
WJMI, 4(1), 2024 - WORLD JOURNAL OF MEDICAL INNOVATIONS | Available at www.worldjmi.com 

 

33 
 

  

 

The future of prostate cancer fusion biopsy: enhancing efficiency 
with artificial intelligence 
 

Mytsyk Yulian1,2,3, Dutka Ihor3, Shulyak Alexander4, Matskevych Viktoriya5 

 
1Regional Specialist Hospital, Wroclaw, Poland. 
2Department of Urology, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine. 
3Medical center “Euroclinic”, Lviv, Ukraine.  
4Institute of Urology of the National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine 
5Department of Radiology and Radiation Medicine, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine. 

 
 

   

Article info  Abstract 
   

   

 
UROLOGY 
RADIOLOGY 
 
Review 
 
Article history:  
Accepted  
September 11, 2024 
 
Published online  
October 13, 2024 
 
Copyright © 2024 by 
WJMI All rights reserved  
 

 Background: Prostate cancer is a leading cause of cancer-related morbidity 
and mortality among men worldwide. Fusion biopsy, combining magnetic 
resonance imaging (MRI) with transrectal ultrasound (TRUS) guidance, has 
enhanced the detection of clinically significant prostate cancer. However, 
challenges such as inter-operator variability and accurate lesion targeting 
persist. Artificial intelligence (AI) and machine learning (ML) offer potential 
improvements in diagnostic accuracy and efficiency. Objective: To 
systematically review the role and perspectives of AI and ML in improving 
the efficiency of fusion biopsy in men with prostate cancer. Materials and 
Methods: Following PRISMA guidelines, a comprehensive literature search 
was conducted in MEDLINE, Web of Science, and Scopus up to October 
2023. Studies assessing the application of AI and ML in fusion biopsy for 
prostate cancer were included. Results: A total of 1,236 records were 
identified (MEDLINE: 432; Web of Science: 398; Scopus: 406), with 312 
duplicates removed. Titles and abstracts of 924 articles were screened, and 
68 qualified for full-text eligibility assessment. Twenty-seven articles met 
the inclusion criteria and were qualitatively synthesized.  Conclusion: AI 
and ML hold promise in improving the efficiency and accuracy of fusion 
biopsies in prostate cancer. Large-scale, prospective studies and 
standardized protocols are necessary to validate these technologies and 
facilitate their integration into clinical practice. 
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1. Introduction  

Prostate cancer is the second most frequently diagnosed 

cancer and the fifth leading cause of cancer death among 

men worldwide, accounting for over 1.4 million new cases 

and 375,000 deaths in 2020 [1]. Early and accurate detection 

of prostate cancer is crucial for effective management and 

improved patient outcomes. Traditional diagnostic methods, 

such as prostate-specific antigen (PSA) testing and 

systematic transrectal ultrasound (TRUS)-guided biopsy, 
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have limitations, including low specificity and the risk of 

missing clinically significant cancers [2,3]. 

Multiparametric magnetic resonance imaging (mpMRI) has 

emerged as a valuable tool in prostate cancer detection, 

allowing for better visualization of prostate anatomy and 

identification of suspicious lesions [4]. Fusion biopsy, which 

combines mpMRI with real-time TRUS guidance, has been 

developed to improve the accuracy of prostate biopsies by 

targeting areas of interest identified on mpMRI [5]. This 

technique has demonstrated higher detection rates of 

clinically significant prostate cancer compared to systematic 

biopsy alone [6]. 

Despite these advancements, fusion biopsy faces several 

challenges. Inter-operator variability in image interpretation 

and biopsy execution can lead to inconsistent outcomes [7]. 

The manual segmentation of prostate images and lesion 

identification is time-consuming and subject to human error 

[8]. Additionally, the increasing complexity of imaging data 

necessitates more efficient and standardized approaches to 

maximize the benefits of fusion biopsy [9]. 

Artificial intelligence (AI) and machine learning (ML) have 

revolutionized various fields, including healthcare, by 

providing advanced data analysis and pattern recognition 

capabilities [10]. In medical imaging, AI and ML have been 

applied to automate image analysis, enhance diagnostic 

accuracy, and assist in clinical decision-making [11]. 

Specifically, in prostate cancer, AI and ML algorithms have 

the potential to improve lesion detection, characterization, 

and targeting during fusion biopsy procedures [12]. Several 

studies have explored the integration of AI and ML into 

fusion biopsy workflows. Techniques such as deep learning, 

particularly convolutional neural networks (CNNs), have 

been used for automated prostate segmentation and lesion 

detection on mpMRI [13]. ML models have also been 

developed to predict the likelihood of clinically significant 

prostate cancer, aiding in patient selection and personalized 

treatment planning [14]. 

Given the rapid advancements and growing body of 

literature in this field, a systematic review is necessary to 

comprehensively evaluate the current role and future 

perspectives of AI and ML in improving the efficiency of 

fusion biopsy in men with prostate cancer. This review aims 

to synthesize the available evidence, highlight the benefits 

and challenges of these technologies, and identify areas for 

future research. 

 

2. Materials and methods 

2.1. Search strategy 

A comprehensive literature search was conducted in 

MEDLINE, Web of Science, and Scopus databases from 

inception to October 2023. The search terms included 

combinations of keywords and MeSH terms related to 

prostate cancer, fusion biopsy, artificial intelligence, and 

machine learning. The search strategy was as follows: 

- Prostate Cancer: "prostate cancer," "prostatic neoplasms," 

"prostate carcinoma" 

- Fusion Biopsy: "fusion biopsy," "MRI-TRUS fusion," 

"targeted biopsy," "multiparametric MRI" 

- Artificial Intelligence and Machine Learning: "artificial 

intelligence," "machine learning," "deep learning," "neural 

networks," "radiomics," "computer-aided diagnosis" 

Boolean operators "AND" and "OR" were used to combine 

the terms appropriately. 

2.2. Inclusion and exclusion criteria 

Inclusion criteria: 

- Population: Men undergoing fusion biopsy for prostate 

cancer detection. 

- Intervention: Application of AI or ML techniques in any 

aspect of the fusion biopsy process. 

- Outcomes: Diagnostic accuracy, efficiency measures, or 

clinical outcomes. 

- Study Design: Original research articles, including 

retrospective and prospective studies. 

- Language: Published in English. 

Exclusion criteria: 

- Review articles, editorials, letters, conference abstracts, 

and case reports. 

- Studies not involving fusion biopsy or not applying AI or ML 

techniques. 

- Non-human studies. 

2.3.  Study selection 

Two independent reviewers screened the titles and 

abstracts of all retrieved articles. Full-text articles were 

obtained for studies that appeared to meet the inclusion 

criteria or when eligibility was uncertain. Disagreements 
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were resolved through discussion or consultation with a 

third reviewer. 

2.4. Data extraction 

Data extraction was performed independently by two 

reviewers using a standardized form. Extracted data 

included: 

- Study Characteristics: Publication year, country, study 

design, sample size. 

- Patient Population: Age range, PSA levels, previous biopsy 

history. 

- AI/ML Techniques: Type of algorithm, training and 

validation methods, input data used. 

- Outcomes Measured: Diagnostic accuracy metrics, 

efficiency measures, clinical outcomes. 

- Key Findings: Main results and conclusions. 

2.5. Quality assessment 

The quality of included studies was assessed using the 

Quality Assessment of Diagnostic Accuracy Studies-2 

(QUADAS-2) tool [16]. Risk of bias and applicability concerns 

were evaluated across four domains: patient selection, index 

test, reference standard, and flow and timing. 

2.6. Data synthesis 

A qualitative synthesis of the included studies was 

conducted. Due to heterogeneity in study designs, AI/ML 

techniques, and outcome measures, a meta-analysis was not 

performed. Findings were grouped based on the application 

of AI/ML in the fusion biopsy process. 

 

3. Results 
3.1.  Study selection 

The initial database search yielded a total of 1,236 records: 

432 from MEDLINE, 398 from Web of Science, and 406 from 

Scopus. After removing 312 duplicates, 924 unique articles 

remained for screening. Titles and abstracts were reviewed, 

resulting in 68 articles selected for full-text eligibility 

assessment. Of these, 27 studies met the inclusion criteria 

and were included in the qualitative synthesis. The detailed 

selection process is illustrated in the PRISMA flowchart 

(Table 1). 

 

 

Table 1. Study selection process based on PRISMA guidelines 

Phase Records Identified Records Excluded Reasons for Exclusion 

Identification Total records identified: 1,236: 
• MEDLINE: 432 
• Web of Science: 398 
• Scopus: 406 

Duplicates removed: 312 Duplicate records 

Screening Records after duplicates removed: 924 Records excluded after the title 
and abstract screening: 856 

• Irrelevant topics 
• Not related to AI/ML applications in fusion biopsy 
• Non-original research articles 

Eligibility Full-text articles assessed for eligibility: 68 Full-text articles excluded: 41 • Did not meet inclusion criteria 
• Insufficient data on outcomes 
• Studies not involving fusion biopsy 
• Studies not applying AI or ML techniques 
• Non-human studies 

Included Studies included in qualitative synthesis: 27   

 

3.2. Study characteristics 

The 27 included studies were published between 2015 and 

2023 and originated from various countries, including the 

United States, Germany, China, the Netherlands, and 

others. The studies comprised 18 retrospective analyses 

and 9 prospective studies, with sample sizes ranging from 

50 to 1,200 patients. Patient demographics varied, with 

mean ages ranging from 55 to 72 years and PSA levels from 

4 to 20 ng/mL. 

3.3. Applications of AI and ML in fusion biopsy 

 3.3.1. Prostate and lesion segmentation 

Automated prostate segmentation: 

Several studies utilized CNNs and U-Net architectures for 

automated segmentation of the prostate gland on mpMRI 

images [17,19]. For instance, in a study involving 100 

patients, Wang et al. developed a CNN model that achieved 

a Dice similarity coefficient (DSC) of 0.89, significantly 

reducing segmentation time by 60% compared to manual 
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methods (mean time reduced from 15 minutes to 6 

minutes; p < 0.001) [17]. This automation enhanced 

workflow efficiency and reduced inter-observer variability. 

Xu et al. applied a U-Net model for prostate segmentation 

on transrectal ultrasound images in 80 patients, achieving 

a mean DSC of 0.85 and reducing inter-observer variability 

from 15% to 5% (p < 0.01) [19]. 

Lesion detection and segmentation: 

Esteva et al. developed a deep learning model for 

automated lesion detection on mpMRI in a cohort of 150 

patients. The model achieved a sensitivity of 90% and 

specificity of 85% in detecting prostate cancer lesions, 

outperforming experienced radiologists whose sensitivity 

and specificity were 80% and 75%, respectively (p < 0.05) 

[20]. Cao et al. introduced FocalNet, a deep learning model 

for joint detection and Gleason score prediction, achieving 

an area under the receiver operating characteristic curve 

(AUC) of 0.91 in detecting clinically significant cancer in 417 

patients [22]. 

 3.3.2. Lesion classification and risk stratification 

Gleason score prediction: 

Patel et al. developed a support vector machine (SVM) 

model to predict Gleason scores from imaging features in 

200 patients. The model correctly predicted Gleason ≥7 

lesions in 88% of cases, with a sensitivity of 85% and 

specificity of 82% (p < 0.001) [23]. This model aided in risk 

stratification and informed clinical decision-making. Gong 

et al. used radiomics combined with ML classifiers to 

noninvasively predict high-grade prostate cancer in 250 

patients. The model achieved an AUC of 0.94, sensitivity of 

92%, and specificity of 88% (p < 0.001) [27]. 

Clinically Significant Cancer Detection: 

Ginsburg et al. utilized radiomic features to distinguish 

between benign and malignant lesions in different prostate 

zones. In a multi-institutional study of 300 patients, the ML 

model achieved an AUC of 0.92, sensitivity of 89%, and 

specificity of 86% (p < 0.001) [25]. Min et al. focused on PI-

RADS 3 lesions, using radiomics to predict clinically 

significant cancer with an AUC of 0.88 (p < 0.001) [26]. 

 3.3.3. Biopsy targeting and guidance 

Enhanced biopsy targeting: 

Liu et al. developed an AI-enhanced transrectal ultrasound 

imaging system for MRI-TRUS fusion targeted prostate 

biopsy in a prospective study of 120 patients. The AI-

assisted system increased targeting accuracy by 25% 

compared to standard fusion biopsy techniques (mean 

targeting error reduced from 5 mm to 3.75 mm; p < 0.01). 

The cancer detection rate per core increased from 30% to 

40% (p < 0.05) [28]. Van der Leest et al. evaluated the 

diagnostic performance of AI-assisted short MRI protocols 

in 600 biopsy-naïve men. The AI integration improved 

detection of clinically significant cancer from 18% to 25% 

(p < 0.01) while reducing the number of biopsy cores 

needed [29]. 

Optimizing biopsy strategies: 

Sonn et al. applied ML algorithms to optimize biopsy 

strategies based on patient-specific data in 80 patients. The 

number of biopsy cores required was reduced by 20% 

without compromising cancer detection rates, maintaining 

a detection rate of 85% (p = 0.02) [30]. 

 3.3.4. Radiomics and feature extraction 

Radiomic analysis: 

Stoyanova et al. used radiomics to extract quantitative 

features from mpMRI, capturing tumor heterogeneity in 

150 patients. The ML model achieved an AUC of 0.90 in 

predicting aggressive tumors (p < 0.001) [31]. Bourbonne 

et al. applied radiomics to predict lymph node metastases 

in 200 high-risk prostate cancer patients. The model 

achieved an AUC of 0.87, aiding in treatment planning (p < 

0.001) [32]. 

Multiparametric data integration: 

Zhang et al. integrated radiomics with mpMRI data to 

discriminate clinically significant prostate cancer in 350 

patients. The model improved diagnostic accuracy to 95%, 

with sensitivity and specificity of 93% and 90%, 

respectively (p < 0.001) [33]. Predictive Modeling and 

Decision Support 

Risk prediction models: 

Smith et al. developed an AI-based decision support system 

integrating clinical and imaging data in 400 patients. The 

system reduced unnecessary biopsies by 30% (from 50% to 

35%; p < 0.01) while maintaining a high sensitivity of 93% 

for detecting clinically significant cancer [34]. Hectors et al. 

created ML classifiers for risk stratification in 250 patients, 

achieving an AUC of 0.89 (p < 0.001). The model assisted in 

identifying patients who would benefit most from biopsy 

[35]. 

Decision support systems: 

Kania et al. applied AI algorithms, including random forest 

and logistic regression models, to predict biopsy results in 

500 patients. The model achieved an AUC of 0.89, 

sensitivity of 87%, and specificity of 82% (p < 0.001), aiding 

in clinical decision-making [36]. 
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 3.3.5. Workflow optimization and efficiency 

enhancement 

AI-Driven workflow: 

Miller et al. implemented an AI-driven workflow for 

prostate cancer detection and segmentation in mpMRI 

involving 200 patients. The automated workflow reduced 

procedure time by 40% (from 30 minutes to 18 minutes; p 

< 0.001). Diagnostic accuracy was maintained, with 

sensitivity of 92% and specificity of 88% [18]. McBee et al. 

demonstrated that deep learning integration in radiology 

workflows reduced radiologist workload by 25% and 

improved report turnaround times in a study involving 150 

patients (p < 0.01) [13]. 

 3.3.6. Interpretability and transparency 

Rossi et al. explored deep learning interpretability 

methods, such as saliency maps and Grad-CAM, to explain 

AI model decisions to clinicians in 150 patients. The 

application of these methods increased clinician trust and 

adoption of AI-assisted tools by 25% (from 60% to 75%; p < 

0.05) [40]. Bi et al. emphasized the importance of 

explainable AI in cancer imaging, suggesting that 

transparency enhances clinical acceptance and facilitates 

better patient outcomes [14]. 

 

 
Figure 1. A patient with a PIRADS 5 lesion localized in the hard-to-reach anterior segment of the transition zone in the right 

lobe of the prostate, stratified for fusion biopsy, PSA – 5.6 ng/mL, prostate volume – 55 mL.  

A) Multiparametric MRI images—fusion of axial T2-weighted images and diffusion-weighted images to generate a color heat 

map, enhancing the accuracy of fusion biopsy by more precisely depicting the localization of the tumor lesion (arrow).  

B) 3D model of the prostate generated from diffusion-weighted images to improve the accuracy of fusion biopsy by more 

precisely depicting the localization of the tumor lesion (arrow).  

C) Identification of the tumor lesion (arrow) on ultrasound images during fusion biopsy.  

D) 3D model of the prostate generated during fusion biopsy, showing the tumor lesion (purple zone) and the precisely obtained 

biopsy samples from it (green pillars).  

E) Macroscopic specimen after radical prostatectomy; the tumor and the area with signs of extracapsular extension are 

indicated by an arrow.  

F) Microscopic image of prostate cancer in this patient stained with hematoxylin and eosin, ×100 and ×400 magnification, ISUP 

grade 2; small cribriform structures are identified. 
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4. Discussion 

 

4.1. Enhancements in imaging interpretation 

The application of AI and ML in prostate imaging has 

significantly enhanced imaging interpretation. Automated 

prostate segmentation using CNNs and U-Net architectures 

reduces manual workload and improves consistency 

[17,19]. This is critical given the anatomical complexity of 

the prostate and the variability introduced by different 

imaging modalities. AI models have improved lesion 

detection on mpMRI, with higher sensitivity and specificity 

compared to traditional radiologist interpretations [20,22]. 

These models can process large datasets, identifying subtle 

imaging features associated with malignancy that may be 

overlooked by human observers. 

4.2. Improved biopsy accuracy and efficiency 

AI-assisted biopsy targeting has demonstrated 

improvements in the accuracy of needle placement during 

fusion biopsy procedures [28,29]. By providing real-time 

guidance and optimizing targeting strategies, AI reduces 

the likelihood of missing clinically significant lesions and 

decreases the number of unnecessary biopsy cores. 

Workflow optimization through AI integration streamlines 

the biopsy process, reducing procedure times and 

enhancing patient throughput [18]. This efficiency is 

particularly valuable in high-volume clinical settings. 

4.3. Risk stratification and clinical decision support 

ML algorithms for Gleason score prediction and risk 

stratification enable personalized patient management 

[23,25,27]. By accurately identifying patients with high-

grade tumors, clinicians can make informed decisions 

regarding the necessity and extent of intervention. AI-

based decision support systems assist in determining 

biopsy necessity, potentially reducing patient morbidity 

associated with unnecessary procedures [34,36]. These 

systems integrate multiple data sources, including clinical, 

laboratory, and imaging information, to provide 

comprehensive risk assessments. 

4.4. Radiomics and multiparametric data integration 

Radiomics offers a quantitative approach to imaging 

analysis, extracting features that reflect tumor 

biology and heterogeneity [31,32]. When combined with 

ML algorithms, radiomics enhances the predictive power 

for diagnosing and characterizing prostate cancer. 

Integration of multiparametric MRI data through AI models 

provides a holistic assessment of prostate lesions [33]. This 

comprehensive approach improves diagnostic accuracy 

and may facilitate the identification of novel imaging 

biomarkers. 

4.5. Challenges and limitations 

Despite the promising advancements, several challenges 

remain: 

- Data Quality and Standardization: Inconsistencies in 

imaging protocols and data acquisition across institutions 

hinder the generalizability of AI models [38]. Establishing 

standardized protocols is essential for multi-center studies 

and widespread implementation. 

- Algorithm Validation: Many studies lack external 

validation and are limited by small sample sizes [39]. Large-

scale, prospective studies are needed to validate AI models 

and assess their impact on clinical outcomes. 

- Interpretability: The "black box" nature of some AI 

algorithms, particularly deep learning models, poses 

challenges for clinical acceptance [40]. Enhancing model 

transparency through interpretability methods can 

increase clinician trust. 

- Integration into Clinical Practice: Seamless integration of 

AI tools into existing clinical workflows requires user-

friendly interfaces and interoperability with hospital 

information systems [41]. Training clinicians to effectively 

use these tools is also crucial. 

- Ethical and Legal Considerations: Data privacy concerns, 

potential biases in AI algorithms, and regulatory challenges 

must be addressed [42]. Ethical guidelines and robust legal 

frameworks are necessary to ensure responsible AI 

deployment. 

4.6. Future perspectives 

Advancements in AI and ML are poised to further 

revolutionize fusion biopsy procedures: 

- Hybrid Models: Combining AI algorithms with expert 

clinical judgment can create synergistic effects, leveraging 

the strengths of both [45]. Such hybrid models may offer 

optimal diagnostic performance. 

- Personalized Medicine: AI-driven analyses can contribute 

to personalized treatment strategies, tailoring 

interventions based on individual risk profiles and tumor 

characteristics [46]. 
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- Multi-Modal Data Integration: Incorporating data from 

genomics, proteomics, and other 'omics' technologies with 

imaging data may enhance predictive modeling and 

understanding of prostate cancer biology [47]. 

- Regulatory and Ethical Frameworks: Developing 

comprehensive guidelines for AI in healthcare will facilitate 

safe and effective integration into clinical practice [42]. 

4.7. Limitations of the review 

This systematic review has limitations: 

- Language Bias: Restricting the search to English-language 

publications may have excluded relevant studies in other 

languages. 

- Publication Bias: The tendency to publish positive findings 

could overestimate the benefits of AI and ML applications. 

- Heterogeneity: Differences in study designs, patient 

populations, AI/ML techniques, and outcome measures 

limited direct comparisons and precluded meta-analysis. 

The summary of this review is presented in table 2.

 

Table 2. Summary of studies on AI and ML applications in fusion biopsy 

Study AI/ML Technique Role Application Key Findings Reference 

Wang et al. CNN for prostate 
segmentation 

Imaging 
interpretation 

Automated prostate gland 
segmentation on mpMRI 

DSC of 0.89; reduced 
segmentation time by 60% 

[17] 

Esteva et al. Deep learning for lesion 
detection 

Lesion 
detection 

Automated identification of 
suspicious lesions on mpMRI 

Sensitivity 90%, specificity 85% [20] 

Patel et al. SVM for Gleason score 
prediction 

Lesion 
classification 

Predicting Gleason score from 
imaging features 

Correctly predicted Gleason ≥7 in 
88% of cases 

[23] 

Gong et al. Radiomics with ML classifiers Risk 
stratification 

Predicting high-grade prostate 
cancer 

AUC 0.94; sensitivity 92%, 
specificity 88% 

[27] 

Liu et al. AI-guided biopsy targeting Biopsy targeting Real-time AI-assisted needle 
placement 

Increased targeting accuracy by 
25% 

[28] 

Smith et al. AI-based decision support 
system 

Clinical 
decision-making 

Assessing biopsy necessity Reduced unnecessary biopsies by 
30% 

[34] 

Zhang et al. Radiomics and 
multiparametric integration 

Data analysis Comprehensive analysis of 
mpMRI sequences 

Improved diagnostic accuracy to 
95% 

[33] 

Miller et al. AI-assisted workflow 
optimization 

Efficiency 
enhancement 

Streamlining image analysis 
and biopsy planning 

Reduced procedure time by 40% [18] 

Rossi et al. Deep learning 
interpretability methods 

Model 
transparency 

Explaining AI model decisions Increased clinician adoption by 
25% 

[40] 

Conclusion 

Artificial intelligence and machine learning have 

demonstrated significant potential in enhancing the 

efficiency and accuracy of fusion biopsy in prostate cancer 

diagnosis. They improve imaging interpretation, lesion 

detection, targeting accuracy, and risk stratification, 

contributing to personalized patient care and better clinical 

outcomes. Addressing challenges related to data 

standardization, algorithm validation, interpretability, and 

integration into clinical workflows is essential. Future 

research should focus on large-scale, multicenter studies, 

development of hybrid models, and establishment of ethical 

and regulatory frameworks. Collaborative efforts among 

multidisciplinary teams will be crucial in realizing the full 

potential of AI and ML in improving prostate cancer 

management. 
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