
Towards Transparency and Knowledge
Exchange in AI-assisted Data Analysis Code

Generation
Robert Haase1,2,3,�

1Data Science Center, Leipzig University, Humboldtstraße 25, 04105 Leipzig, Germany
2Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden / Leipzig

3National Research Data Infrastructure for Microscopy and BioImage Analysis, NFDI4BioImage

The integration of Large Language Models (LLMs) in scien-
tific research presents both opportunities and challenges for life
scientists. Key challenges include ensuring transparency in AI-
generated content and facilitating efficient knowledge exchange
among researchers. These issues arise from the in-transparent
nature of AI-driven code generation and the informal sharing
of AI insights, which may hinder reproducibility and collabora-
tion. This paper introduces git-bob, an innovative AI-assistant
designed to address these challenges by fostering an interactive
and transparent collaboration platform within GitHub. By en-
abling seamless dialogue between humans and AI, git-bob en-
sures that AI contributions are transparent and reproducible.
Moreover, it supports collaborative knowledge exchange, en-
hancing the interdisciplinary dialogue necessary for cutting-
edge life sciences research. The open-source nature of git-bob
further promotes accessibility and customization, positioning it
as a vital tool in employing LLMs responsibly and effectively
within scientific communities.

Data Analysis, Bio-image Analysis, LLM, Code Generation
Correspondence: robert.haase@uni-leipzig.de, ORCID: 0000-0001-5949-2327

Introduction
Generative artificial intelligence (AI) and Large Language
Models (LLMs) in particular are changing the way we do data
science. Most prominently, scientists use the technology for
interacting with scientific data (1), answer data analysis ques-
tions (2, 3), generate data analysis code (4–6), and [re-]write
scientific manuscripts (7). Unfortunately, the prompts sent
to LLMs are commonly not conserved, and thus, at the time
of publication, it might be hard to differentiate human-made
and AI-generated parts of the scientific work. A professional
peer-review system, for documenting how LLM-generated
code was prompted for, and which human reviewed it, is
not established in contemporary scientific culture. However,
such systems do exist for collaborative code editing involv-
ing multiple humans. E.g. the online platform github.com is
well-established in the open-source software community for
discussing issues and potential solutions, building code to-
gether, and for peer-reviewing contents. As it was shown
before that LLMs can solve real-world GitHub issues (8),
developing an AI-assistant that interacts with humans di-
rectly within the Github platform is the obvious next step. I
am presenting git-bob, a functional proof-of-concept imple-
mentation of an LLM-based AI-assistant that can respond to
GitHub issues, discuss potential solutions with humans itera-

tively, write code for them, and submit it as pull-request to be
reviewed by humans. It is technically similar to various on-
line services for data analysis such as the OpenAI ChatGPT
Data Analyst or Github Copilot Workflows, with three ma-
jor differences: 1) Multiple humans can interact with git-bob
in one communication thread. This allows bringing together
domain specialists, such as life scientists, data-analysts and
the AI-assistant in one discussion, stimulating knowledge
exchange on how to interact properly with the AI-assistant.
2) Discussions with git-bob and resulting code-modifications
are conserved in an online-platform that others can read and
follow, making the interaction with the AI-assistant fully
transparent, and 3) git-bob is open-source. Other developers
can read its built-in system prompts and modify them to their
needs. Git-bob’s source code is available online: https:
//github.com/haesleinhuepf/git-bob.

Features and limitations
A common workflow involving git-bob is demonstrated in
Figure 1: a user opens an issue, a kind of discussion thread,
on a repository on github.com, where git-bob is installed. A
repository member can then trigger git-bob to answer by writ-
ing a command such as “git-bob comment on this”. If ex-
ternals try so, an automatic response will inform them that
only repository members are allowed to trigger git-bob be-
cause running git-bob may cause costs for repository owners.
Once triggered, git-bob will use an LLM to respond to the
question, potentially including a code snippet and resulting
plots or images. Users and the AI-assistant can then discuss
back and forth until some potential solution is reached. Op-
tionally, git-bob can then be asked to implement the solution
and send a GitHub pull-request, another kind of discussion
thread, but accompanied by file modifications to the reposi-
tory, e.g. including a Jupyter Notebook containing the pre-
viously discussed code solution to a given issue. A human
would need to review this pull-request and merge it into the
code base of the repository. Git-bob also has the capability
to review pull-requests originating from humans, but it is not
allowed to merge them. This reflects established practices in
science, where eventually a scientist is responsible for data
analysis code that becomes part of the project. Additional
tasks git-bob is capable of are: 1) The assistant can support
users of open source libraries by providing advice and code
examples, as shown in Supplementary Figure S1. In case the

Haase | October 14, 2024 | 1–7

https://github.com/haesleinhuepf/git-bob
https://github.com/haesleinhuepf/git-bob

assistant is not sure about the answer, it is capable of forward-
ing the question to a human (Supplementary Figure S2). 2)
It can be used to document code (Supplementary Figure S4).
Such a task can be time-consuming when performed without
AI-assistance, which can generate documentation for multi-
ple Python functions in seconds to minutes. 3) it can analyse
data in the repository directly, e.g. summarize and plot data in
CSV files (Supplementary Figure S3). 4) If manuscript files
are stored in a github repository, e.g. in latex format, git-
bob can assist in writing. For example, the abstract for this
manuscript was written by the AI-assistant and this is docu-
mented transparently as shown in Supplementary Figure S5.
A highlight of git-bob is that a local installation is not re-
quired. Git-bob is implemented as GitHub workflow, which
can be installed by uploading a configuration file to a repos-
itory and setting access rights. It is compatible and was
tested with the commercial models OpenAI’s GPT4-omni,
Anthropic’s Claude, Google Gemini and freely available
models hosted on Github Models Marketplace. Git-bob re-
ports which model was used in all of its messages, as good
scientific practice suggests. Obviously, the communication
with the selected LLM is transmitted to the service provider,
including source code files from the repository and images
provided with the github issue. Hence, users are recom-
mended to not submit any personal or sensitive information.
When writing data analysis code, git-bob is intrinsically lim-
ited by the capabilities of the used LLM. For example, it has
been shown that state-of-the-art (SOTA) LLMs can solve bio-
image analysis questions by generating functionally correct
code just above 50% of tested cases (5). This fundamen-
tal limitation may disappear when improved LLMs are pub-
lished. For now, it can be evaded by the humans guiding the
AI-assitant in multi-turn interactions towards a workable so-
lution. Further technical limitations arise form prompt-length
limitations of the underlying LLMs. When modifying or gen-
erating a file, these files must be below specified limits, e.g.
GPT4-omni has 128k tokens input and 16k output tokens as
limit (1 token ≈ approx. 3/4 words). Also when processing
data, limitations of the GitHub IT infrastructure have to be
considered: Git-bob executed in public repositories runs on
virtual machines with 4 CPU cores, 16 GB of RAM and 14
GB of SSD storage. In private repositories, only 2 CPU cores
and 7 GB RAM are available (9). More capable systems are
available on a paid basis.

Conclusion
LLMs are being integrated in scientific workflows unavoid-
ably, but commonly it is not documented how they were em-
ployed, also because of lack of tools conserving this informa-
tion conveniently. If the scientific community documented
how the prompted LLMs like they document how data analy-
sis software was used, we could learn from each other how to
prompt efficiently and responsibly. To overcome current lim-
itations, I propose git-bob, a functional, LLM-based proof-
of-concept AI-assistant embedded in the GitGub platform.
It enables scientists to interact with an LLM via Github Is-
sues and Pull-Requests offering new ways for implementing

good scientific practice for the conservation of discussions
between humans and AI when they are working on projects
together.

ACKNOWLEDGEMENTS
I would like to thank Elena Katharina Nicolay (UFZ Leipzig) for testing git-bob in
its early days and for providing constructive feedback on the manuscript. I am
also glad that I could use the bioRxiv manuscript template by Ricardo Henriques,
which is licensed CC-BY 4.0. I acknowledge the financial support by the Federal
Ministry of Education and Research of Germany and by Sächsische Staatsminis-
terium für Wissenschaft, Kultur und Tourismus in the programme Center of Excel-
lence for AI-research "Center for Scalable Data Analytics and Artificial Intelligence
Dresden/Leipzig", project identification number: ScaDS.AI. I also acknowledge fi-
nancial support from the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under the National Research Data Infrastructure – NFDI 46/1 –
501864659 - NFDI4BioImage.

References
1. Loïc A. Royer. The future of bioimage analysis: a dialog between mind and machine. Nature

Methods, 20(7):951–952, 2023. ISSN 1548-7105. doi: 10.1038/s41592-023-01930-y.
2. Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer,

Scott Wen tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable
benchmark for data science code generation, 2022.

3. Wei Lei, Cristina Fuster-Barceló, Georg Reder, et al. Bioimage.io chatbot: a community-
driven ai assistant for integrative computational bioimaging. Nature Methods, 21:1368–1370,
2024. doi: 10.1038/s41592-024-02370-y.

4. Loïc A. Royer. Omega — harnessing the power of large language models for bioim-
age analysis. Nature Methods, 21(8):1371–1373, 2024. ISSN 1548-7105. doi: 10.1038/
s41592-024-02310-w.

5. Robert Haase, Christian Tischer, Jean-Karim Hériché, and Nico Scherf. Benchmarking large
language models for bio-image analysis code generation. bioRxiv, 2024. doi: 10.1101/2024.
04.19.590278.

6. Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto,
et al. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.

7. Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha.
The AI Scientist: Towards fully automated open-ended scientific discovery. arXiv preprint
arXiv:2408.06292, 2024.

8. Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?,
2024.

9. GitHub. About github-hosted runners https://docs.github.com/en/actions/

using-github-hosted-runners/using-github-hosted-runners/

about-github-hosted-runners, 2024. Accessed: 2024-10-14.

2 Haase | Towards Transparency and Knowledge Exchange in AI-assisted Data Analysis Code Generation

https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners

Fig. 1. Use-case example for the interaction with git-bob: After creating a GitHub issue, optionally including upload of an example image, the AI-assistant and the human
exchange about how to process the data (A). Once they concluded to implement the solution, a GitHub pull-request is sent (B) containing the programmed solution as files in
the repository. Also here, human and AI-assistant can continue discussing and modify the solution until the example is satisfactory (C). The discussion also contains error
messages observed while the AI-assistant was executing code or creating files, allowing to modify prompts or improve git-bob itself. Words triggering git-bob are underlined
in magenta. The entire discussion and corresponding code can be read online: https://github.com/haesleinhuepf/git-bob-playground/issues/13 and
https://github.com/haesleinhuepf/git-bob-playground/pull/14

Haase | Towards Transparency and Knowledge Exchange in AI-assisted Data Analysis Code Generation bioRχiv | 3

https://github.com/haesleinhuepf/git-bob-playground/issues/13
https://github.com/haesleinhuepf/git-bob-playground/pull/14

Supplementary material

Fig. S1. Use-case example for supporting users: The assistant can be configured to act as expert on a specific Python library and answer user questions. Words triggering git-
bob are underlined in magenta. The entire discussion and corresponding code can be read online: https://github.com/haesleinhuepf/stackview/issues/79

Fig. S2. Use-case example for asking an expert: The answer to the question shown here is "No", but this is nowhere written in the documentation or the configuration of the
assistant. In this case the assistant is not sure, and it can be configured to forward a question to a maintainer of the library where the question arrived. Words triggering git-
bob are underlined in magenta. The entire discussion and corresponding code can be read online: https://github.com/haesleinhuepf/stackview/issues/80

4 Haase | Towards Transparency and Knowledge Exchange in AI-assisted Data Analysis Code Generation

https://github.com/haesleinhuepf/stackview/issues/79
https://github.com/haesleinhuepf/stackview/issues/80

Fig. S3. Use-case example for plotting data: after explaining the assistant the folder structure of the project, it generates code for parsing a folder of
CSV files and plotting results. Words triggering git-bob are underlined in magenta. The entire discussion and corresponding code can be read online:
https://github.com/NFDI4BIOIMAGE/training/issues/250

Haase | Towards Transparency and Knowledge Exchange in AI-assisted Data Analysis Code Generation bioRχiv | 5

https://github.com/NFDI4BIOIMAGE/training/issues/250

Fig. S4. Use-case example for adding and revising documentation in code: git-bob was used to partially write the code documentation of its own code. When asked to add
documentation in a specific format, it sent a pull-request (A) and the human could inspect the code modifications (B, excerpt) before mergin the code into the project’s code
base. The entire discussion and corresponding code can be read online: https://github.com/haesleinhuepf/git-bob/pull/29

6 Haase | Towards Transparency and Knowledge Exchange in AI-assisted Data Analysis Code Generation

https://github.com/haesleinhuepf/git-bob/pull/29

Fig. S5. Use-case example for working on scientific manuscripts: after a first draft of the manuscript was written, git-bob was asked to formulate an abstract (A). The abstract
was then submitted as pull-request with a short description (B). The human can also review and potentially modify the proposed text in this online interface (C). Words trig-
gering git-bob are underlined in magenta. The entire discussion can be read online: https://github.com/haesleinhuepf/git-bob-manuscript/issues/8
and https://github.com/haesleinhuepf/git-bob-manuscript/pull/9.

Haase | Towards Transparency and Knowledge Exchange in AI-assisted Data Analysis Code Generation bioRχiv | 7

https://github.com/haesleinhuepf/git-bob-manuscript/issues/8
https://github.com/haesleinhuepf/git-bob-manuscript/pull/9

