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Semantics-Aware Status Updates with Energy Harvesting
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Abstract—In this work, we study the freshness and significance
of information in an IoT status update system where an Energy
Harvesting (EH) device samples an information source and for-
wards the update packets to a destination node through a direct
channel. We introduce and optimize a semantics-aware metric,
Query Version Age of Information (QVAoI), in the system along
with other semantic metrics: Query Age of Information (QAoI),
Version Age of Information (VAoI), and Age of Information
(AoI). By employing the MDP framework, we formulate the
optimization problem and determine the optimal transmission
policies at the device, which involve deciding the time slots for up-
dating, subject to the energy limitations imposed by the device’s
battery and energy arrivals. Through analytical and numerical
results, we compare the performance of the semantics-aware
QVAoI-Optimal, QAoI-Optimal, VoI-Optimal, and AoI-Optimal
policies with a baseline greedy policy. All semantics-aware policies
show significantly improved performance compared to the greedy
policy. The QVAoI-Optimal policy, in particular, demonstrates a
significant performance improvement by either providing fresher,
more relevant, and valuable updates with the same amount of
energy arrivals or reducing the number of transmissions in the
system to maintain the same level of freshness and significance of
information compared to the QAoI-Optimal and other policies.

I. INTRODUCTION

Communicating timely and informative data is crucial for

status update systems within real-time IoT networks. These

systems involve the sensing and transmission of update packets

from an information source through a network to a destination

monitor for further processing [1], [2]. Information packets

are sampled using IoT devices and shared within a network,

facilitating various applications related to the monitoring and

controlling of remote environments, particularly in the con-

texts of smart cities, intelligent industries, smart agriculture,

metaverse, and healthcare. However, there are limitations in

these networks, as IoT devices are highly energy-limited,

and the network resources are restricted in terms of band-

width, channel reliability or availability, and other factors.

These limitations necessitate more effective, cost- and energy-

efficient approaches for status updating, particularly when

communication from a remote, low-energy IoT device to a

destination network is involved.

The semantics-aware communication paradigm introduces

novel approaches that address the transmission and utilization

of the right amount of data at the right time to achieve

the designated goals within status update systems [3]. This

is accomplished by employing semantics-aware performance
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metrics and managing the information chain from generation

to transmission and utilization within a communication net-

work. Recent studies have demonstrated substantial benefits

of this paradigm in status update systems [1].

At the core of semantics-aware communication are semantic

metrics that capture the freshness, relevance, or value of infor-

mation. The freshness of information relates to the staleness

of information packets in the network from their generation

until their utilization. Higher freshness corresponds to lower

staleness of the data packets. The relevance of information

relates to sampling the appropriate piece of information from

the source. In contrast, the value of information involves pro-

viding the destination node with the right piece of information

regarding the benefits of having it compared to the cost of its

transmission. We can refer to the relevance and value of in-

formation as the significance of information. Various semantic

metrics have been introduced in the literature, including Age

of Information (AoI) [4], non-linear AoI [5], Age of Incorrect

Information (AoII) [6], Query Age of Information (QAoI) [7],

Version Age of Information (VAoI) [8], and state-aware AoI

[9]. Among these, AoI is a freshness metric that quantifies the

time elapsed since the generation time of the last successfully

received packet at the destination node. Version AoI (VAoI)

is a semantic metric that quantifies jointly the freshness and

relevance of information, measuring the number of versions by

which the receiver lags behind the source. Query AoI (QAoI)

is another performance metric that represents the freshness

and value of information. QAoI considers the AoI only when

there is a request from the destination node, i.e., only in query

instances when the information is assumed to be useful to the

receiver.

In this work, we introduce the Query VAoI (QVAoI) metric,

which captures all three attributes of semantic metrics. We

investigate the advantages of employing and optimizing the

VAoI and QVAoI metrics within a status update system com-

pared to the AoI, and its query-based counterpart, QAoI. VAoI

and QVAoI, being content-based metrics, capture the freshness

and also the relevance and value of information, whereas

AoI and QAoI do not consider the relevance of the updates.

We aim to demonstrate that optimizing the VAoI and QVAoI

within a status update system with an Energy Harvesting (EH)

IoT device can lead to improved performance and reduced

transmissions from the IoT device to the destination network

without compromising the conveyed information, particularly

when dealing with information sources evolving in versions.

http://arxiv.org/abs/2407.08587v1
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II. SEMANTIC METRICS: QUERY VERSION AGE OF

INFORMATION

In this section, we present the metrics AoI, QAoI, and VAoI,

and introduce our proposed metric, QVAoI. AoI is defined as

the time elapsed since the generation time of the last received

update, i.e., ∆AoI(t) = t− u(t), where u(t) is the timestamp

of the current update at the receiver. The AoI is the most

widely used metric in the literature, and its optimization yields

the freshest updates in status update systems across various

configurations (see [1], [4], [10], [11]).

VAoI quantifies the number of versions by which the re-

ceiver lags behind the source, i.e., ∆VAoI (t) = NS(t)−NR(t),
where NS(t) and NR(t) represent the version numbers of the

current updates at the source and receiver, respectively. By

version, we refer to any significant change in the content or

new generation of information at the source. VAoI has been

studied in several works. The works [8], [12]–[17] focus on

the scaling and growth of VAoI in gossiping networks with

different topologies and system models. The works [18], [19]

focus on the optimization of VAoI in gossiping networks,

while the work [20] characterizes the higher-order statistics

of VAoI in gossiping networks.

QAoI is an extension of AoI and considers the age at

instances when there is a request from the destination node.

This metric is suitable for pull-based status update systems,

wherein the destination node requests and controls the gen-

eration or transmission of updates as needed and when they

are valuable for utilization. A pull-based setup contrasts with

a push-based setup, in which the source or transmitter decides

to push updates toward the receiver at its discretion, regardless

of requests from the receiver. If we presume a binary request

arrival process r(t), where r(t) equals 1 when there is a

request from the receiver and 0 otherwise, then QAoI is

defined as ∆QAoI (t) = r(t)×∆AoI (t). This metric penalizes

system staleness only when requests are demanded. In a

practical scenario where there is a lag (τ ) between the request

time and when the system controls are applied, the definition

can be corrected to ∆QAoI (t) = r(t − τ) × ∆AoI(t). QAoI

has been studied in the works [7], [21]–[24].

Here, we introduce QVAoI metric as an extension of VAoI

and QAoI, which considers both the content changes at the

source and the queries from the destination. This metric

combines the advantages of both VAoI and QAoI to represent

relevant and valuable updates alongside the freshest ones. We

define the QVAoI as the count of versions by which the

receiver lags behind the source at query instances. This metric

ensures that the system is not penalized in the absence of

requests, and when the transmission of updates holds no value

or utility for the receiver. The mathematical representation of

QVAoI is:

∆QVAoI (t) = r(t− τ)×∆VAoI (t), (1)

where r(t) represents the binary request arrival process, and τ

denotes the time lag between the request time and the instance

when the system controls are applied.

Fig. 1: The considered system model.

III. SYSTEM MODEL

A. System Setup

We consider a status update system, as depicted in Fig. 1,

where an Energy Harvesting (EH) IoT device samples and

transmits update packets to a destination node. The IoT device

can be a sensor or a measurement device, and the packets

are sampled from an information source, typically a physical

process. The destination node can either initiate a request or

act as a request aggregator for a destination network, sending

queries to the IoT device to obtain new updates and then

delivering these updates back to the destination network.

Our objective is to derive an information handling or an

update policy that optimizes the semantic metrics within this

system while adhering to the energy constraints imposed on

the EH device. This update policy determines the scheduling

of optimal times for transmitting new updates, which results

in the best performance in terms of semantic metrics. The

system operates in discrete time slots, allowing the device to

decide whether to transmit an update or remain idle during

each slot. We assume that each time slot lasts long enough for

the sampling and transmission of a new update from the device

to the receiver. The EH device is equipped with a rechargeable

battery of B units, collecting energy from ambient sources

according to a Bernoulli distribution with probability β in

each time slot. When the battery is empty, the device cannot

send updates; otherwise, it must decide on the scheduling of

transmissions. We assume a normalized battery unit so that

each transmission consumes one energy unit from the battery.

In this system, each update packet from the information source

is labeled by a timestamp and a version number, with new

versions generated with probability pt in each time slot.

We consider a forward unreliable channel from the device to

the receiver, where data packets are transmitted, exhibiting a

success probability denoted by ps. We also consider an error-

free backward channel from the receiver to the device, which

can serve the queries and acknowledgments (ACK) to receive

data packets successfully. The device becomes aware of the

last timestamp and version stored at the destination node by

receiving ACK feedback. We assume a query arrival process

r(t) from the receiver, which follows a Bernoulli distribution

with a probability of q in each time slot, representing requests

from the destination node or an external network.
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B. Problem Formulation

Our objective is to determine an optimal update policy

to optimize the time-averaged expected value of AoI, QAoI,

VAoI, and QVAoI, as defined in Section II.

∆AoI(t) = t− u(t), (2)

∆VAoI (t) = NS(t)−NR(t), (3)

∆QAoI (t) = r(t− 1)×∆AoI(t), (4)

∆QVAoI (t) = r(t− 1)×∆VAoI (t), (5)

where t is the current time, u(t) is the timestamp of the current

update at the receiver, NS(t) and NR(t) represent the version

numbers of the current updates at the source and receiver,

respectively, and r(t) is the binary query arrival process.

An update policy, denoted by π, is a sequence of ac-

tions taken by the IoT device at different time slots, i.e.,

π =
(
aπ(0), aπ(1), aπ(2), · · ·

)
, where aπ(t) is the action

realized at time t under the policy π. Specifically, aπ(t) = 1
indicates a transmission action, while aπ(t) = 0 denotes

an idle action. Due to the stochastic nature of the system

variables, the resulting semantic metric under policy π is a

stochastic process, denoted by ∆π(t), where ∆π(t) can be

either ∆AoI(t), ∆QAoI (t), ∆VAoI (t), or ∆QVAoI (t). This

optimization problem can be formulated as follows:

min
π∈Π

lim
T→∞

1

T
E

[
T−1∑

t=0

∆π(t)
∣
∣
∣s0

]

, (6)

where Π is the set of all feasible policies and s0 is the system’s

initial state. (6) can be formulated as an infinite-horizon

average cost Markov Decision Process (MDP) problem. The

MDP problem is characterized by a tuple < S,A, P, C >,

where S is the state space, A is the set of actions, P is the

state transition probability function, and C is the cost function.

• States: The state vector s(t) is defined as s(t)
△
=

[b(t),∆(t), r(t)]T ∈ S, where b(t) is the state of the

battery, taking value in the set B = {0, 1, 2, . . . , bmax}.

∆(t) ∈ {0, 1, 2, · · · ,∆max} is either AoI or VAoI at the

receiver, and r(t) ∈ {0, 1} is the query process at time slot

t. r(t) is 1 when there is a query from the receiver and 0
otherwise. The state space, S =

{
(b,∆, r) : b ∈ B,∆ ∈

{1, 2, · · ·,∆max}, and r ∈ {0, 1}
}

is a finite set.

• Actions: At time t, a(t) = 0 represents the action of staying

idle, while a(t) = 1 represents the action of transmitting an

update. The action a(t) is forced to be 0 when b(t) = 0 or

r(t) = 0. We define the realized action as d(t)
△
= 1b(t) 6=0 ×

r(t) × a(t), where 1 is the indicator function.

• Transition probabilities: Given the following equation,

P [s(t+1)|s(t), a(t)]=P [b(t+1)|b(t), r(t), a(t)]

× P [∆(t+1)|∆(t), r(t), a(t)] × P [r(t+1)] , (7)

the transition probabilities are presented in Section III-C.

• Cost function: The transition cost function is equal to the

semantic metric at the next time slot, i.e., C
(
s(t), a(t), s(t+

1)
) △

= ∆(t + 1), where ∆(t) can be either ∆AoI(t),
∆QAoI (t), ∆VAoI (t), or ∆QVAoI (t).

C. Transition probabilities

We provide the transition probabilities between the MDP

states by introducing the following Bernoulli processes: the

energy arrival process, e(t), the channel success process, c(t),
and the version generation process, z(t), given by:

e(t)=

{

1 w.p. β,

0 w.p. 1−β,
c(t)=

{

1 w.p. ps,

0 w.p. 1−ps,

z(t)=

{

1 w.p. pt,

0 w.p. 1−pt.

(8)

We can now characterize the evolution of the states:

b(t+1)=min {b(t)+e(t)−d(t), bmax} . (9)

∆AoI(t+1)=

{

1, d(t)=1 and c(t)=1,

min
{
∆AoI(t)+1,∆max

}
, o/w.

(10)

∆VAoI (t+1)=

{

z(t), d(t)=1 and c(t)=1,

min
{
∆VAoI (t)+z(t),∆max

}
, o/w.

(11)

r(t+1)=

{

1 w.p. q,

0 w.p. 1−q.
(12)

The transition probabilities can be calculated according to

(7) and the following equations:

P
[
b(t+1)

∣
∣b(t), r(t), a(t)

]
=







β d(t)=0, b(t+1)=b(t)+1,

β̄ d(t)=0, b(t+1)=b(t),

β d(t)=1, b(t+1)=b(t),

β̄ d(t)=1, b(t+1)=b(t)−1.

(13)

P
[
∆AoI(t+1)

∣
∣∆AoI(t), r(t), a(t)

]
(14)

=







1 d(t)=0, ∆AoI(t+1)=∆AoI(t)+1,

p̄s d(t)=1, ∆AoI(t+1)=∆AoI(t)+1,

ps d(t)=1, ∆AoI(t+1)=1.

P
[
∆VAoI (t+1)

∣
∣∆VAoI (t), r(t), a(t)

]
(15)

=







pt d(t)=0, ∆VAoI (t+1)=∆VAoI (t)+1,

p̄t d(t)=0, ∆VAoI (t+1)=∆VAoI (t),

ptp̄s d(t)=1, ∆VAoI (t+1)=∆VAoI (t)+1,

p̄tp̄s d(t)=1, ∆VAoI (t+1)=∆VAoI (t),

ptps d(t)=1, ∆VAoI (t+1)=1,

p̄tps d(t)=1, ∆VAoI (t+1)=0.

P [r(t+1)] =

{

q r(t+1) = 1,

1− q r(t+1) = 0,
(16)

where β̄
△
= 1 − β, p̄t

△
= 1 − pt, and p̄s

△
= 1 − ps. The total

probability theorem can also help in simplifying (7):

P [s(t+1)|s(t), a(t)] (17)

=
∑

(z,e,c)∈{0,1}3

P
[
s(t+1)

∣
∣s(t), a(t), z(t), e(t), c(t)

]
PcPePz,

with Pc
△
=P [c(t)=c], Pe

△
=P [e(t)=e], and Pz

△
=P [z(t)=z]

given by (8).



4

IV. ANALYTICAL RESULTS

In this section, we discuss the existence and structure of

the optimal policies. We proceed with the QVAoI as the cost

function since it generally encompasses other metrics.

Definition 1. An MDP is weakly accessible if its states can be

divided into two subsets, St and Sc. States in St are transient

under any stationary policy, and any state s′ in Sc can be

reached from any state s in Sc under some stationary policy.

Proposition 1. The MDP problem (6) is weakly accessible.

Proof. We demonstrate that any state s′ = (b′,∆′, r′) ∈ S
is reachable from any other state s = (b,∆, r) ∈ S under

a stationary stochastic policy π, where the action a ∈ {0, 1}
at each state is randomly selected with positive probability.

The state r′ ∈ {0, 1} is accessible at each state independently

of system actions and can remain unchanged with positive

probability (w.p.p.). Therefore, we fix r′ as states evolve in

the remainder of this proof. The state b′ < b is reachable from

b w.p.p. by executing action a = 1 for (b − b′) time slots,

and b′ ≥ b is reachable from b w.p.p. by executing action

a = 0 for (b′ − b) slots. Upon reaching state b′, regardless

of subsequent actions, the battery state can remain unchanged

w.p.p. Henceforth, we consider the battery state as b′ for the

rest of the proof. Similarly, the state ∆′ < ∆ can be attained

from ∆ w.p.p. by executing action a = 1 for one time slot,

followed by action a = 0 for ∆′ slots. Conversely, the state

∆′ ≥ ∆ is accessible from ∆ by executing action a = 0 for

(∆′ −∆) slots.

Proposition 2. In the MDP problem (6), the optimal average

cost J∗ achieved by an optimal policy π∗ is the same for all

initial states, and it satisfies the Bellman’s equation:

J∗+V (s)= min
a∈{0,1}

{

C(s, a) +
∑

s′∈S

P
(
s′
∣
∣s, a

)
V (s′)

}

, (18)

π∗(s) ∈ argmin
a∈{0,1}

{

C(s, a) +
∑

s′∈S

P
(
s′
∣
∣s, a

)
V (s′)

}

, (19)

where V (s) denotes the value function of the MDP problem,

P
(
s′
∣
∣s, a

)
is the transition function, and C(s, a) is the

average cost per slot, given by the transition costs,

C(s, a) =
∑

s′∈S

P
(
s′
∣
∣s, a

)
C (s, a, s′), (20)

with C(s, a, s′) = r∆′.

Proof. According to Proposition 1, the MDP problem (6) is

weakly accessible. Consequently, by Proposition 4.2.3 in [25],

the optimal average cost is invariant across all initial states.

Moreover, Proposition 4.2.6 in [25] guarantees the existence

of an optimal policy. According to Proposition 4.2.1 in [25],

identifying J∗ and V (s) satisfying (18) enables determination

of the optimal policy using (19).

The optimal policy, denoted as π∗, relies on V (s), which

typically lacks a closed-form solution. Standard methods, like

the (Relative) Value Iteration and Policy Iteration algorithms

[25, Chapter 4], can solve this optimization problem.

(0,0) (0,1) (0,∆-1) (0,∆) (0,∆+1)

(1,0) (1,1) (1,2) (1,∆) (1,∆+1)

(0,2)

(1,∆-1)

γ00

γ10

γ00 γ00 γ00 γ00 γ00

γ10 γ10 γ10 γ10 γ10

γ10

γ00

γ01

γ01

γ11

γ11

γ11 γ11 γ11 γ11 γ11
γ01 γ01 γ01 γ01

. . .

. . .

. . .

. . .

Fig. 2: The resulting Markov chain with threshold ∆T = 0 (greedy policy).

Definition 2. Suppose there exists a ∆T (b) > 0 for each b

such that the action π(b,∆, r=1) is 1 for ∆ ≥ ∆T (b), and

0 otherwise. In this case, π is a threshold policy.

Theorem 1. The optimal policy of the MDP problem (6) is a

threshold policy.

Proof. See Appendix A.

A. Optimal Policy for a Single-Sized Battery

Having established that the optimal policy is a threshold

policy, to provide insights into the benefits of semantics-aware

information handling, we analyze the average QVAoI of a

system with the minimum battery size, i.e., bmax = 1. For

tractability, we further assume that the channel is reliable

(ps = 1) and the query always exists (q = 1). To this end,

we examine the resulting Markov chains of the system for

policies characterized by different threshold values ∆T , where

the action at state s = (b,∆, r) is defined as follows:

a(b,∆) =

{

0 b = 0 or (b = 1 and ∆ < ∆T )

1 b = 1 and ∆ ≥ ∆T

(21)

where we have excluded r from the state vector since it is

always equal to 1 here. The state space for the Markov chains

is defined by SI =
{
(b,∆)

∣
∣b ∈ {0, 1},∆ ∈ {0, 1, 2, · · · }

}
.

We consider three cases: ∆T = 0, ∆T = 1, and ∆T ≥ 2. The

resulting Markov chains are depicted in Figs. 2, 3, and 4. In

these figures, for enhanced clarity and compact representation,

we define parameters γ00
△
= p̄tβ̄, γ01

△
= p̄tβ, γ10

△
= ptβ̄,

and γ11
△
= ptβ, and we use the same color for arrows

indicating equal transition probabilities. The actions 0 and 1
are represented with circles filled with white and grey colors,

respectively, at each state (b,∆).
The average QVAoI for these Markov chains is given by:

∆QVAoI
Avg =

∑

s∈SI

∆× µ(s) =
∑

(b,∆)∈SI

∆× µ(b,∆), (22)

where µ(s) is the state-stationary probability of state s =
(b,∆). The state-stationary probabilities can be obtained by

solving balance equations:

µPI = µ and
∑

si∈SI

µ(si) = 1, (23)
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(0,0) (0,1) (0,∆-1) (0,∆) (0,∆+1)

(1,0) (1,1) (1,2) (1,∆) (1,∆+1)
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. . .

. . .

. . .

. . .
pt

Fig. 3: The resulting Markov chain with threshold ∆T = 1.

(0,0) (0,1) (0,∆T − 1) (0,∆T ) (0,∆T + 1)

(1,0) (1,1) (1,2) (1,∆T ) (1,∆T + 1)

(0,2)

(1,∆T − 1)

γ00

γ10

γ00 γ00 γ00 γ00 γ00

γ10 γ10 γ10 γ10 γ10

γ10

γ00

p̄t

γ01

γ11

γ11 γ11 γ11 γ11 γ11
γ01 γ01 γ01 γ01

. . .

. . .

. . .

. . .

pt

γ01γ01
γ11

p̄t

pt pt

p̄t

p̄t

Fig. 4: The resulting Markov chain with threshold ∆T ≥ 2.

where µ = [µ(s1) µ(s2) µ(s3) · · · ] is a row vector represent-

ing the stationary distributions. PI is the transition probability

matrix whose (i, j)th element is the transition probability from

state si to sj , as defined in Section III-C with bmax = 1.

Theorem 2. In a permanent query setup with a single-sized

battery, the average QVAoI for a threshold policy is given by:

∆QVAoI
Avg =







pt

β
∆T = 0,

pt

β

(

1− p̄tβ̄β
2

β2+ptβ̄(pt+β)

)

∆T = 1,
N (∆T )
D(∆T ) ∆T ≥ 2,

(24)

where ∆T is the threshold, and N (∆T ) and D(∆T ) are:

N (∆T )=β2

[

(p2t + p̄2tβ
2)(∆T −1)(∆T +2pt)

−2βpt
(

2p2t (∆T −1) + pt(∆T −2)(∆T −1)−∆2
T
+∆T −1

)

]

+2pt(β + ptβ̄)
2(pt+β∆T )

(

ptβ̄

β + ptβ̄

)∆T

, (25)

D(∆T )=2β(β + ptβ̄)
2

[

β∆T +pt

(

ptβ̄

β + ptβ̄

)∆T

]

. (26)

The parameters pt and β represent the version generation

and energy arrival probabilities, respectively.

Proof. See Appendix B.

Theorem 2 shows that the average QVAoI for ∆T = 1 is

always less than that for ∆T = 0. However, for ∆T ≥ 2, the

average QVAoI can be either less than or greater than that for

∆T = 1, depending on ∆T , pt, and β.
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Fig. 5: Average VAoI vs. pt.

V. NUMERICAL RESULTS

The MDP problem (6) can be solved using the Rela-

tive Value Iteration Algorithm (RVIA) to obtain the optimal

policies. We evaluate the performance of the AoI-Optimal,

VAoI-Optimal, QAoI-Optimal, and QVAoI-Optimal policies

concerning the semantic metrics in the system. In query-

based configurations, the QVAoI metric represents the freshest

relevant and most valuable updates within the system, serving

as the key performance metric. In push-based setups, the

VAoI metric denotes the freshest relevant updates within the

system, considered as the key performance metric. Moreover,

to highlight the advantages of semantics-aware status updating,

we include a greedy policy as a baseline. According to the

greedy policy, the device transmits an update (upon request in

a pull-based setup) as soon as energy becomes available.

A. The Impact of Version Generation Probability pt

1) VAoI-optimal vs. AoI-optimal policy in optimizing VAoI:

The primary advantage of VAoI over AoI is that VAoI con-

siders the dynamics of the information source, utilizing the

knowledge of the version generation probability, i.e., pt. In

this section, we demonstrate how this advantage can improve

the system’s performance in terms of maintaining the freshest

relevant updates of information. We evaluate the average

VAoI of the system for the VAoI-optimal, AoI-optimal, and

greedy policies by varying pt from 0.2 to 1 while fixing

the parameters β = 0.2, q = 1, ps = 1, bmax = 15, and

∆max = 19. It can be observed in Fig. 5 that, as expected,

the average VAoI in the system deteriorates as the probability

of version generation pt increases, for all three policies. The

reason is that the versions of the source become more stale

as the energy resources, and thus the possibility of sending

updates, are fixed and unchanged while the new versions are

generated with a higher probability. In Fig. 5, it is evident

that semantics-aware policies, VAoI-optimal and AoI-optimal

policies, demonstrate superior performance compared to the

greedy policy. Additionally, the VAoI-optimal policy exhibits

superior performance in comparison to the AoI-optimal policy,

especially when the value of pt is low.

2) QVAoI-optimal vs. QAoI-optimal policy in optimizing

QVAoI: In Fig. 6, the average QVAoI is depicted for QVAoI-

optimal, QAoI-optimal, and greedy policies as a function of

pt, with the parameters β = 0.2, q = 0.5, ps = 1, bmax = 15,
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Fig. 7: Average VAoI vs. β.

and ∆max = 19. Here, the semantics-aware policies also

demonstrate superior performance compared to the greedy

policy, and the QVAoI-optimal policy outperforms the QAoI-

optimal policy for lower values of pt.

These results emphasize that incorporating semantics-aware

metrics, leads to a more effective status updating policy con-

cerning the freshness and significance of information within

the system, compared to the greedy policy (see the red and

blue curves vs. the orange curve). Moreover, the utilization of

the VAoI and QVAoI metrics yield enhanced status updating

policies concerning the freshness and significance of informa-

tion, compared to the AoI and QAoI metrics, particularly in

scenarios where the source versions evolve slowly, i.e., when

pt is low (see the blue curve vs. the red curve). It is also evident

that the VAoI-Optimal and QVAoI-Optimal policies align with

the AoI-Optimal and QAoI-Optimal policies, respectively,

when pt = 1. In other words, VAoI and QVAoI represent more

general semantic metrics, reducing to AoI and VAoI when the

source’s version changes in each time slot.

B. The Impact of Energy Arrival Probability β

1) VAoI-optimal vs. AoI-optimal policy in optimizing VAoI:

We evaluate the average VAoI of the system across various

policies by varying β within the range of 0.1 to 0.7, while

setting the parameters pt = 0.3, q = 1, ps = 1, bmax = 15,

and ∆max = 19. The results are depicted in Fig. 7. First, it

can be observed that an increase in energy arrival probability

improves the performance of all three policies, as it provides

more energy for the device to send more frequent updates with
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Fig. 8: Average VAoI vs. update rate.

a higher degree of freedom. For a high energy arrival rate,

the three policies perform comparably well. However, as β

decreases and the system experiences more severe energy lim-

itations, the semantics-aware policies outperform the greedy

policy by a considerable margin. Moreover, it is evident that

the VAoI-Optimal policy performs better than the AoI-Optimal

policy in optimizing the average VAoI in the system.

This enhancement becomes more tangible when comparing

the average number of updates needed by each policy to

maintain the same level of average VAoI. This comparison is

illustrated in Fig. 8, where the average VAoI is plotted against

the update rate, i.e., the average number of updates per slot.

In this figure, the horizontal dashed line represents an average

VAoI level of 0.65. The intersection point of this line with the

outcomes of the three policies determines the average update

rate needed by each to maintain a performance level of 0.65
in terms of average VAoI. As can be seen, the VAoI-Optimal

policy requires an update rate of only 0.2, whereas the AoI-

Optimal policy and the greedy policy require update rates of

0.31 and 0.48, respectively. This demonstrates improvements

of 55% and 140% in average update rate, correspondingly.

Another result that can be inferred from Fig. 8 is that, under

the VAoI-Optimal policy, the average update rate per slot never

exceeds the level of pt (0.3 in the figure). In other words,

according to the VAoI-Optimal policy, the update rate per slot

is maximized at pt, unless constrained by energy arrivals.

2) QVAoI-optimal vs. QAoI-optimal policy in optimizing

QVAoI: In Figures 9 and 10, the average QVAoI for QVAoI-

Optimal, QAoI-Optimal, and greedy policies is illustrated as

a function of β and update rate, respectively, with pt = 0.3,

q = 0.5, ps = 1, bmax = 15, and ∆max = 19. In Fig.

9, we observe that both semantics-aware policies outperform

the greedy policy, while the QVAoI-Optimal policy shows

superior performance compared to the QAoI-Optimal policy.

The average QVAoI is depicted as a function of the update rate

in Fig. 10, where the semantics-aware policies prove to require

fewer updates to maintain a specific level of average QVAoI

in the system. For instance, to achieve an average QVAoI of

0.25, the QVAoI-Optimal policy results in an update rate of

0.19, while QAoI-Optimal and greedy policies require 0.28
and 0.38, respectively. This demonstrates an improvement of

47% and 100% in the average update rate. In this pull-based

scenario, it is evident that the average update rate of the three
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Fig. 10: Average QVAoI vs. update rate.

policies never surpasses the q value. Notably, QVAoI-Optimal

exhibits the best performance with a lower update rate.

These results signify that in a semantics-aware commu-

nication system, we can reduce the number of updates and

thus the costs without compromising the conveyed information.

This is particularly important because reducing the number of

transmissions in an Energy Harvesting IoT system leads to a

significant improvement in energy efficiency.

C. The Impact of Request Arrival Probability q

1) VAoI-optimal vs. AoI-optimal policy in optimizing VAoI:

The average VAoI of the system as a function of q is depicted

in Fig. 11, with parameters β = 0.2, pt = 0.3, ps = 1,

bmax = 15, and ∆max = 19. In this figure, we observe that

q acts as a limitation in the system’s performance. For low

request arrival probabilities, less than β, all three policies

perform poorly and similarly. However, for high values of q,

the semantics-aware policies perform better, with the VAoI-

Optimal policy demonstrating superior performance compared

to the AoI-Optimal policy. This result indicates that a pull-

based scenario does not enhance the average VAoI as long as

the updates are always valuable to the receiver, or the receiver

is always ready to utilize them. In fact, The pull-based scenario

is advantageous when there is a limitation on the utilization

or value of updates on the receiver side, as will be discussed

in the next section.

2) QVAoI-optimal vs. QAoI-optimal policy in optimizing

QVAoI: In Fig. 12, the average QVAoI is depicted as a

function of q. We have fixed the parameters β = 0.2, pt = 0.3,
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Fig. 11: Average VAoI vs. q.
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Fig. 12: Average QVAoI vs. q.

ps = 1, bmax = 15, and ∆max = 19. It can be seen that the

average QVAoI increases with q for all three policies, with

the QAoI-optimal policy demonstrating superior performance.

The reason behind this increasing behavior is noteworthy. The

first reason is that the query process r(t) emerges as a weight

in the objective function of the MDP problem (6). As the

probability of query arrivals increases, the expected value in

this objective function increases. However, even after normal-

izing the objective function to the expected value of query

arrivals, i.e., limT→∞
1
T
E
[
∑T−1

t=0 r(t)
]

= q, the increasing

behavior persists (see Fig. 13). This can be explained by noting

that for higher demands when the probability of query arrival

increases, there are more time slots in which the device must

decide on transmitting. Given the fixed energy arrival rate,

the device should set higher thresholds on VAoI values at

query instances to limit the number of updates to the maximum

permitted by the energy constraint. Consequently, according to

this policy, with higher thresholds, there would be more query

instances followed by no action, resulting in an increase in

average QVAoI. Therefore, increasing pressure on the device

and issuing extra requests (more than 0.3 in Fig. 13) cannot

improve the system’s average QVAoI. However, concerning

the average VAoI, as the probability of query arrivals increases,

updates occur frequently enough to reduce the average VAoI,

as illustrated in Fig. 11.

D. The Impact of Channel Success Probability ps

In Figs. 14 and 15, the average VAoI and average QVAoI

of the system are depicted as functions of ps. We have
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fixed the parameters β = 0.2, pt = 0.3, bmax = 15, and

∆max = 19, while q = 1 and q = 0.5, respectively. As

expected, an increase in channel success probability improves

the performance of the system across different policies, with

the VAoI-Optimal and QVAoI-Optimal policies demonstrating

the best performance.
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Fig. 14: Average VAoI for different policies vs. ps.
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E. Average QVAoI for the Single-Sized Battery

We derived the closed-form equations for the average

QVAoI of a threshold policy in a status update system with

q = 1 and bmax = 1 in Section IV-A. In Fig. 16, the average

QVAoI is depicted along the left vertical axis versus different

threshold levels ∆T and for two values of energy arrival

probability β, where pt = 0.3. It can be observed that for
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Fig. 16: Average QVAoI and update rate for single-sized battery vs. ∆T .

β = 0.2 (shown with the solid blue curve), the minimum

average QVAoI is obtained by setting the threshold ∆T equal

to 1. However, by reducing β to 0.1 (the dashed blue curve),

the optimal threshold becomes 3. Here, two conclusions can

be drawn. First, the semantics-aware policies outperform the

greedy policy, i.e., when ∆T = 0. Secondly, it is an intriguing

finding that, in scenarios with highly restricted energy arrivals,

sending fewer updates results in a fresher system. This be-

comes clearer when we compare the update rate per time slot

for the optimal policy with a higher threshold to that of a

greedy policy with threshold zero, as depicted along the right

vertical axis in Fig. 16 in red. For instance, when β = 0.1,

the update rate corresponding to the optimal policy with a

threshold of 3 is 0.72, while the greedy policy consumes all the

arrived energy and transmits updates as frequently as possible,

with an average rate of 0.1. This occurs while the average

QVAoI for the optimal policy is 2.61 and for the greedy policy

is 3. This demonstrates that the semantics-aware policy results

in fewer updates and a fresher system simultaneously.

VI. CONCLUSION

In this study, we addressed the optimization of freshness and

significance of information in a status update system wherein

an EH device was tasked with scheduling the transmission

of measured update packets from an information source to

a destination node. We introduced a semantics-aware metric,

QVAoI, and identified the QVAoI-Optimal, QAoI-Optimal,

VAoI-Optimal, and AoI-Optimal policies by formulating and

solving MDP problems. Through comparison with a greedy

policy, we demonstrated that these semantics-aware policies

delivered superior performance regarding the freshness and

significance of information. Moreover, we illustrated that

the QVAoI-Optimal and VAoI-Optimal policies can achieve

fresher and more significant updates from the device or

reduce the number of transmissions without compromising

the freshness and significance of information compared to the

QAoI-Optimal and AoI-Optimal policies, respectively.
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APPENDIX A

PROOF OF THEOREM 1

Proof. The Bellman equation at state s=(b,∆, r) is given by:

J∗+V (s)= min
a∈{0,1}

{
∑

s′∈S

P
[

s′
∣
∣s, a

](

r∆′+V (s′)
)

︸ ︷︷ ︸
△
= Q(a)

}

(27)

a∗(s) = argmin
a∈{0,1}

Q(a) =

{

0, DV (s)≥0,

1, DV (s)<0,
(28)

where DV (s)
△
= V 1(s)− V 0(s), V 0(s)

△
= Q (a=0), and

V 1(s)
△
= Q (a=1).

As can be seen, the optimal action a∗(s) is related to the

sign of DV (s). When b = 0 or r = 0, the action a = 0 is

forced and DV (s) = 0. For other cases where b > 0 and

r = 1, from Section III-C we have:

V 0(s)=
∑

s′∈S P
[
s′
∣
∣s, a=0

](

∆′+V (s′)
)

=
∑

r′∈{0,1}

∑

z∈{0,1}
e∈{0,1}

{(
∆+z

)
+V (b+e,∆+z, r′)

}

PePzPr′ ,

V 1(s)=
∑

s′∈S P
[
s′
∣
∣s, a=1

](

∆′+V (s′)
)

=
∑

r′∈{0,1}

∑

z∈{0,1}
e∈{0,1}

{

p̄s
[
(∆+z)+V (b+e−1,∆+z, r′)

]

+ps
[
z+V (b+e−1, z, r′)

]}

PePzPr′ .

(29)

In what follows, we demonstrate that DV (s) =
DV (b,∆, r) is a decreasing (non-increasing) function of

∆, i.e., for ∆− ≤ ∆+, we show that DV (b,∆+, r) ≤
DV (b,∆−, r) or DV (b,∆+, r) − DV (b,∆−, r) ≤ 0. This

results in the threshold policy because if DV (s) is negative

for a ∆T , it will also be negative for ∆ ≥ ∆T , and the

optimal action remains 1. By simplification of DV (b,∆+, r)
and DV (b,∆−, r) based on (29) we obtain the following

equations:

DV (b,∆+, r)−DV (b,∆−, r)
= V 1(b,∆+, r)−V 1(b,∆−, r)−

[
V 0(b,∆+, r)−V 0(b,∆−, r)

]

=
∑

r′,z,e

{ ≤0
︷ ︸︸ ︷

ps
(
∆− −∆+

)

+p̄s

[

V (b+e−1,∆++z, r′)− V (b+e−1,∆−+z, r′)
]

−
[

V (b+e,∆++z, r′)− V (b+e,∆−+z, r′)
]}

PePzPr′

Therefore, to verify the inequality DV (b,∆+, r) −
DV (b,∆−, r) ≤ 0, it is sufficient to show that

p̄s
[
V (b−1,∆+, r)−V (b−1,∆−, r)

]

−
[
V (b,∆+, r)−V (b,∆−, r)

]
≤0,

for b > 0 and ∆− ≤ ∆+. To proceed with the proof, we use

the VIA and mathematical induction. VIA converges to the

value function of Bellman’s equation regardless of the initial

value of V0(s), i.e., limk→∞ Vk(s) = V (s), ∀s ∈ S.

Vk+1(s)= min
a∈{0,1}

{
∑

s′∈S

P
[

s′
∣
∣s, a

](

r∆′+Vk(s
′)
)}

. (30)
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Therefore, it is sufficient to prove the following inequality

for all k ∈ {0, 1, 2, · · · }:

p̄s
[
Vk(b−1,∆+, r)−Vk(b−1,∆−, r)

]

−
[
Vk(b,∆

+, r)−Vk(b,∆
−, r)

]
≤ 0. (31)

Assuming V0(s) = 0 for all s ∈ S, equation (31) is true for

k = 0. Now, by extending assumption (31) for k > 0, we aim

to prove its validity for k + 1, i.e.,

p̄s
[
Vk+1(b−1,∆+, r)− Vk+1(b−1,∆−, r)

]

−
[
Vk+1(b,∆

+, r)− Vk+1(b,∆
−, r)

]
≤ 0. (32)

the VIA equation (30) is given by Vk+1(s) =
min{V 0

k+1(s), V
1
k+1(s)}, by defining:

V 0
k+1(s)

△
=

∑

s′∈S P
[
s′
∣
∣s, a = 0

](
r∆′+Vk(s

′)
)
,

V 1
k+1(s)

△
=

∑

s′∈S P
[
s′
∣
∣s, a = 1

](
r∆′+Vk(s

′)
)
,

(33)

where

V 0
k+1(s)=

∑

r′,z,e

{(
∆+z

)
+Vk(b+e,∆+z, r′)

}

PePzPr′ ,

V 1
k+1(s)=

∑

r′,z,e

{

p̄s
[
(∆+z)+Vk(b+e−1,∆+z, r′)

]

+ps
[
z+Vk(b+e−1, z, r′)

]}

PePzPr′ .

(34)

The inequality (32) can further be simplified:

p̄s

[

min{V 0
k+1(b−1,∆+, r), V 1

k+1(b−1,∆+, r)} (35)

−min{V 0
k+1(b−1,∆−, r), V 1

k+1(b−1,∆−, r)}
]

−
[

min{V 0
k+1(b,∆

+, r), V 1
k+1(b,∆

+, r)}

−min{V 0
k+1(b,∆

−, r), V 1
k+1(b,∆

−, r)}
]

≤ 0

We consider four cases to proceed with the proof of (35).

Case 1.

{

V 0
k+1(b−1,∆−, r) ≤ V 1

k+1(b−1,∆−, r),

V 0
k+1(b,∆

+, r) ≤ V 1
k+1(b,∆

+, r).

Case 2.

{

V 0
k+1(b−1,∆−, r) ≤ V 1

k+1(b−1,∆−, r),

V 0
k+1(b,∆

+, r) > V 1
k+1(b,∆

+, r).

Case 3.

{

V 0
k+1(b−1,∆−, r) > V 1

k+1(b−1,∆−, r),

V 0
k+1(b,∆

+, r) ≤ V 1
k+1(b,∆

+, r).

Case 4.

{

V 0
k+1(b−1,∆−, r) > V 1

k+1(b−1,∆−, r),

V 0
k+1(b,∆

+, r) > V 1
k+1(b,∆

+, r).

We prove the inequality (35) for case 1; a similar approach

can be utilized to prove the other cases.

Case 1. V 0
k+1(b − 1,∆−, r) ≤ V 1

k+1(b − 1,∆−, r) and

V 0
k+1(b,∆

+, r) ≤ V 1
k+1(b,∆

+, r). In this case, equation (35)

is further simplified:

p̄s

[

V 0
k+1(b−1,∆+, r)−V 0

k+1(b−1,∆−, r)
]

+p̄smin{0, V 1
k+1(b−1,∆+, r)−V 0

k+1(b−1,∆+, r)}
︸ ︷︷ ︸

≤0

−
[

V 0
k+1(b,∆

+, r)−V 0
k+1(b,∆

−, r)
]

+min{0, V 1
k+1(b,∆

−, r)−V 0
k+1(b,∆

−, r)}
︸ ︷︷ ︸

≤0

≤ 0, (36)

where we have used min {x, y} = x + min {0, y − x}. The

second and last terms are negative (non-positive), thus it

suffices to show that:

p̄s

[

V 0
k+1(b−1,∆+, r) − V 0

k+1(b−1,∆−, r)
]

−
[

V 0
k+1(b,∆

+, r) − V 0
k+1(b,∆

−, r)
]

≤ 0. (37)

According to (34), it can be written as follows:

p̄s
∑

r′,z,e

{(
∆+−∆−

)
+Vk(b+e− 1,∆++z, r′)

−Vk(b+e− 1,∆−+z, r′)
}

PePzPr′

−
∑

r′,z,e

{(
∆+−∆−

)
+Vk(b+e,∆++z, r′)

−Vk(b+e,∆−+z, r′)
}

PePzPr′ ≤ 0

⇔
∑

r′,z,e

{
≤0

︷ ︸︸ ︷

(1 − p̄s)(∆
− −∆+)

+p̄s
[
Vk(b+e− 1,∆++z, r′)− Vk(b+e− 1,∆−+z, r′)

]

−
[
Vk(b+e,∆++z, r′)−Vk(b+e,∆−+z, r′)

]}

PePzPr′ ≤ 0

where the first term in the summation is negative since ∆− ≤
∆+ and 1 − p̄s = ps > 0. The remaining terms are also

negative according to the induction assumption (31), and the

proof is complete.

APPENDIX B

PROOF OF THEOREM 2

Proof. The balance equation at each state for the Markov chain

in Figs. 2, 3, and 4 can be directly written as follows:

• Case 1: ∆T = 0.







µ(0, 0)=γ00µ(0, 0)+γ00
∑∞

δ=0 µ(1, δ),

µ(0, 1)=γ10µ(0, 0)+γ00µ(0, 1)+γ10
∑∞

δ=0 µ(1, δ),

µ(0,∆)=γ00µ(0,∆)+γ10µ(0,∆−1), ∆ ≥ 2,

µ(1, 0)=γ01µ(0, 0)+γ01
∑∞

δ=0 µ(1, δ),

µ(1, 1)=γ11µ(0, 0)+γ01µ(0, 1)+γ11
∑∞

δ=0 µ(1, δ),

µ(1,∆)=γ11µ(0,∆−1)+γ01µ(0,∆), ∆ ≥ 2.

(38)

From the first equation (38), we have
∑∞

δ=0 µ(1, δ) =
1−γ00

γ00

µ(0, 0). After some mathematical manipulation,

all other stationary probabilities can also be defined

as a function of µ(0, 0). By substituting them into
∑

b∈{0,1}

∑

∆∈{0,1,2,··· } µ(b,∆) = 1, we obtain µ(0, 0) and

subsequently all the state-stationary probabilities µ(b,∆).

µ(0, 0) =
p̄tββ̄

β + ptβ̄
. (39)

Finally, the average QVAoI can be determined using Equa-

tion (22), as stated in Theorem 2.
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• Case 2: ∆T = 1.






µ(0, 0)=γ00µ(0, 0)+γ00
∑∞

δ=1 µ(1, δ),

µ(0, 1)=γ10µ(0, 0)+γ00µ(0, 1)+γ10
∑∞

δ=1 µ(1, δ),

µ(0,∆)=γ00µ(0,∆)+γ10µ(0,∆−1), ∆ ≥ 2,

µ(1, 0)=γ01µ(0, 0)+p̄tµ(1, 0)+γ01
∑∞

δ=1 µ(1, δ),

µ(1, 1)=γ11µ(0, 0)+γ01µ(0, 1)

+ptµ(1, 0)+γ11
∑∞

δ=1 µ(1, δ),

µ(1,∆)=γ11µ(0,∆−1)+γ01µ(0,∆), ∆ ≥ 2.

(40)

Following the same approach as in Case 1, the stationary

probabilities and the average QVAoI will be determined.

µ(0, 0) =
ptp̄tββ̄

β2 + ptβ̄(pt + β)
. (41)

• Case 3: ∆T ≥ 2.






µ(0, 0)=γ00µ(0, 0)+γ00
∑∞

δ=∆T
µ(1, δ),

µ(0, 1)=γ10µ(0, 0)+γ00µ(0, 1)+γ10
∑∞

δ=∆T
µ(1, δ),

µ(0,∆)=γ00µ(0,∆)+γ10µ(0,∆−1), ∆ ≥ 2,

µ(1, 0)=γ01µ(0, 0)+p̄tµ(1, 0)+γ01
∑∞

δ=∆T
µ(1, δ),

µ(1, 1)=γ11µ(0, 0)+γ01µ(0, 1) +ptµ(1, 0)

+p̄tµ(1, 1)+γ11
∑∞

δ=∆T
µ(1, δ),

µ(1,∆)=γ11µ(0,∆−1)+γ01µ(0,∆)

+ptµ(1,∆−1)+p̄tµ(1,∆), 2≤∆<∆T ,

µ(1,∆T )=γ11µ(0,∆T−1)+γ01µ(0,∆T )

+ptµ(1,∆T −1),

µ(1,∆)=γ11µ(0,∆−1)+γ01µ(0,∆), ∆ ≥ ∆T +1.

(42)

Similar to Cases 1 and 2, the stationary probabilities and the

average QVAoI can be determined, concluding the proof of

Theorem 2.

µ(0, 0) =
ptp̄tββ̄

(β + ptβ̄)

[

β∆T +pt

(
ptβ̄

β+ptβ̄

)∆T

] . (43)
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