

HYBRAIN aims to develop a hybrid electronic-photonic super-fast and energyefficient computing system inspired by the human brain to enable innovative Edge **Computing and Artificial Intelligence solutions.**

E

Exploitable Results

enhancing Al experiments and drive AI advances.

integrated circuits on development processes.

Specialised surrogate models, in the form of a software framework - brains-py package - for implementing deeplearning neural networks and studying dopant-network processing units.

Method for automatic speech recognition.

15+ Papers created with financial support from HYBRAIN. Explore the publications!

Technologies leveraged in the Project

Photonic Convolution Processor (PCP)

Employs light for data processing, offering high bandwidth and low latency, revolutionizing big data handling with increased speed and energy efficiency.

Analog In-Memory Computing (AIMĆ)

Integrates computation within memory for reduced latency and enhanced parallel processing capabilities, ideal for handling extensive data tasks.

Dopant Newtork Processing Units (DNPUs)

Utilises dopants within semiconductors to create energy-efficient processors that enhance computational speed and reduce neural network complexity.

Project coordinator

UNIVERSITY OF TWENTE.

X@HYBRAIN_eu (in) HYBRAIN Project Hybrain.eu

The HYBRAIN project has received funding from the European Union's Innovation Council Pathfinder programme under Grant Agreement no.101046878.

Funded by the European Union