data are usually 
mostly correct 

Available data is 
mostly correct; some 
fields might be 
missing/incorrect 

Data are usually 
aggregated at the level 
of probability 
distributions of 
passenger numbers, 
waiting times, arrival 
times, throughput. Not 
all areas of airport 
terminals are 
represented in data. 
Data about transfer 
passengers is limited 

Available data is 
mostly correct; some 
fields might be 
missing/incorrect 

Available data is 
mostly correct; some 
fields might be 
missing/incorrect 

Privacy and 
security - Ensure 
that data 
requirements align 

Detailed data are 
privacy-sensitive, as 
they reflect the 
performance 

Information about the 
causes of delays might 
not be always available 

Passenger-related 
data have high privacy 
sensitivity 

No critical sensitivities No critical sensitivities 
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with privacy and 
security 
regulations, and 
establish measures 
to protect sensitive 
information 

characteristics of 
individual ground 
operators  

Frequency - how 
often data should 
be collected or 
updated, whether 
in real-time, daily, 
weekly, or at some 
other interval 

High-level data are 
collected per flight on 
a daily basis; the 
frequency of detailed 
data collection varies, 
depending on the 
airport 

Daily, on a flight basis Frequently, e.g., with 
15-minutes time 
intervals 

On a flight basis Available on a daily 
basis 

Documentation - 
Updated 
documentation 
that describes the 
data's source, 
structure, and 
usage to facilitate 
understanding and 
collaboration 

Data is usually well 
documented. 

Data in open 
databases is well 
documented. 

Well described in the 
databases of airports 
and airlines. 

Data in open 
databases is well 
documented. 

Data in open 
databases is well 
documented. 

Analysis and 
modelling 

Analytic capability 
of performance 
variability 
qualitatively and 
quantitatively (i.e. 
amount of 
uncertainty in 
prediction tasks) 

High level modelling is 
feasible; low level 
modelling highly 
depends on the 
availability of data. The 
amount of uncertainty 
for a particular airline 
and airport might be 
limited.  

The systemic nature of 
delays, especially 
propagated ones make 
it difficult to make 
predictions 

Passengers are one of 
the major sources of 
uncertainty in air 
transport systems 

The effects of 
disruptions might be 
uncertain; airline flight 
scheduling is another 
source of uncertainty, 
as well as ATC 
decisions  

Flight diversions are 
difficult to predict in 
advance; available 
data on flight 
diversions is also 
limited; the quality of 
flight diversion 
prediction largely 
depends on the quality 
of weather 
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information/predictio
n. 

 
 

Complexity of 
modelling/predicti
on 

High for complex hub 
airport, like Schiphol; 
low/medium for small- 
and medium-size 
airports 

Prediction might be 
complex for 
propagated delays, 
which are influenced 
by many diverse 
airline-, airport-, and 
ATM-related factors. 

 

Synthetic generation 
of data for diverse 
(disrupted) air traffic 
scenarios appears to 
be feasible 

Passenger behaviour is 
not easy to model. 
Furthermore, 
passenger flow 
management 
measures are airport- 
and situation-specific, 
and are difficult to 
model even when 
historical data is 
available 

High, as many factors 
influence 4D-
trajectories of aircraft 

There are many causes 
of flight diversion, with 
weather as the most 
significant one; 
predicting flight 
diversion is a 
challenging task, which 
is influenced by many 
airport-, ATC- and 
weather-related 
factors, however, 
generating synthetic 
data on diverted flights 
might be feasible  

Formal analysis 
capability 

Developed models can 
be well analysed 

Developed models can 
be well analysed 

It is expected that 
developed models will 
have high uncertainty 
with limited analysis 
capabilities 

Developed models can 
be well analysed 

Predictive power of 
the models might 
substantially depend 
on the type of the 
cause of diversion, 
airport, and air traffic 
complexity 

Level of abstraction 
(for modelling) 

High, as well as low-
level modelling is 
possible 

At the level of 
individual flights, as 
well as aggregated 
airport delays 

Per passenger or at the 
level of passenger 
flows 

At the level of 
individual flights, as 
well as aircraft flows 

At the level of 
individual flights 

Level of 
Generalization  

High for small- and 
medium-size airports; 

Possibly high 
(considering different 

Probably, not high, and 
airport-specific 

Expected to be high Generalization might 
be difficult across 
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might be problematic 
for large hub airports 

airport network 
configurations and 
disruptions) 

(however, largely 
depends on the level 
of modelling) 

different causes of 
diversions and 
airports; however, for 
some types of causes 
and airports (such as 
weather) the level of 
generalization might 
be high 

Time horizon for 
predictive/forecast
ing models 

Typically, on an hour 
basis (per flight) – 
tactical and 
operational planning; 
models might also be 
used for strategic 
planning 

On an hour basis – 
tactical and 
operational planning; 
models might also be 
used for strategic 
planning 

Short time horizon, 
e.g., 15 minutes; 
models might also be 
used for strategic 
planning 

On an hour basis – 
tactical and 
operational planning; 
models might also be 
used for strategic 
planning 

On an hour basis (per 
flight) – tactical and 
operational planning; 
models might also be 
used for strategic 
planning 

Expected quality of 
the model 

High for small- and 
medium-size airports; 
might be problematic 
for large airports 

Potentially, synthetic 
data could well 
represent real data; 
the downstream task 
of delay prediction is 
also often addressed 
well in the literature, in 
the context of specific 
cases 

Synthetic data 
generation might be 
problematic. But it 
depends on the scope 
of modelling and the 
airport size. Prediction 
models might work 
well for specific 
airports/conditions 

Probably high, 
however depends on 
the scope of modelling 

Data generation 
models for particular 
types of causes (such 
as weather) might be 
of good quality 
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Stakeholders Interest, 
Relevance, Priority 
and Urgency 

Interviewed airports 
did not give a high 
priority to this case. 
Airports and airlines 
collect their own data 
on turnaround which 
they use for defining 
the critical path for the 
turnaround process. 
This use case is 
relevant to airlines; 
however, they didn’t 
recognize its relevance 
for SynthAIr. 

Interviewed airports 
pointed at the need of 
availability of data 
about the real time 
traffic situation at the 
connected airports; 
some airlines also 
pointed at a high 
uncertainty of delay-
related information in 
their planning. ANSPs 
identified the need to 
generate synthetic 
date to better 
represent different 
scenarios of delay 
propagation through a 
network under 
different disruptions. 
This use case has a 
high priority for all 
aviation stakeholders. 

There is much interest 
to this use case both 
from airports and 
airlines, as it is directly 
relevant to their 
operational planning 
and resource 
allocation. Available 
data if often scarce. 
The stakeholders 
would profit from 
synthetic data 
generation. 

 
The airport and ANSP 
stakeholders 
recognized the 
relevance of this case, 
as well as limited data 
available. Better 
prediction of 
diversions would allow 
airports to better 
prepare and allocate 
their resources to 
handle aircraft. On the 
other hand, one 
interviewed airline 
indicated that this case 
is less relevant for 
them, because airlines 
are often making 
decisions concerning 
flight diversion 
reactively 

Novelty There exist several 
studies on synthetic 
data generation using 
statistical and 
simulation models; 
also, the turnaround 
prediction task was 
addressed successfully 

Use of generative AI 
for generating 
(disrupted) traffic 
scenarios is currently 
very limited. 
Simulations models 
were used in the past 
for this purpose.  

Synthetic data 
generation for this 
case is usually done 
using statical and 
simulation models, 
using historical data. 
However, it is not clear 
how realistically such 
models would be able 

Synthetic data 
generation using AI is 
done to a limited 
extend in the existing 
literature; simulators 
are also used to a 
limited extent for this 
purpose 

To the best of our 
knowledge, synthetic 
data generation was 
not used for this use 
case 
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in several previous 
studies. 

There exist many 
studies on delay 
prediction 
(downstream task) 

to represent new 
scenarios, not 
considered in the 
historical data. 
Prediction of 
passenger flows is 
considered in related 
literature, with 
different degree of 
accuracy, depending 
on the airport systems 
considered 

Validation  Validation 
difficulty  

Validation of high-level 
models is not 
problematic; 
validation of low-level 
models depends on 
the availability of data 
on the individual steps 
of turnaround, which is 
confidential 

Developed models 
both for synthetic data 
generation and delay 
prediction could be 
validated using 
historical data 

Possible, if sufficient 
data available, which 
might be problematic, 
considering 
confidentiality, data 
gathering and privacy 
issues 

Validation can be done 
using historical data 
and with operational 
experts 

Validation can be done 
using historical data 
and with operational 
experts 

Table 8: Matrix for the selection of the use cases 
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In the following, based on the case selection table above, we make the choice of use cases to be 
further elaborated in SynthAIr. 
 
UC1 was not selected for multiple reasons: Many existing AI-based studies are already able to make 
high quality high-level predictions about turnaround time. Furthermore, statistical, and simulation-
based methods exist for synthetic data generation for this case. Furthermore, the aviation 
stakeholders did not recognize the urgency of considering this use case in SynthAIr, although it is still 
relevant and important for their operations. Data for low level, detailed modelling are confidential, 
and are not easily accessible for research purposes. Modelling UC1 might be also too complex, since 
the use cases UC2, UC3, and UC5 could be also seen as its contributors. 
 
UC2 was selected for further elaboration in SynthAIr for the following reasons: All interviewed aviation 
stakeholders recognized the relevance and importance of this case for their operational planning. In 
particular, the interviewed airports considered that data generation models to be developed for this 
use case could be used to produce data representing disruptions and their effects on the traffic 
originating at the connected airports. In such a way, the airport would be able to better anticipate and 
allocate their resources. Furthermore, the models developed in this use case can be used to fill in 
missing or correct erroneous data in the existing open databases with historical flight data. Air 
transport researchers would also profit from such models, as they could use them to generate traffic 
data under diverse disruptions. Our interviews also identified the need for this. Data generation for 
UC2 is closely related to UC4 and could be seen as a part of it. UC2 is also chosen for the reason of 
availability of open historical flight data which could be used for model training. UC2 can be considered 
at the level of flight schedules, without detailed modelling of aircraft trajectories. Synthetic data can 
be generated to represent propagation of delays through an airport network under different 
disruptions. 
 
UC3 was identified as potentially interesting for further elaboration in SynthAIr. Although the 
interviewed airport and airline stakeholders recognized the relevance and importance of this use case, 
nevertheless obtaining real data for training synthetic data generation models is a major obstacle for 
this use case. Furthermore, airports apply diverse, often ad-hoc passenger flow management 
measures, adapted to particular situations, which are difficult to model and generalize. The final 
decision on whether or not this case will be chosen will depend on the availability of data and will be 
made in the coming month. 
 
Disrupted air traffic scenarios considered in UC2 are selected to be modelled as a part of UC4. The 
experience to be gained and lessons learned with modelling of UC2 will provide further research 
directions with respect to UC4, e.g., detailed aircraft 4D-trajectory modelling. 
 
UC5 was selected in SynthAIr for further elaboration for the following reasons: The airport and ANSP 
interviewed stakeholders recognized the relevance and importance of this case, as well as the lack of 
available data on diverted flights, for which synthetic data generation could be a solution. At the same 
time, open historical flight databases can be used for training of data generation models. AI-based 
synthetic data generation has not been considered for this use case. UC5 has also a relation with UC2, 
as delays could be precursors for flight diversion. 
 
In addition, we also had an interview with U-space researchers, who identified two possible UAS-
related use cases, which we consider in the following. A UAS mission usually defines a planned 
trajectory to be flown by a UAS. However, during the mission execution, the operator may decide to 
deviate from the planned trajectory. Furthermore, the trajectory may be influenced by environmental 
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factors. Synthetic data generation can be used to represent such trajectory deviations and further 
improve operational planning taking into account uncertainties. The other possible use case concerns 
synthetic data generation of images representing the dynamics of population flows in regions over 
which UASs are flying. The population density is reflected by pixel intensities in these images. Such 
synthetically generates images can be used to improve safety and efficiency of UAS path planning.  
 
To conclude, use cases UC2 and UC5 have been chosen for further elaboration in SynthAIr. UC2 might 
potentially be further extended to UC4. UC3 is potentially interesting to consider, however, it will only 
be chosen if real data become available for training in the coming months. Furthermore, U-space-
related cases considered above might be of interest for SynthAIr too.  The synthetic data generation 
techniques reviewed in Section 5, in particular the ones based on GANs, transformers, and diffusion 
models appear to be promising to be applied for the selected use cases in WP3 (Synthetic Data 
Generation for Multivariate Time Series for ATM-automation) and WP4 (Universal Time Series Model 
for Prediction and Data Generation for ATM-automation). 

The integration of advanced generative techniques reviewed in Section 5, such as Generative 
Adversarial Networks, transformer-based architectures, Variational Autoencoders, and diffusion 
models into the SynthAIr framework promises to revolutionize synthetic data generation for Air Traffic 
Management (ATM). These models excel in modelling and synthesizing complex time series data, 
which is common in aviation scenarios due to factors such as flight traffic variability from weather 
disruptions or operational anomalies. Models like Transformer are part of these generative approaches 
and offer advantages in processing timestamped and sequential data, making them ideal for capturing 
complex temporal correlations within aviation timestamped data, such as the progression of flight 
delays or the scheduling of aircraft routes. The ability of these AI models to handle sequential 
dependencies could be crucial for example for predicting the effects of irregular operations across the 
flight network. 

Moreover, techniques like Diffusion Models and VAE applied to timestamped data, are able to train 
model to synthetize high quality synthetic data with high degree of fidelity (i.e., generation of realistic 
flight trajectories and passenger flows) with stability in the training process.  

By exploring these sophisticated generative models, the SynthAIr project aims to produce synthetic 
datasets that are not only diverse and rich but also maintain high levels of accuracy and realism. This 
will enable more effective decision-making in ATM, fulfilling the needs encapsulated in the selected 
use cases UC2 and UC5, and potentially extending to UC4. 
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7 State of the art on related projects 

AI is considered one of the main enablers to overcome the current limitations in the ATM system. A 
new field of opportunities arises from the general introduction of AI, enabling higher levels of 
automation and impacting the ATM system in different ways [133]. 

The Strategic Research and Innovation Agenda (SRIA) describes high-level R&I needs/challenges that 
AI should tackle in aviation: 

1. Trustworthy AI powered ATM environment – Consider aviation/ATM AI infrastructure that can 
capture the current and future information required to support AI-enabled applications with 
the required software developments processes, using robust architectures for ATC systems to 
provide ATCOs and pilots with good level of confidence of automation and decision aiding 
tools. 

2. AI for prescriptive aviation - AI will help aviation to move forward from a reactive (to act when a 
problem appears) to a predictive (anticipating a problem, enabling innovative preventive 
actions) and even a prescriptive paradigm (adding the capability to identify a set of measures 
to avoid the problem). 

3. Human – AI collaboration: digital assistants - The interaction between humans and machines 
powered by AI, or other sub-branches such as reinforcement learning (RL), explainable AI (XAI) 
or natural language processing (NLP), will positively impact the way humans and AI interact. 
These advances aim to increase human capabilities during complex scenarios or reduce human 
workload in their tasks, not to define the role of the human or to replace the human, but to 
support him. 

4. AI Improved datasets for better airborne operations- Datasets are essential to AI-based 
application development. R&I should be conducted to generate and in particular to enable the 
automation of such aviation-specific data sets from a large variety of on-board and ground 
communication across the network, which could then a enable broad range of AI-based 
applications for aviation (e.g. voice communications between ATC and pilots). 

  
The following projects highlight the state-of-the-art in SESAR R&D Artificial Intelligence in Air Traffic 
Management. 

 

7.1 SESAR 2020 Wave 1 and Wave 2 

7.1.1 Exploratory research 

ARTIMATION  

Transparent Artificial Intelligence and Automation to Air Traffic Management Systems (ARTIMATION) 
project main aim was to introduce innovative AI methods to predict air transportation traffic and to 
optimise traffic flows based on the domain of explainable artificial intelligence. The project duration 
was from July 2020 to December 2022. 
 
The project addressed two different use cases: a (1) Delay Prediction and Propagation tool, sub-task 
to optimise the use of runways, and the (2) Conflict Detection and Resolution to better understand 
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how ATCOs can be supported in terms of decision-making in the context of conflict resolution (different 
visualization techniques providing different explainability levels). 

The Delay Prediction use case aimed at optimizing the runway use introducing explainability through 
the visualization of parameters influencing an aircraft delay.  

For delay prediction, a comparison among the ML models shows XGBoost performed better than other 
models. From the algorithmic perspective, XGBoost is more scalable and better at handling spare trees 
and optimizing errors than RF and GBDT. XGBoost is also a much faster algorithm for learning with 
large datasets compared to other ML methods. Considering take-off time delay propagation, while 
comparing the three ML models, (i.e., RF, XGBoost and LSTM models), LSTM performed better than 
the other, although the overall accuracy was not so good. The LSTM was considered better at solving 
sequence or temporal dependency; however, it requires a large number of data than RF and XGBoost. 
The results may be due to insufficient samples in the dataset, and the sequences only depend on two 
previous flight information. The HMI and visual presentation as a way to improve explainability on the 
results was less explored, further research was considered necessary to better understand how to 
identify the most relevant parameters to be shown event by event to the Air Traffic Controllers. 

The conflict detection uses case experiment consisted in a low fidelity human in the loop simulation 
with 21 participants (11 professional ATCOs and 10 ATCO students). The duration was one hour of 
conflict resolution tasks using three explanation conditions: (1) Black Box, where only the selected 
solution is presented, (2) Heat Map, where a corpus of potential solution is displayed thanks to a 
density map, (3) Story Telling, where data driven storytelling technique was applied to convey the 
explication of the proposed solution. The data was collected through debriefings at the end of the 
session, over-the-shoulder observations, questionnaires, and neurophysiological measurements. In 
general, expert ATCOs were less optimistic about the conflict resolution visualization in terms of 
performance improvement. Higher transparency was considered more useful for less timely critical or 
tasks or operational phases in which the ATCOs are subject to lower risk of cognitive workload, like 
planning tasks [134]. 

  

MAHALO  

The Modern ATM via Human/Automation Learning Optimisation (MAHALO) project, which lasted from 
July 2020 to December 2022, aimed at exploring new avenues for human-AI teaming in Air Traffic 
Control (ATC) environments. It focused on two key concepts: strategic conformance and transparency. 
Strategic conformance refers to the alignment of Machine Learning (ML) models with the strategies 
and preferences of human controllers. Transparency pertains to the development of AI systems that 
convey their decision-making processes in a manner that is interpretable by human operators, utilizing 
clear textual and visual cues.  

The project created a hybrid ML system that combined Supervised Learning and Reinforcement 
Learning techniques to perform Conflict Detection & Resolution (CD&R) tasks. This hybrid model was 
integrated into an enhanced prototype ATC display featuring transparency elements for visualizing and 
contextualizing the AI control behaviour. After several development trials, the project culminated in 
two field studies conducted in two European countries, involving a total of 34 ATCOs. During these 
studies, controllers' behaviour was recorded in a pre-test phase and used to train the strategic 
conformance ML system. The main experiment trials then manipulated the strategic conformance of 
the ML models (either personalized, group average, or optimized) and the transparency of the conflict 
resolution advisories (as either a basic vector depiction, an enhanced graphical diagram, or a diagram-
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plus-text presentation). The results [135] were measured by objective performance and behavioural 
data, as well as self-reported workload and survey responses. The results revealed a significant impact 
of strategic conformance on controllers' response to advisories, with controllers responding more 
positively to advisories that matched their preferred separation distance. No main effects of advisory 
transparency were found, but transparency did interact with strategic conformance. 

MAHALO concluded that increased transparency could benefit understanding of the system and/or 
situation but does not necessarily benefit acceptance of a system and agreement with its advisories. 
The effect might be the opposite, where increased transparency decreases acceptance and agreement 
simply because the system is offering an explanation that reveals that its reasoning is different from 
that of the operator [136]. 
 

7.1.2 Industrial research 

As part of SESAR projects there was SESAR PJ04 project, known as Total Airport Management (TAM), 
this project proposed the evolution toward a “performance-driven” airport through holistic monitoring 
of demand and capacity and the decision making based on more reliable information with enhanced 
decision impact assessment. The duration of the project was between 2019 and 2023. 

The project PJ04 - TAM delivered two (2) SESAR Solutions through which dedicated tasks to support 
validation activities have been performed: (1) Solution PJ.04-01 ‘Enhanced Collaborative Airport 
Performance Planning and Monitoring’ that builds on the work performed in SESAR1 specifically in 
relation to SESAR Solution #21 (’Airport Operations Plan and AOP-NOP Seamless Integration’) and (2) 
Solution PJ.04-02 ‘Enhanced Collaborative Airport Performance Management’ that focused on an 
enhanced collaborative airport performance management, facilitated by access to real-time 
information captured in the form of performance dashboards showing ‘what has happened’, ‘what is 
happening’ but importantly ‘what is predicted to happen’. Work has been performed in the specific 
context of environmental impact planning and monitoring in order to ensure that environmental 
performance is fully integrated into the airport operations management process. (Partial V2 Solution 
maturity achieved) [137]. 

For the frame of SynthAIr project solution PJ.04-02 ‘Enhanced Collaborative Airport Performance 
Management’ has addressed aspects that can be particularly important to consider, especially the 
work performed as part of the 'Digital Smart Airports' work package, Operational Improvement 29.1 - 
Airside/Landside Performance Management (targeting V3 maturity). 

This operational improvement addressed Airport Airside/Landside Performance Management which 
can be enhanced through incorporation of a rationalised dashboard fed with all landside and airside. 
This is expected to lead key performance indicators covering TAM processes such as passenger, 
baggage or stand, and achieved thanks to: 

• Awareness on potential airport performance degradation (through integrated models that 

forecast future performance). 

• Impact assessment and evaluation of predefined solution scenarios trading-off KPIs 

(supported by previously-performed post-analysis activities, and possibly by machine learning 

capabilities, integrated models that permit stakeholders to model what-if scenarios). 

• Collaborative Demand and Capacity Balancing (DCB) decision-making between airport 

stakeholders for potential re-evaluation of solution scenarios and selection of the one that 
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would consist in the best trade-off between key performance areas (KPAs) and best limit the 

overall airport performance deterioration. 

 

 

As outcomes of the project the following aspects were considered important as R&D next 

steps:  

 

• The enhancement of the airside processes with the inclusion of landside (passenger and 

baggage flow) process outputs (shared in the AOP via the TOBT update) that can affect ATM 

performance. 

 

• The question of intermodality can cover the notion of an ‘integrated’ passenger experience 

for example a journey with a combined rail and flight ticket issued at a single point of sale. In 

addition, the passenger experience linked to a flight journey also encompasses the question 

of both access to and egress from the airport before and after the journey. Different modes of 

transport (road, rail, …) can be used for airport access and therefore the flight element of the 

journey is part of an overall multi-modal process. The work performed in this area will address 

how an increased knowledge of transport performance of covering airport access can be made 

available to airport stakeholders as a means of identifying potential access issues likely to have 

ramifications on the punctuality of operations. 

 

• There is a need to enhance the information sharing and collaborative decision making 

between the airside and landside processes in an airport. These two processes have 

traditionally been managed in isolation, but in reality, there is a significant degree of ‘coupling’ 

between these two processes with the performance of one process having a potential for a 

significant impact on the other. For example, a landside process performance issue can have 

an impact on punctuality (passengers not being at the gate on time) which in turn can have 

ramifications on the parking stand use. The work performed in Wave 1, which focused on the 

construction of performance dashboards at both the individual process level, and holistic level 

will be further developed and possibly supported by local and/or network-based 

services/applications. Similarly, the support to decision-making will be enhanced by the 

further development of tools such as ‘what-if’ functionality as well as the use of enhanced 

predictions through techniques such as machine learning. Business intelligence/machine 

learning should help stakeholders to share the same vision and collaborate in root cause 

analyses incorporating real-time information presenting both "what has happened" and also 

"what is predicted to happen" through forecast or predicted future airport performance and 

what-if capabilities enabling the proactive management of situations. 

 

• The management of the turnaround process is fundamental to the punctuality performance 

of an airport and to the predictability of its operations. Work will focus on a detailed 

monitoring of the different processes relating to the turnaround to provide an early warning 

indicator of process and infrastructure inefficiencies / issues / failures, resulting in possible 

delays. 

 

Main outcomes: 
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At the end of wave 3 most guidelines offered indications of greater granularity within the "AI 
Explainability" building block, not at a technical level, i.e., algorithmic, but at a much more operational 
one and concerning the activities of frontline operators for whom the personalization, transparency, 
and human-machine interaction aspects are crucial. One of the main outtakes was that operators 
identify as more important to trust the system than getting explanations on the AI decisions in the 
tactical phase. Trust has its foundations on the certification and training phases, where respective 
actors should dig into the system to understand its behaviour, validate it and, eventually, build this 
fundamental trust. These aspects may be accompanied by regulatory changes in terms of liability. The 
projects developed principles and recommendations which may serve as a starting point to address 
explainability in future AI applications in ATM [138]. 

Another conclusion of the exploratory projects from SESAR wave 3 was related to the cost- and time-
consuming aspect of data acquisition - and that the data quality assurance for AI purposes. One 
recommendation was the creation of an open access data lake/repository of the ATM/AI community 
with raw data, but also data that is pre-processed and cleaned, according to data quality standards 
might be an interesting approach to save time and costs, especially for ER projects which usually 
develop AI solutions on a proof-of-concept level [x], which is a topic, also highlighted in The Fly AI 
Report [138]. 

EASA itself recently released an expansion of the Trustworthy AI building blocks (EASA First usable 
guidance for Level 1 machine learning applications - Issue 01), in which it introduces a clearer 
differentiation between Development Explainability, to be achieved at an algorithmic phase, and 
Operational Explainability, which instead must be pursued within the front lines of operators. More 
generally, this concept fits into the broader impact of what Human Factors can bring to Artificial 
Intelligence and Machine Learning in safety critical organizations. Human AI Teaming will aspects 
become more prominent soon and, again, the constructs of personalization, transparency, and human-
machine interaction will become more decisive [136]. 

7.2 SESAR 3 Digital European Sky 3 R&D 

TRUSTY  

Launched in September 2023, TRUSTY is an exploratory project that focuses on human-AI teaming for 
Remote Digital Tower (RDT) operations. RDT systems allow human operators to control airport 
airspace remotely through audiovisual and sensor-based aids. TRUSTY seeks to augment the 
monitoring and alerting capabilities of current RDT systems by introducing explainable AI (XAI) and 
Multimodal Machine Learning (MML) models that would aid human controllers in crucial tasks such as 
taxiway and runway monitoring -e.g., bird hazards, unauthorized airspace use by drones, aircraft-
runway misalignment during approach [139]. 

 Central to the project’s vision is the implementation of a human-centred design methodology that 
fosters effective collaboration between humans and AI. This approach is multi-faceted, emphasizing: 
(1) A transparent design, where AI operation and decision-making are contextualized by visual and 
textual explanations. (2) AI adaptability where the model learns and adjusts its behaviour to individual. 
(3) User acceptance and trust by involving and gathering feedback from end users in the system design 
and implementation loops. The project is expected to build a conceptual framework that defines of 
trustworthy design of machine learning models design of AI-tools to support RDT tasks and validate 
the models and relevant interface prototypes through Field Operational Tests.  The lessons learned 
will be consolidated into a set of guidelines that will delineate best practices for developing explainable 
AI-based systems for RDT operations. 
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MultimodX 

Integrated Passenger-Centric Planning of Multimodal Transport Networks (MultimodX) [140] is an 

exploratory research project that aims at assuring a more efficient, predictable, and environmentally 

sustainable door-to-door passenger journey focusing on air and rail as natural multimodal partners. 

The project will develop a set of innovative solutions and decision-making tools to support the 

coordinated planning and management of multimodal transport networks. Specifically, the project will 

develop a modelling and evaluation framework, and a solution to enable the coordinated design of air 

and rail schedules according to expected demand behaviour. The modelling approach that will be used 

by this project has been identified as interesting to consider for some of SynthAIr use cases, namely 

the ones that deal with predictions. 

 

ASTRA  

The AI-enabled tactical FMP hotspot prediction and resolution (ASTRA) is an exploratory project aims 
to advance the capabilities of Air Traffic Flow and Capacity Management in predicting and resolving 
traffic hotspots at a pre-tactical stage. Currently, traffic planning is based on flight plans submitted to 
the Flow Management Position (FMP) several days before operation. However, the static nature of 
such data cannot accommodate for dynamic changes such as convective weather, ground delays or 
airspace closures, leading to inaccuracies in traffic hotspot forecasts. The project seeks to fill the 
operational gap between FMP and CWP by developing an AI-based decision support tool capable of 
predicting and resolving traffic hotspots with a longer look-ahead time. The tool aims at reducing last-
minute interventions, decreasing the burden on CWP controllers, and ultimately enabling more 
efficient use of airspace [141]. 

ASTRA aspires to deliver a solution at TRL 2 by developing an AI-based FMP function for traffic hotspot 
prediction and a Human Machine Interface (HMI) concept that enables operators to interact with the 
function. The solution will be demonstrated and validated by human-in-the-loop Real-Time 
Simulations in a representative operational environment. 

  

JARVIS  

JARVIS is an Industrial research project that will develop three AI-based solutions (digital assistants) 
aimed to team with their human counterparts an (1) airborne digital assistant to support crew in single 
pilot operations; (2) an ATC digital assistant and (3) an airport digital assistant will increase the level of 
automation in airports, enhancing safety and efficiency. The digital assistants will be delivered at a 
TRL4 level of maturity, each solution (DA) will validate the different features of the assistant in different 
validation exercises [142]. 

 JARVIS aims at delivering novel methods for AI trustworthiness, providing the relevant means of 
compliance to assure the robustness and stability of the AI/ML algorithms, starting from the evaluation 
of data quality.  

A cloud-based AI infrastructure will be developed to gather a massive data lake with information 
coming from ANSP and airports. Its architecture will allow the data to be labelled, processed, and used 
for training different advanced ATM tools.  A robust human-AI teaming framework based strategic 
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automation, decision support, shared situational awareness (e.g., joint cognition) in order to support 
the actor trust. 

JARVIS foundational AI work package will collect lessons learned, best practices, and standard 
approaches/procedures from the different solutions AI capabilities, namely in terms of Assured AI, 
Human AI-teaming and Big Data & Cloud Infrastructures. 

DARWIN  

Digital Assistants for Reducing Workload & Increasing collaboration (DARWIN) is a Fast track for 
innovation project. AI-based automation for cockpit and flight operations are the key enabler for single 
pilot operations (SPO). The project aims to develop digital assistants to support SPO operations, 
assuring the same (or higher) level of safety and same (or lower) workload as operations with a full 
crew today. The project will deliver solutions that enable operational efficiency and route flexibility, 
considering the complexity of the future airspace. The results will support the commercial and 
operational viability of those new airspace users [143]. 
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9 List of acronyms  

 

Term Definition 

ADS-B Automatic Dependent Surveillance - Broadcast 

A-CDM Airport Collaborative Decision-Making 

AIRAC Aeronautical Information Regulation And Control 

ANN Artificial Neural Network 

ANSP Air Navigation Service Provider 

AOCC Airline Operation Control Centre 

ARIMA Autoregressive Integrated Moving Average 

ATFM Air Traffic Flow Management 

EOBT Estimated Off-Block Time 

GAN Generative Adversarial Network 

GARCH Generalised Autoregressive Conditional Heteroskedasticity 

GDPR General Data Protection Regulation  

GRU Gated Recurrent Units 

IFR Instrument Flight Rules 

LSTM Long Short-Term Memory 

ML Machine Learning 

MLP Multilayer Perceptron 

NAA National Aviation Authority 

NM Network Manager 

PSAP Process Structure Aware Prediction 

SARIMA Seasonal Autoregressive Integrated Moving Average 

SDG Synthetic Data Generation 

TOBT Target Off-block Time 

TTS-GAN Transformer-based Time-Series Generative Adversarial Network 

VAE Variational Autoencoder 

SRIA Strategic Research and Innovation Agenda 
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