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Introduction
Recent years have seen unprecedented development of machine learning (ML) and

artificial intelligence (AI) applications. The explosive growth of AIML applications both in scale
and scope has cemented AI technology as an integral feature in many aspects of society,
including personal, social, and economic [1][2]. In parallel to this development, AI
system-specific security threats have arisen [3][4][5][6][7]. These threats continue to evolve at a
rapid pace, comparable to the overall rate of AI state-of-the-art (SOTA) advancement.

The wide and consequential application of AI systems, coupled with their risks of and
consequences for failure, introduces the need for regulatory oversight [8][9][10][11]. However,
the regulation of AI development controls, including metrics for sufficient application of
mitigations where degrees or combinations of mitigations may exist, remains an open problem
[12][13][14][15].

Background & Challenges
Regulating AI security controls is difficult for a number of reasons, including diversity of

the field, its systems, and the explosive growth in industry; considerations for what is feasible &
reasonable to require in an industry dominated by ad-hoc development practices; and the
high-dimensional nature of the problem itself. Additional considerations include means of testing
& verifying both efficacy and compliance, as well as how regulations can and should adapt to
future SOTA developments. These factors contribute to a complexity which makes fairly,
consistently and systematically determining when security mitigations are “good enough” — and
doing so at regulatory scale — a highly technical and challenging policy problem.

Diversity of the field, its systems, and the explosive growth in industry. Due to the
breadth of potential applications, as well as increases in resource allocation for AI development
in industry, AI in production is an incredibly diverse field. This includes a wide variety of industry
use cases, with differing failure modes & consequences. It also includes the diversity of systems
which make up AI in production, each with its own ever-shifting attack surfaces and threat
models [16][17]. As an example, regulating for AI supply chain risk alone is known to be a
multifaceted and complex consideration [18]; factoring these threat models into the failure
modes & effects analyses (FMEAs) [19] of up- and downstream interdependent system(s)
creates a complexity that threatens to make regulation infeasible.

Considerations for what is possible & reasonable in a largely ad-hoc industry.
Regulators must also take into account what is feasible and reasonable to require, particularly in
an industry that is notoriously ad-hoc in its development methodologies [20][21][22]. Creating
unnecessary burdens on practitioners may have negative consequences for the industry,
hampering AI security innovation, and increasing incentives to game the system.

High-dimensional nature of the problem. Setting specificity of mitigation levels is
difficult for the same reason that setting cohesive, applicable standards across all use cases is
difficult, since in many cases requirements may become progressively more expensive or
complex as security mitigations become more sophisticated, and because not all use cases may
require such mitigations. The problem thus becomes standardization across intersecting
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high-dimensional spaces: attacks, mitigations, and use cases. Collapsing these into a
human-readable (and regulatory-friendly) system is imperative.

Testing & verification. Another problem is how to verify compliance, as well as the
efficacy of mitigations and/or overall system robustness. Testing the security robustness of
individual AI systems could quickly become resource-prohibitive at regulatory scale. Regulators
need a standardized, universally applicable, rapidly reviewable, and legally actionable artifact
set that is clearly defined and reasonable in its scope and application, such that it is feasible for
developers to produce.

Regulatory brittleness. Because the AI security field is swiftly evolving and expanding,
regulators face the challenge of developing a framework which is both comprehensive and
specific enough to provide a measure of verifiable security assurance, while remaining flexible
to respond to shifts in the global threat landscape and state-of-the-art [10]. If the regulations are
not comprehensive or specific enough, they will be impossible to measure and enforce; if they
are too specific, they will become obsolete before the metaphorical ink has dried. A means of
understanding, systematizing, and adapting regulation within this constantly shifting space in a
manner that is accessible to a wide variety of stakeholder audiences is thus required.

Safety-Critical Systems-of-Systems
The rapid growth and vast application potential of AI in industry & society brings with it

the increasing possibility for the security failures of AI systems to cause harm to humans [23]. In
this light, safety—a concept distinct from, but related to, security—should play an
ever-increasing role in architectural considerations [24].

For software development practices where safety may be on the line, practitioners may
look to the fields of Safety-Critical Systems (SCS), and safety-critical software engineering [25].
There is a large body of work, both theoretical and applied, in safety-critical software
engineering in particular which may be of useful application to AI security regulation [26][27].
There is additionally work in the area of safety-critical artificial intelligence system (SCAIS)
applications, including embedded & autonomous systems [28][29][30][31][32][33][34][35][36];
however, detailed discussion of SCAIS engineering principles is outside the scope of this paper.

While broadly requiring safety-critical software engineering standards in AI system
development may seem like a panacea, such a solution may not be realistic given the current
SOTA. It should be noted in this context that the problem of exactly how to conduct and
document analysis of software systems remains an open research question, beyond the scope
of this paper [37][38][39][40]. Additionally, implementing such a requirement without prescribing
the production of structured artifacts for regulatory review would leave regulators with no metrics
for compliance or enforcement mechanisms. Although there is a body of work on the integration
of safety-critical engineering principles into modern software development practices, such as
Agile methodologies [41][42][43], operationalizing such analyses and further adapting them to
regulatory oversight is also beyond the scope of this paper. Finally, prescriptive, top-down
requirements for security controls in the design phases may be antithetical to, and hinder
progress of, the typically iterative development cycles of AIML systems in production.
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A further consideration is the expense of safety-critical software creation. Development
of safety-critical systems can be significantly more expensive than traditional software, with
some estimates placing it as high as 20-30 times more costly [44]. Hastily introducing expensive
requirements to the AI development process could create an undue burden on industry, and add
incentives to game the system—producing the opposite of the desired regulatory effect and
lessening overall industry security robustness.

Rather than reinventing approaches to software safety or its regulation, it may be useful
to look to existing and heavily-regulated safety-critical software domains. One such domain is
software engineering for aerospace, specifically commercial aviation.

Commercial aviation’s safety record is staggering. According to the International Air
Transport Association (IATA), 2023 saw 0.80 accidents per million flights operated. This
represents a 61% ten-year decrease from 2014. According to the IATA Annual Safety Report
“...on average a person would have to travel by air every day for 103,239 years to experience a
fatal accident,” making air travel by far the safest mode of transit [45].

Airworthiness certification requirements, standardized operating procedures, and a
voluntary culture of safety in industry are among factors contributing to commercial aviation’s
extraordinary record [46][47]. For aircraft software, the process(es) of airworthiness certification
are of particular importance. Flight crews rely on software systems at virtually every level of
aircraft operation. Even with the use of highly complex and interdependent mission-critical
software, commercial aviation retains an astounding success rate for safe operations at scale.

Safety and security are not the same; they are conceptually related applications of
protection which may occur at different phases of the mission lifecycle [48]. Security measures
may create or contribute to mission safety [49]. While the global aviation industry is well known
for its security operations, the focus of this paper is on non-security measures contributing to
aviation’s impressive safety record; specifically, the analysis of air missions as Systems of
Systems (SoS), and the systematized qualification of component contribution to overall mission
success [50][51][52]. In fact, SoS analysis remains critical to safety in many complex
applications:

Safety uses systems theory and systems engineering to prevent foreseeable accidents and
minimize the consequences of unforeseeable accidents...[It] is a planned, disciplined and
systematic strategy for identifying, analyzing, evaluating, eliminating and controlling hazards
throughout the system’s life cycle in order to prevent or reduce the number of accidents [53].

Much like avionics and aircraft systems, artificial intelligence deployments in production, as well
as the results of their interactions with users, subjects, and society, can and should be treated
as systems-of-systems with complex and interacting failure modes and consequences.
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Digitalization in Aerospace and the Rise of Software
Airworthiness Certification

Early planes were controlled via systems of onboard cables, some of which might run
the full length of the aircraft, adding significant weight. While providing near-direct connectivity
between crew inputs and flight control surfaces, these systems required both additional
maintenance and engineering considerations for their weight. With the advent of so-called
“fly-by-wire" technologies, flight control inputs were mediated by digital controllers. At the same
time, advancements in computing allowed for the increasing digitalization of aviation systems
across the board. These fly-by-wire apparatuses, and various electronic aviation systems, or
“avionics,” quickly became the design standard, reducing crew workloads, eliminating the need
for heavy control cabling, and removing considerable weight requirements from aircraft design
specifications [54]. The newest generations of fly-by-wire commercial jets have introduced
further improvements in safety [55].

With digitalization in aviation, and the software that powered it, came the need for
airworthiness certification of component systems [56][57][58]. Aircraft systems must operate
deterministically and reliably, in real time, with minimal latency and quantifiable failure rates
[53][57][59]. Regulatory validation of software requirements across manifold aviation
components became a question analogous to the AI security controls issue in its complexity and
importance.

Regulatory Assessment via Applied Design Assurance Levels
Airworthiness certification is handled primarily by regulatory agencies; e.g. in the EU, by

the European Union Aviation Safety Agency (EASA), and by the Federal Aviation Administration
(FAA) in the United States [60][61]. Additionally, the International Civil Aviation Organization
(ICAO) plays an intergovernmental role in setting international civil aviation standards [62].

In 1992, a joint effort by the US-based RTCA, Inc. (previously known as the Radio
Technical Commission for Aeronautics) and the European Organisation for Civil Aviation
Equipment (EUROCAE) produced an international guideline set for the production of
safety-critical software systems in aircraft, titled DO178-B [56]. This guideline was updated and
replaced in 2012 by the DO178-C. For software airworthiness certification, both EASA and the
FAA reference the DO178-C [63].

The DO178-B introduced the concept of software Design Assurance Levels (DALs),
which are continued in the DO178-C [53][57][63][64]. There are five DALs, corresponding to five
conceptual levels of impact to safety. These range from Level E, No Effect, in which component
failure does not impact mission safety, to Level A, Catastrophic, in which component failure may
result in death and/or loss of the aircraft (i.e. total mission failure).

Software components are evaluated more rigorously based on their contribution to
overall mission safety/success. This contribution is considered across three primary vectors:
aircraft, crew, and passengers. Systems or components are assigned an auditable DAL based
on the worst-case potential safety impact they may be expected to have across each of these
vectors. The five aerospace DALs are summarized in the table below.
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DAL Failure Condition Resulting Aviation Condition

Level A Catastrophic Death, loss of aircraft.

Level B Hazardous

Large negative impact on safety or
performance. May reduce ability of crew to
operate aircraft due to increased workload
and/or physical stress. May cause serious or

fatal passenger injuries.

Level C Major

Failure significantly reduces safety margin
OR significantly increases crew workload.
May result in passenger discomfort or minor

injuries.

Level D Minor

Failure reduces safety margin or causes
increase in crew workload. May result in

passenger inconvenience.

Level E No Effect
Failure causes no impact on safety, crew

workload, or aircraft operation.

Table 1: Five Aerospace DALs from the DO178-C

Methods
AI for aerospace is a relatively new but growing field with a number of research avenues

[33][51][52][65][66], including works acknowledging the difficulty of certifying AI systems under
traditional airworthiness certification processes, and proposals for an AI-adapted certification
process specific to SCAIS [67]. While analogies exist between mission-critical AIML systems
and aerospace, AIML systems are not aircraft, nor do they (always) concern passenger
transport. Adapting a design assurance tiering scheme to broad AI system application thus
requires a process of structured abstraction and redefinition/reapplication. For reproducibility,
that process is detailed here.

Abstracting Design Assurance Tiers to AIML System Application: Vectors
Design Assurance Levels take into account the effects of a software component or

system’s failure across three vectors: aircraft, passengers, and crew. Abstracting from each of
these concepts a core representation of its relationship to safety within the context of airline
transport yields three new conceptual fields, which may then be applied to create AIML system
analogies.
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Figure 1: Design assurance tier abstraction process

Aircraft, when considered in the context of their role in safety, may be thought of as
representing the overall mission, since loss of the aircraft will likely result in mission failure,
injury or death. In an engineering context, aircraft also represent Systems of Systems (SoS),
which have their own complexities and considerations, and which, for the purposes of this
paper, may be considered analogous to the many components of a production AI system [68].

Application of the SoS abstraction to the context of production AIML systems yields an
industry analog in composite/constituent AIML systems. Most production AI is composed of
numerous subsystems, and AI systems themselves may be components. The analogous AIML
system failure mode(s) for this vector include impacts to mission-critical technical and/or
sociotechnical composite systems of which the AI system or subcomponent is a constituent,
resulting in significant social, economic, or other harm. The focus of the analysis remains on
system/mission failure, rather than individual model performance or loss due to security breach.

As an example of a production AI system whose performance & reliability impact larger
sociotechnical systems, consider an AIML vendor providing biometric authentication services to
banks. A failure or outage of such a service could have considerable negative effects on users'
ability to perform banking tasks, and, depending on the size and nature of the vendor's user
base, could potentially have measurable economic impact.
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Figure 2: Mapping the contextual relationship between aircraft and system safety to constituent AIML
systems

Aircraft crew/operators may be thought of as representing the system’s operation and
maintenance, and are the last line of responsibility for mission success. In mission-critical AIML
contexts, the concept of operators refers to both human and organizational factors. In the
context of production AIML this may be compared to both the human factors within a system,
such as researchers, engineers, and data scientists, and non-human drivers contributing to
mission success, such as organizational culture and standard operating procedures (SOPs).

At the highest level, aircraft crew represent the aircraft/system’s capacity for continued
operation. This representation is conceptually simplified here and applied to AIML systems
broadly as the organization responsible for the system in production. Failure along this vector
results in significant impacts to organizational operation, potentially resulting in economic loss,
social harm, or other secondary damage.

Inclusion of this vector is designed in part to prevent circumstances in which
organizations "too big to fail"--i.e. organizations whose size or footprint are so large that their
potential economic distress might spill over beyond the organization itself--might otherwise be
exempted from a more stringent AI-DAL due to their specific application, but whose failure might
realistically cause problematic secondary effects.
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Figure 3: Crew as representative of system maintenance and the production organization

Within the airline transport analogy, the passengers vector represents, very simply,
human and social factors affected by a system either through their interaction with said system,
or via secondary effects. While airline transport considers mission success in the context of
effects on passengers, crew, and aircraft which are being operated, the powerful and potentially
far-reaching consequences of AIML applications require the additional consideration of societal
impacts.

Due to the scale of AI systems’ application, multiple vectors for human impacts exist. It
should be noted here that humans interacting with an AIML system (outside the system's
engineering and maintenance) may be users/consumers (as in the case of a commercial
application), or they may be subjects, such as in the use of loan approval or criminal sentencing
algorithms.

Humans may be affected by direct interaction with AI systems as users/consumers (for
whom AI services are provided), as subjects (to whom AI services are applied), or as
non-participants impacted by the unintended social, economic, or other consequences of these
systems at scale. This vector is also defined so as to include societal harms which may arise
outside of damage directly to composite sociotechnical systems.
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Figure 4: Mapping human factors, whether aircraft passengers or AIML system subject/users

Human Factors: Societal vs Personal Disruption, Users vs Subjects
The human factors, societal and personal, each have their own vectors of potential

damage/disruption. Individuals may be subject to economic harm, including serious financial
loss. They may suffer from mental or emotional harm, including serious emotional and/or
social-emotional distress. Finally, in the most extreme of circumstances, they may be subject to
physical harm, including injury or death.

Similarly, society-level risks include large-scale economic loss or destruction; mass
emotional distress and/or community/relationship stress which may impact other societal
systems; and civil unrest or disobedience, including the collapse of legal or financial structures.
A realistic worst-case scenario analysis of failure modes & effects potentially places a number of
currently widely-adopted AI applications in this risk category.

Abstracting & Re-Applying Conceptual Risk Analysis
In order to analogize aerospace design assurance tiers to AIML security requirements, a

core representation of conceptual risk was abstracted from each DAL, and correlated to AIML
analogs. Analog conceptual risk abstractions were then applied to analysis along their
corresponding AIML vectors.
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Figure 5: Core conceptual risk extraction and mapping

Design Assurance Level (DAL) E, No Effect, falls outside of regulatory scope. DAL D,
Minor, refers to any failure which reduces safety margins, or causes increase in crew workload.
Such failures may result in passenger inconvenience. This may be understood broadly as safety
reduction and inconvenience.

Applying this conceptual risk abstraction along the AIML-analog vectors of Constituent
Systems, Production Organization and Human/Society gives the AI Security Assurance Level
(AI-DAL) D. The conditions resulting from failure of an AI system assigned to this tier may
include inconvenience to users, and organizational costs incurred for incident response &
recovery, model/data theft/loss, etc. Most organizations deploying AIML systems in production
will at a minimum fall into this security assurance tier.

Figure 6: AI-DAL D conceptual risk mapping

DAL C, Major, refers to failures which significantly reduce the safety margin OR
significantly increase crew workload, and/or may result in passenger discomfort or minor
injuries. This may be understood as danger, minor injury, discomfort, or generally contributing to
an unsafe situation.
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Applying this concept to AIML analog vectors gives AI-DAL C. System failure impacts
include economic, social, or emotional harm to humans (as users or subjects) at any scale;
failure of composite non-critical systems; and/or organizational failure. Due to the increased
potential for harm in the case of mission failure, organizations must bear a higher responsibility
for security when their AI models are subcomponents of larger systems. Similarly, a greater
degree of potential impact requires a greater degree of care when humans interacting with the
system may include subjects as well as users. Finally, because total organizational failure often
results in harms to a variety of stakeholders, systems with this potential scale of impact require
additional security considerations.

Figure 7: AI-DAL C conceptual risk mapping

DAL B, Hazardous, refers to failures which have a large negative impact on safety or
performance, potentially reducing the ability of crew to operate due to increased workload
and/or physical stress, and/or causing serious or fatal passenger injuries. This may be broadly
understood as significant danger, significant or fatal injury, and/or significant loss. Analogous
AIML failure conditions within the AI-DAL B tier include significant economic, social, or
emotional harm to humans; organizational failure resulting in significant societal impacts; and
failure of composite mission-critical systems. Because of the increased severity of their impacts,
organizational failure with societal consequences, as well as dependencies in mission-critical
composite systems, are treated as a distinct tier of security assurance requirements.

AI-DAL, COX, 2024 - OWASP AI Exchange



Figure 8: AI-DAL B conceptual risk mapping

Finally, DAL A, Catastrophic, refers to human death or loss of the aircraft. This may be
conceptually represented as total mission failure, catastrophic loss and/or death. Applied as
AI-DAL A, analogous AIML system failure impacts include physical harm to humans, up to
death; and/or mass societal disruption including civil unrest, and legal or financial collapse. It
should be noted that any degree of physical harm to humans or mass societal unrest caused by
AI system failure should be considered unacceptable. A full mapping of aerospace risk profiles
and tiers to AI-DALs is given in the table below.

Figure 9: AI-DAL A conceptual risk mapping
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DAL
Failure

Condition
Resulting Aviation

Condition
Conceptual

risk AI-DAL Resulting AIML Condition

Level A Catastrophic Death, loss of aircraft.

Total mission
failure,

catastrophic
loss, death

AI-DAL
A

Physical harm to humans,
including death. Societal
disruption including civil
unrest, legal and/or financial
collapse.

Level B Hazardous

Large negative impact on
safety or performance.
May reduce ability of
crew to operate aircraft

due to increased
workload and/or physical

stress. May cause
serious or fatal passenger

injuries.

Significant
danger,

significant or
fatal injury,

significant loss
AI-DAL

B

Significant economic, social,
or emotional harm to humans.
Organizational failure
resulting in significant societal
impacts. Failure of composite
mission-critical systems.

Level C Major

Failure significantly
reduces safety margin

OR significantly increases
crew workload. May
result in passenger
discomfort or minor

injuries.

Danger, minor
injury,

discomfort,
contributing to
an unsafe
situation

AI-DAL
C

Economic, social, or
emotional harm to humans
(as users or subjects). Failure
of composite non-critical
systems. Organizational
failure.

Level D Minor

Failure reduces safety
margin or causes
increase in crew

workload. May result in
passenger

inconvenience. Inconvenience
AI-DAL

D

Inconvenience to users.
Organizational costs incurred
for incident response &
recovery, model/data
theft/loss, etc.

Level E No Effect

Failure causes no impact
on safety, crew workload,

or aircraft operation. No Impact
AI-DAL

E

No impact to organization or
human/social vectors such as
users, subjects, or society.

Table 2: AI-DAL/aerospace DAL tier mappings

Artifacts
This paper further proposes the production of two artifacts which are intended to

streamline regulatory review, and serve as documentation of the personnel, processes, and
procedures contributing to system development. First, organizations should produce a Plan for
AI Software Aspects of Certification (PAISAC), analogous to the aerospace Plan for Software
Aspects of Certification (PSAC), which gives information on development compliance efforts.
Detailing the particular aspects of the PSAIC falls outside the scope of this paper.

Second, organizations should produce traceable documentation of AI-DAL tier-specific
requirements compliance. This work leaves open both the methodologies for producing this
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documentation, as well as the potential for future contribution of traceability mandates to
regulation around AIML Bills of Materials (AIMLBOMs).

AI-DAL Benefits
Regulatory Flexibility. AI security is a rapidly developing field, with actors on all sides

racing to secure—or attack—AI systems. A potential pitfall of attempting to specify prescriptive
security remediations is an inability for regulators/regulations to adapt quickly enough. The
application of design assurance levels to evaluate AI systems provides a framework which can
be flexibly adjusted by threat and use case, as security threat landscapes evolve. Regulating by
system use-case & accompanying impacts, and allowing for adjustment of required mitigations
for each threat within the context of a system’s AI-DAL, is intended to reduce the potential for
future regulatory brittleness in the face of a rapidly-evolving technological landscape.

Security Focus. This analysis is not intended to address the ethical application of AI;
only to provide regulatory ability to quantify requirements for security enforcement in
mission-critical applications. We are not concerned with where the airplane is going when we
analyze its constituent software components; similarly, the specific application of the AI system
is of little concern to this analysis, except inasmuch as it pertains to the effects of mission failure
on larger societal structures.

Simplicity. The goal of this analysis is to provide an accessible, fair, and socially
beneficial means of applying AI security regulation, a particularly difficult challenge in a rapidly
evolving and high-dimensional problem space. This is accomplished by compressing multiple
dimensions into an analysis which focuses solely on the consequences for mission failure. We
need not be concerned with risks arising from specific threat vectors, or their likelihood of
occurrence, in order to complete this analysis. We need only to consider the likely effects of total
mission failure of the AI system, quantifying the failure mode(s), and assigning an AI Security
Assurance Level (AI-DAL) that is commensurate with the failure condition.

Conclusion
The rise of artificial intelligence applications in society, and their accompanying security

concerns, has created a need for regulatory oversight that is auditable, actionable, and
adaptable to a rapidly changing technological landscape. Methods from safety-critical software
engineering, particularly aerospace, may be adapted to use in production AIML to aid both
practitioners and regulators in establishing design thresholds for AIML system security.
Assignment of AI Design Assurance Levels (AI-DAL) to projects/components, along with
production of related compliance artifacts, is proposed as a means of consistently applying
appropriate design requirements based on a system’s potential adverse impact.

It is hoped that AI-DAL will serve as a basis upon which applied expertise can be used to
iteratively determine appropriate requirements for security mitigations, in a manner which is fair,
consistent, and flexible to accommodate future AIML innovations. As the SOTA advances, time
is of the essence; the next great AI breakthrough, and the next AI security threat, lie just over
the horizon.
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