
Reinforcement Learning-based UL/DL Splitter for
Latency Reduction in Wireless TSN Networks

Margarita Cabrera-Bean, Wenli Pan, Josep Vidal
Dept. of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain

{marga.cabrera,josep.vidal}@upc.edu

Abstract—Reducing latency in Time-Sensitive Networking
(TSN) networks is critical to fulfil real-time communication
requirements, ensuring timely data delivery, and maintaining
system responsiveness. Minimizing latency enhances the relia-
bility of industrial automation, multimedia streaming, and other
time-critical applications, ultimately optimizing overall network
performance and user experience. One of the most critical points
lies in the wireless segments, which cannot be considered as
deterministic. Specially, when the traffic load between uplink
and downlink is unbalanced, it is critical to allocate resources
based on the volume of such traffic and on the channel state, both
significantly impacting on packet latency. In this paper we present
and compare a set of approaches to scheduling time slots within
a wireless frame for communication between the uplink (UL)
and downlink (DL) in a TSN network. The primary objective
is to reduce latency in wireless transmissions, particularly in
scenarios with stringent timing requirements. By optimizing the
allocation of time slots between UL and DL, our proposed
scheduling algorithm aims to minimize queueing delays while
ensuring efficient utilization of network resources. The results
highlight the significant reduction achieved in terms of queueing
latency and packet loss through our scheduling strategy, thereby
enhancing the reliability and timeliness of wireless links in TSN
networks.

Index Terms—UL/DL Scheduling, Reinforcement Learning
(RL), Latency in TSN, Queueing Delay.

I. INTRODUCTION

Time-Sensitive Networking (TSN) expands the standard
Ethernet protocol to facilitate real-time synchronization and
ensure deterministic, low-latency communication. TSN intro-
duces essential elements such as time-aware shapers, sched-
ulers, and guard bands, which are vital for applications de-
manding high availability, robustness, and reliability. These
components enable communication latency to be deterministic
and bounded. Facilitating interoperable wireless TSN capabil-
ities that align with established wired TSN standards is crucial
to foster widespread industry acceptance of TSN solutions. In
systems where wireless segments are integrated with wired
segments systems, TSN (Time-Sensitive Networking) traffic
communications experience the inherent randomness of wire-
less channels in the wireless segments. Recently, significant
advancements have been made in enabling TSN-based time

This work is funded by the European Commission Horizon Europe SNS JU
PREDICT-6G (GA 101095890) Project and the NextGeneration UNICO5G
TIMING (TSI-063000-2021-145). Also by the project 6-SENSES grant
PID2022-138648OB-I00, funded by MCIN/AEI/10.13039/501100011033,
and by FEDER-UE, ERDF-EU A way of making Europe, and the grants
22CO1/008248 and 2021 SGR 01033 (AGAUR, Generalitat de Catalunya).

synchronization and ensuring bounded latency over WiFi,
ensuring high reliability for industrial automation systems. [1]
describes ongoing TSN activities in interoperability testing and
certification toward WiFi TSN, demonstrating the effectiveness
of capabilities in IEEE 802.11ax and IEEE 802.11be to achieve
deterministic operation. Moreover, TSN communications ex-
tend beyond just WiFi wireless segments, as demonstrated
in [2], which outlines an integrated 5G and TSN network
design and underscores the potential for substantial benefits
in industrial use cases. An additional challenge in TSN com-
munications arises from the coexistence of multiple types of
traffic. This includes asynchronous Quality of Service (QoS)
or Best Effort (BE) traffic mixed with TSN isochronous traffic.
Each type of traffic is conveyed by a set of flows that arrive
at the system randomly. The coexistence of the three types
of traffic in the wireless segments requires smart scheduling
based on the traffic type [3]. In [4], Markov chains were used
to study the effect of aperiodic traffic on the queuing delay of
periodic traffic, highlighting queuing delay as one of the most
critical components of end-to-end delay. Additionally, some
previous works, such as [5], proposes heuristic procedures to
schedule multiple types of traffic, thereby supporting mixed-
criticality applications in TSN.

A. Contribution

Our work focuses on the distribution of transmission time
between UL and DL in a Time Division Duplex (TDD)
wireless segment. The main goal is to ensure that packets
are transmitted before a deadline. This is usually a critical
requirement in TSN networks. Packets exceeding this waiting
time are considered lost. We propose both, heuristic methods
that does not require a training stage and machine learning-
based techniques to achieve this objective. In both approaches,
dynamic splitters are employed to distribute the time slots of
each frame between DL and UL. This distribution depends on
the volume of packets awaiting transmission and optionally
considers the transmission bitrate determined by the current
conditions of the wireless channel.

B. Previous RL based works on wireless scheduling

In recent years, intelligent communication has garnered
significant research attention from both academia and industry.
Reinforcement learning (RL) and deep reinforcement learn-
ing (DRL) have emerged as powerful artificial intelligence
techniques capable of learning optimal decisions based on

environmental feedback. In [6] a survey is presented specially
focused to emphasize the progress on RL and DRL applied
to mobile edge computing, software defined network and
network virtualization in 5G. Previously in [7] a detailed
survey presented some pioneering works in wireless sensor
networks, working in applications such as resource and power
optimization.

In [8], DRL techniques are applied to typical resource man-
agement scenarios to determine network slicing strategies, a
key enabler for 5G. Similarly, in [9] and [10], DRL techniques
are used to manage Massive Machine-Type Communication,
enhancing random access scalability and suitability. In [11]
the problem of scheduling using DRL is combined with
Successive Interference Cancellation or SIC.

The problem of reducing UL latency by using DRL for
uRLLC services is solved in [12] by dynamically allocating
the future UL grant by learning from the dynamic traffic pat-
tern, while in [13] transfer learning and cooperative learning
mechanisms are employed to enable communication links to
work cooperatively in a distributed manner, which enhances
the network performance and access success probability in
Ultra-Reliable Low-Latency Communications.

In [14] a dual reinforcement learning based pattern opti-
mization scheme is proposed for dynamic TDD 5G systems.
The proposed solution targets minimizing the required URLLC
radio latency on a real-time basis, and accordingly, improving
the achievable URLLC outage performance. The proposed
scheme utilizes two nested layers, where the primary layer
estimates the number of the DL and UL symbols of the
upcoming radio pattern to satisfy the foreseen offered traffic
and the secondary RML sub-layer determines the DL and
UL radio frame structure that achieves the minimum. The
proposed solution demonstrates a significant URLLC outage
latency improvement compared to baseline dynamic TDD pro-
posals. Unlike our approach, [14] does not apply deep learning
techniques nor does it consider transmission bitrates in the
decision-making process, which, in our work, demonstrates a
positive impact on reducing both, latency and packet loss.

The rest of the paper is organized as follows: Section II
presents the environment model and formulates the problem
addressed in this work. Section III introduces and describes
the five proposed UL/DL splitters, including one static and
four dynamic splitters. Section IV evaluates and compares
the performance of these splitters. Finally, conclusions are
presented in Section V.

II. ENVIRONMENT

In the wireless segment of a TSN network, multiple users
establish connections with a Base Station (BS) i.e. an Access
Point in Wi-Fi or a gNB in 5G, to exchange different flows
with the network, including Time Sensitive (TS), with latency
constraints and best-effort (BE) flows, with no minimum rate
or latency constraints. TS flows include isochronous, periodic
traffic from control devices (e.g., sensors and actuators) and
aperiodic bursty traffic from other TS applications such as
AR/VR. The flows of periodic nature are pre-assigned to time

slots in the wireless frame externally from a higher level,
while BE type flows have no latency restrictions. In this work,
we focus on the allocation of time slots non occupied by
isochronous flows between UL and DL for the transmission
of aperiodic and bursty TS packets corresponding to the users
served by a single BS.

The DL/UL splitter subsystem operates at the periodicity of
a wireless frame. At the onset of each frame, depending on
the state of the asynchronous TS traffic queues and possibly
other factors, it decides the proportion of free slot distribution
between DL and UL. Once the isochronous traffic has been
allocated in the wireless frame (the occupied slots in Fig. 1),
the number of non-occupied slots (free slots in Fig. 1), are
dynamically distributed between UL and DL.

Fig. 1. UL/DL splitter scheme within Wi-Fi domain.

At every frame time (t), the splitter decides on the allo-
cation of free time slots between UL and DL. This involves
selecting an action At, from a set of potential actions, A :=
{a1, ..., aNa

} , to select the UL/DL time slots distribution,
where Na = |A| is the size of the set of actions A. Fig. 2
shows an example where Na patterns are used providing Na

different actions. Action a = 0 means that all the free slots
are assigned for UL, a = 1 means that a set of NDL slots is
assigned for DL while N − NDL slots are assigned for UL,
and so on.

A FIFO queue is associated to each flow to keep incoming
packets waiting to be transmitted through the wireless link.
The transmission rate of each flow, depends on the wireless
channel conditions, modelled through the coherence time
and the instantaneous signal to interference plus noise ratio
(SINR). Depending on the BLock Error Rate (BLER) required,
a Modulation and Coding Scheme (MCS) is adopted which
determines the transmission rate of the corresponding flow. In
this work, a range of algorithms is introduced, which adopt
the action taken in each frame based on all or some of the
following pieces of information at time t:

Fig. 2. Set of actions.

• qDL(t − 1, n): instantaneous aggregated content of the
DL queues associated to the DL flows at the end of each
slot nth in previous frame t− 1.

• qUL(t−1, n): instantaneous aggregated content of the UL
queues associated to the UL flows at the end of each slot
nth in previous frame t− 1.

• RDL(t): transmission rate averaged over the users in the
DL for the current starting frame.

• RUL(t): transmission rate averaged over the users in the
UL for the current starting frame.

Note that RDL(t) and RUL(t) are computed once the MCS
for each flow at the frame time periodicity is determined. To
keep the queueing delay of all aperiodic TS packets within
moderate limits, it is crucial to maintain a balanced state
between the UL flow queues and the DL ones. To measure
the average imbalance at the frame periodicity, we introduce
the variables µq(t) and µr(t), measured at the end of the
(t− 1)− th frame, by averaging the instantaneous imbalance
over the N time slots of the frame:

µq(t) =
1

N

N∑
n=1

qDL(t− 1, n)

qDL(t− 1, n) + qUL(t− 1, n)
(1)

µr(t) =
RDL(t)

RDL(t) +RUL(t)
. (2)

While average ratio µq(t) in (1) measures the imbalance
between UL and DL queues, which is influenced by actions
in previous frames and traffic arrival statistic, the ratio µr(t)
in (2) depends solely on the conditions of the wireless channel
of every use. Note that for the sake of simplicity a single flow
is associated to each user. Regarding the queue management,
queues are operated in FIFO mode and are managed using
a circular buffer with a size of Nb packets. The size is
measured in packet units for simplicity. Packets in the queue
are considered lost if either their waiting time in queue exceed
the maximum latency requirement (δmax) for their traffic type
or if a new packet arrives when the queue is full, in which
case the packet at the front of the queue (the first position) is
discarded. In neither of the two aforementioned circumstances
is the packet transmitted.

Given the above, the problem is stated as follows. At the
start of each frame, a decision must be made regarding the
allocation of free time slots between UL and DL. This decision
should aim to keep the flow queues as balanced as possible,
with the objective of minimizing a target function specified
below that aims for µq(t) = 0.5, that is, to achieve a balance
between UL and DL. Additionally, our goal is to minimize
the number of lost packets in queue, whether due to excessive
waiting time or maximum queue occupancy.

III. METHODOLOGY

In this section the five proposed splitter algorithms are
described.

A. Static Splitter
Static Splitter (SS) consist into a fixed division that assigns

same number of time slots to UL and to DL and it is included
for the purpose of comparison. It does not consider any
information about the environment and the only action taken
at the beginning of each frame consist in allocating exactly
half of the time slots to UL and the other half to DL.

B. Heuristic Strategies
The first heuristic strategy does not use averaged transmis-

sion rates while the second one incorporates information about
the radio channel over time.

a) Queue-size proportional splitter: QSPS is proposed to
fulfil the objective of having a set of free time slots allocated
to UL (DL) that is proportional to the queue size qUL(qDL),
so that we can accommodate traffic excess with low outage.
QSPS consists on assigning to DL a number of slots, NDL(t),
proportional to the size of the aggregated DL queues by using
a quantified value of µq(t) in (1). If Na is the size of the action
set, time slots are assigned in groups of size ∆a = N

Na−1 as
in (3):

NDL(t) = (i− 1)∆a if i− 1 ≤ Nµq(t) < i (3)

b) Waiting-time proportional splitter: WTPS takes ad-
vantage of the average transmission bit rates knowledge, which
are chosen per flow i as the maximum UL and DL transmission
rates that meet the BLER requirement of the wireless physical
link, RDL

i (t), RUL
i (t). This strategy aims to allocate time slots

proportionally to the average time required to empty the UL
(DL) queue. Therefore, the percentage of time slots devoted
to DL, at the start of frame t results:

µT (t) =
TDL(t)

TDL(t) + TUL(t)
(4)

where TDL(t) and TUL(t) remain constant throughout the
entire frame and are defined as

TDL(t) =

FDL∑
i=1

qDL
i (t)

RDL
i (t)

; TUL(t) =

FUL∑
i=1

qUL
i (t)

RUL
i (t)

(5)

where FDL(FUL) is number of flows with corresponding
transmission rate RDL

i (RUL
i) in the DL(UL).

So, the allocation of time slots for the DL is determined at
the beginning of each frame as in (3) by using µT (t) given in
(4) instead of µq(t) given in (1).

C. RL based methods

Reinforcement Learning (RL) is the machine learning
branch devoted to decision making, by learning the optimal
behavior in an environment that generates feedback in re-
sponse to decisions, with the goal of maximizing the long-term
expected reward. RL follows the mathematical framework of
the Markov decision process followed in [7] and in [9], where
the learning outcomes are partially random and tightly related
to the environment. An RL agent in a given state St selects
an action At for the environment. The state changes after the
environment accepts the action. Meanwhile, a reward feedback
Rt+1 is generated to the agent. The agent selects the next
action At+1 according to the current state of the environment
with the goal of maximizing the long-term reward, Gt, also
named discounted cumulative return and defined as:

Gt =

∞∑
k=1

γk−1 ·Rt+k =

= 1 ·Rt+1 + γ ·Rt+2 + γ2 ·Rt+3 + ...+ γ∞ ·R∞.

(6)

In (6) γ ∈ (0, 1] is the discount factor through which immedi-
ate rewards are valued more than future ones. Accordingly, the
goal of an RL agent is to learn an optimal policy π∗ : S → A,
which determines an action a ∈ A under state s ∈ S, thus, to
optimally maximize or minimize a pre-defined value function
V π which is typically expressed in terms of Gt as:

Vπ(s) = Eπ[Gt|St = s] (7)

To better determine the optimal policy, the action-state value
function defined as:

Qπ(s, a) = Eπ[Gt|St = s,At = a] =

= E [Rt + γVπ(s)|St = s,At = a]
(8)

denotes the expected long-term return when at state St = s
the RL agent performs action At = a following the policy π.
The goal of training an RL agent is to find an optimal strategy,
that is, the policy that gets the most return. All the optimal
policies share the same optimal action-value function, denoted
Q∗, and defined as:

Q∗(s, a) ≜ max
π

Qπ(s, a) (9)

a) QL, without use of averaged transmission rates: The
Q-Learning (QL) approach is one of the most effective model
free approaches to rapidly learn an optimal policy π∗ by
estimating the function Q∗(s, a) iteratively, according to the
Bellman equation-based iteration:

Q(St, At)← (1−α)Q(St, At)+α[rt+1+γmax
a′

Q(St+1, a
′)]

(10)
Where α is the learning rate which affects the learning speed of
the Q-table Q(s, a). The convergence of the previous iteration
is guaranteed by the fixed-point theorem. In this work the QL
based UL/DL splitter is applied by defining state St at the
beginning of frame t as the quantified version of the queue
imbalance rate µq(t),

St = i if i− 1 ≤ Naµq(t) < i (11)

for i = 1, ..., Ns.
The action space is given by (3), i.e. At = i implies

NDL(t) = (i − 1)∆a. The reward function rt is designed
to maintain a balance between the aggregated queues while
also penalising packet loss:

rt = −|µq(t)− 0.5| − L(t), (12)

where L(t) is a counter of loss queueing packets during the
past frame t − 1. Packet loss occurs either when the queue
buffer is full or when a packet at the queue’s output has been
waiting longer than the maximum permitted queueing delay,
previously defined as δmax.

During training, the Q(s, a) function is learnt over Ne

episodes, with each episode consisting of Nf steps, with each
step corresponding to one wireless frame. In this work, the RL
agent follows the standard ϵ−greedy policy, where a random
action is selected with probability ϵ and the action with the
highest estimated reward is chosen with probability 1 − ϵ,
balancing exploration and exploitation. ϵ can either be fixed
throughout the entire training period or be time-decaying,
starting with a high degree of exploration and gradually
shifting towards more exploitation.

b) DQN, with use of averaged transmission rates: Deep
Q-Network (DQN) emerges as an extension of QL [15], in
which a neural network, Q(s, a; θ), plays the role of Q-
table, or in other words, it provides the Q-value function
for any state-action pair and solves the problem of Q-table
dimensions. During training, after frame t, the neural network
parameters θt are updated based on a training batch of size L,
resulting from a random sampling over a replay buffer that,
at time-step or frame t, has a maximum of H experiences
(Si, Ai, Ri+1, Si+1), for i = t−H,, t, to break the temporal
correlation of training samples. Beyond the experience buffer,
a secondary neural network, named target NN, is also intro-
duced to generate a less fluctuating reference signal, which
is updated through the primary neural network. The target
NN, with same structure as the trained one and parameters
θ′, is used during training, to evaluate the Q-value function
and minimize the Mean Square Error LMSE(θt) given in:

LMSE(θt) =
1

L

∑
i∈Ht

(yi −Q(Si, Ai; θt))
2 (13)

where Ht comprises the L indices of the batch experiences
randomly drawn from the replay buffer at frame t, and ∀i ∈ H:

yi = Ri+1 + γ · argmax
a′

Q(Si+1, a
′; θ′t). (14)

Periodically, or using a smoothing-over-time strategy, the pa-
rameters of the training network, θ, are transferred to the target
network into θ′. The DQN training algorithm pseudocode is
shown in the annex (section VI). As in QL, DQN follows an
ϵ−greedy policy during episodic training. At the beginning of
frame t, state St is defined as the continuous vector:

St =

[
µq(t)
µr(t)

]
∈ R2 (15)

Accordingly, the DQN architecture consists of an input layer
(two entries as the state dimension), followed by two hidden
layers with 64 and 32 neurons respectively, and an output
layer with Na = 11 neurons, each corresponding to a possible
action. As in QL, action is given by (3) and reward by (12).
In summary, employing neural networks instead of a Q-table
permits introducing continuous states with more than one
variable for the splitter to act.

IV. RESULTS

A. Generated traffic

DL packets originated at the access point and UL packets
at user devices. All packets are of a fixed size of 720 bits.
Packets from different flows enter a FIFO queue, since they
cannot be sent instantly. In the experiments, we consider a
single aggregated queue for UL and another for DL to for-
mulate the problem. Each aggregated queue contains packets
from Nflow different flows. The variable Nflow is generated
randomly in the range [1, NMF] and is different in DL and
UL. The time interval, between two consecutive packets from
the same flow (UL or DL) that enter the queue is modelled as
Poisson of parameter λ. The channel status, distinct for each
flow, determines the transmission rate using an appropriate
Modulation Coding Scheme (MCS) that adapts to varying
channel conditions. We have considered a WiFi physical layer
based on the 802.11a/g standard (non-HT format) [16]. Each
MCS mode delivers a different number of bits that can be
transmitted per slot, as shown in Table I. In the simulations,
the MCS for UL and DL are generated randomly according
to the probabilities in Table I with a periodicity equal to
the channel coherence time. These probabilities have been
computed within the framework of the TIMING project [17],
by generating many realizations of a typical WiFi fading
channel and ensuring a block error rate below 10−4.

TABLE I
MCS TABLE FOR 802.11A/G.

MCS MOD COD bits/slot Rate (Mbps) Probability
0 BPSK 1/2 24 6 0.000104
1 BPSK 3/4 36 9 0.000270
2 QPSK 1/2 48 12 0.006419
3 QPSK 3/4 72 18 0.000382
4 16-QAM 1/2 96 24 0.156602
5 16-QAM 3/4 144 36 0.087424
6 64-QAM 2/3 192 48 0.179512
7 64-QAM 3/4 216 54 0.569287

Table II contains the most relevant parameters used in the
experiments for the wireless scenario and for the algorithms.

B. Training of RL algorithms

The learning phase for both QL and DQN solutions relies
on interaction characterized by random initial exploration.
Following hyperparameter optimization stages, training was
conducted over Ne = 800 episodes, with each episode
comprising Nf = 900 frames or steps. In each step, the agent

TABLE II
SIMULATION PARAMETERS

Parameter Notation Values
Number of Episodes [Train Val] Ne [800 100]
Frames per Episode [Train Val] Nf [900 100]

Frame Duration Tf 10 ms
Slots per Frame Ns 2500

Number of Actions Na 11
Poisson Traffic Parameter λ 5 ms
DL Queue Size in Packets Nb 1000

Packet Size Np 720 bits
Max Number of Flows [UL DL] NMF [150 150]

Maximum Waiting Time δmax 10, 1 Frames
Learning Rate [QL DQN] α [0.1 1e-3]
Replay Buffer Size (DQN) H 10000

Batch Size (DQN) L 32
Exploration Parameter ϵ Decaying

Discount Factor γ 0.9

takes an action that consists of planning a frame according
to the information provided by the current state and receives
feedback from the environment. The QL algorithm has been
trained considering Ns = Na = 11, with discount factor
γ = 0.9, learning parameter α = 0.1 and following an
ϵ−greedy policy with ϵ decaying from 1 to 0.1 (decaying
factor was 0.95).

Fig. 3. QL Training; Per frame reward and averaged over a 50-frame window
reward (12) (Top). Learnt QL table in terms of state-action (Left-Bottom).
Number of visits per state-action pair (Right-Bottom)

As shown in Fig. 3, since the reward in (12) takes into
account packets losses and these occur at the beginning of
training, we initially get low reward values. Once the Q-
function is learnt, the reward stabilizes at high values with
no packet losses. Regarding the learnt Q-function, it is ob-
served that in states corresponding to more loaded UL queues
compared to DL queues, higher actions are chosen, which
correspond to a greater allocation of time slots to the UL.
In Fig. 3 the number of visits per state-action pair is also
provided to validate the conditions under which the Q-table

has been computed.
The DQN algorithm was trained using parameters γ, ϵ

as with QL. Furthermore, a smoothing strategy was used to
transferring parameters from the training network to the target
one. Mini-batch size was 32, weights were initialized using the
Glorot procedure [18], and updated with the Adam optimizer
[19], with learning parameter of 0.001. In Fig. 4 it is shown

Fig. 4. DQN Training; Per frame reward and averaged over a 50-frame
window reward (12) (Top). UL and DL averaged queueing delay (Bottom)

that the training has been successful: the reward exhibits an
increasing trend over the epochs, denoting that there are no lost
packets after 40000 frames (500 episodes) while the average
queueing delay, i.e., the mean waiting time in the queue for
all packets that were successfully transmitted, decreases.

C. Performance analysis

After training the RL-based methods, in this section we
validate them alongside the heuristic techniques to compare
their performance. The five algorithms presented in section
III were executed over 100 episodes of 100 frames each one.
To this end, we have utilized various metrics to evaluate the
model’s performance thoroughly. These metrics include:

• Average reward
• Average, Variance, 95% confidence interval and 90%

percentile of the queueing delay measured in ms.
• Average lost packet rate, calculated as the number of lost

packets divided by the total number of packets generated
over the duration of the runs.

In validation, RL-based algorithms choose the action fol-
lowing exclusively a greedy policy, always selecting the one
that provides a higher Q-value, and Q-functions are frozen,
that is, the Q-table in QL or network parameters in DQN
are no longer updated. Given that the remaining algorithms
are already predefined, they follow the corresponding pre-
established strategy as presented in section III.

The environmental conditions during validation are similar
to those during the training of the RL-based algorithms, as

detailed in table II. According to results shown in table III
for δmax = 10 frames, the DQN algorithm performs the
best overall achieving a higher average reward and exhibiting
superior delay properties. The confidence interval is narrow
enough in all cases to conclude that the average delay are
precise and reliable. DQN shows significantly better variability
and percentile than the rest of algorithms.

TABLE III
ALGORITHMS PERFORMANCE; δmax = 10 FRAMES

Measures SS QSPS WTPS QL DQN
Avg. reward -0.1472 -0.2171 -0.2048 -0.1487 -0.1042

Avg. delay (ms) 2.6841 2.7186 2.7102 2.5778 2.2411
CI95% Inf 2.6806 2.7155 2.7071 2.5746 2.2386
CI95% Sup 2.6875 2.7219 2.7135 2.5811 2.2436
Var of delay 8.9061 7.772 7.8494 8.1114 4.8347

90% percentile 5.1271 6.6671 6.6057 5.7855 4.8823
Avg. lost packets 3.42e-07 0 0 0 0

Table IV shows results of an scenario where a more restric-
tive maximum delay has been imposed (δmax = 1 frame). In it,
SS achieves the highest average reward, but this is outweighed
by its packet loss issue. On the other hand, when stringent
latency requirements are imposed, WTPS also experiences
occasional packet losses. Among the remaining algorithms,
DQN exhibits superior properties by avoiding packet loss and
achieving lower latency values alongside significant rewards.

TABLE IV
ALGORITHMS PERFORMANCE; δmax = 1 FRAME

Measures SS QSPS WTPS QL DQN
Avg. reward -0.1671 -0.2101 -0.2468 -0.2155 -0.2021

Avg. delay (ms) 2.8488 2.9044 3.0513 2.8985 2.8263
CI95% Inf 2.8456 2.9012 3.0476 2.8952 2.8231
CI95% Sup 2.8521 2.9077 3.0551 2.9019 2.8296
Var of delay 8.7687 8.7758 11.6035 9.2331 8.7484

90% percentile 5.9486 6.9311 7.1202 6.9632 6.6282
Avg. lost packets 6.28e-06 0 1.63e-04 0 0

Fig. 5 illustrates the reward obtained in each frame along-
side the average reward during validation. The DQN algorithm
achieves the highest reward, followed by QL and SS. However,
SS is not competitive due to the occurrence of packet loss.

V. CONCLUSIONS

Latency remains a major challenge for TSN networks,
specially in the wireless sectors. Throughout this study, various
strategies have been explored for slot allocation between DL
and UL, aiming to optimize available resources and reduce
queueing latency.

Based on the results obtained, we can conclude that DQN
consistently demonstrated superior performance in minimizing
delay and packet loss, due to its lookahead capabilities, and
that the use of channel information based on the trans-
mission rate has improved performance. Furthermore, it has
been generally observed that RL-based algorithms outperform

Fig. 5. Per-frame and averaged reward over a 50-frame window reward (12)
in validation. δmax = 10 frames.

heuristic algorithms, suggesting that the optimal dynamic slot
allocation strategy can be learnt through interaction with the
environment. Heuristic methods have also become competitive
for higher maximum queueing delay, leveraging knowledge of
transmission speeds. However, in more stressed scenarios, the
best results are obtained by applying DQN-based algorithms.
Further work includes to test the algorithms in other wireless
environments such as 5G and 6G. Given the scalability of the
model, both in terms of state definition and actions, we expect
the results to be similar to those presented here.

VI. ANNEX: DQN ALGORITHM

Algorithm 1 DQN pseudocode

1: Initialize the critic network θ
2: Copy from critic to target the parameter values, θ′ ← θ
3: for each episode do
4: Initialize state s0
5: for each t of the episode do
6: Select at from Q(st, a, θt); e.g. ϵ− greedy policy
7: Take action at, and observe rt+1 and st+1

8: Store (st, at, rt+1, st+1) in the experience buffer
9: Sample mini-batch of L exp. (si, ai, ri+1, si+1)

10: Compute MSE LMSE(θt) as in (13)
11: Update θ by single-step minimization of the MSE
12: Update target parameters θ′ if needed
13: end for
14: end for

REFERENCES

[1] D. Cavalcanti, C. Cordeiro, M. Smith, and A. Regev, “WiFi TSN:
Enabling deterministic wireless connectivity over 802.11,” IEEE Com-
munications Standards Magazine, vol. 6, no. 4, pp. 22–29, 2022.

[2] G. A. for Connected Industries and Automation, “Integration
of 5G with time-sensitive networking for industrial com-
munications,” 2021, accessed on May 11, 2024. [Online].
Available: https://5g-acia.org/whitepapers/integration-of-5g-with-time-
sensitive-networking-for-industrial-communications/

[3] L. Velasco, G. Graziadei, Y. El-Kaisi-Rahmoun, J. Villares, O. Muñoz-
Medina, J. Vidal, and M. Ruiz, “Provisioning of time-sensitive and non-
time-sensitive flows: from control to data plane,” in 4th International
Workshop on Time-Sensitive and Deterministic Networking (TENSOR),
2024.

[4] R. Jurdi, J. Guo, K. J. Kim, P. Orlik, and Y. Nagai, “Queueing delay
analysis of mixed traffic in time sensitive networks,” in 2021 6th
International Conference on Control, Robotics and Cybernetics (CRC),
2021, pp. 327–332.

[5] V. Gavriluţ and P. Pop, “Scheduling in time sensitive networks (TSN)
for mixed-criticality industrial applications,” in 2018 14th IEEE Inter-
national Workshop on Factory Communication Systems (WFCS), 2018,
pp. 1–4.

[6] Y. Qian, J. Wu, R. Wang, F. Zhu, and W. Zhang, “Survey on rein-
forcement learning applications in communication networks,” Journal
of Communications and Information Networks, vol. 4, no. 2, pp. 30–39,
2019.

[7] M. Abu Alsheikh, D. T. Hoang, D. Niyato, H.-P. Tan, and S. Lin,
“Markov decision processes with applications in wireless sensor net-
works: A survey,” IEEE Communications Surveys Tutorials, vol. 17,
no. 3, pp. 1239–1267, 2015.

[8] R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” pp. 74 429–74 441, 2018.

[9] Z. Liu, X. Chen, Y. Chen, and Z. Li, “Deep reinforcement learning based
dynamic resource allocation in 5G ultra-dense networks,” in 2019 IEEE
International Conference on Smart Internet of Things (SmartIoT), 2019,
pp. 168–174.

[10] M. A. Jadoon, A. Pastore, M. Navarro, and A. Valcarce, “Learning
random access schemes for massive machine-type communication with
marl,” IEEE Transactions on Machine Learning in Communications and
Networking, vol. 2, pp. 95–109, 2024.

[11] E. Mete and T. Girici, “Q-learning based scheduling with successive
interference cancellation,” IEEE Access, vol. 8, pp. 172 034–172 042,
2020.

[12] K. Boutiba, M. Bagaa, and A. Ksentini, “On using deep reinforcement
learning to reduce uplink latency for urllc services,” in GLOBECOM
2022 - 2022 IEEE Global Communications Conference, 2022, pp. 407–
412.

[13] H. Yang, Z. Xiong, J. Zhao, D. Niyato, C. Yuen, and R. Deng, “Deep
reinforcement learning based massive access management for ultra-
reliable low-latency communications,” IEEE Transactions on Wireless
Communications, vol. 20, no. 5, pp. 2977–2990, 2021.

[14] A. A. Esswie, K. I. Pedersen, and P. E. Mogensen, “Online radio pattern
optimization based on dual reinforcement-learning approach for 5G
URLLC networks,” IEEE Access, vol. 8, pp. 132 922–132 936, 2020.

[15] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double q-learning,” 2015. [Online]. Available:
https://arxiv.org/abs/1509.06461

[16] IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area
Networks - Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, High-speed
Physical Layer in the 5 GHZ Band, Std., 1999.

[17] “TIMING Project,” https://timing.upc.edu/home.
[18] X. Glorot and Y. Bengio, “Understanding the difficulty of

training deep feedforward neural networks,” in Proceedings
of the Thirteenth International Conference on Artificial
Intelligence and Statistics, vol. 9, 2010. [Online]. Available:
http://proceedings.mlr.press/v9/glorot10a.html

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017. [Online]. Available: https://arxiv.org/abs/1412.6980

