glme =
Generalized linear mixed-effects model fit by PL
Model information:
Number of observations 60
Fixed effects coefficients 3
Random effects coefficients 60
Covariance parameters 7
Distribution Normal
Link Identity
FitMethod MPL
Formula:
Distance ~ 1 + Comparison + (1 + Comparison | SubjectID)
Model fit statistics:
AIC BIC LogLikelihood Deviance
50.771 71.715 -15.386 30.771
Fixed effects coefficients (95% CIs):
Name Estimate SE tStat DF pValue Lower Upper
{'(Intercept)' } 1.0812 0.085804 12.601 57 4.0661e-18 0.90938 1.253
{'Comparison_BT'} 0.0064249 0.065342 0.098328 57 0.92202 -0.12442 0.13727
{'Comparison_OT'} -0.63243 0.12768 -4.9533 57 6.8595e-06 -0.88811 -0.37676
Random effects covariance parameters:
Group: SubjectID (20 Levels)
Name1 Name2 Type Estimate
{'(Intercept)' } {'(Intercept)' } {'std' } 0.34073
{'Comparison_BT'} {'(Intercept)' } {'corr'} -0.28926
{'Comparison_OT'} {'(Intercept)' } {'corr'} -0.8768
{'Comparison_BT'} {'Comparison_BT'} {'std' } 0.15197
{'Comparison_OT'} {'Comparison_BT'} {'corr'} 0.58718
{'Comparison_OT'} {'Comparison_OT'} {'std' } 0.51356
Group: Error
Name Estimate
{'sqrt(Dispersion)'} 0.17649