glme = Generalized linear mixed-effects model fit by PL Model information: Number of observations 60 Fixed effects coefficients 3 Random effects coefficients 60 Covariance parameters 7 Distribution Normal Link Identity FitMethod MPL Formula: Distance ~ 1 + Comparison + (1 + Comparison | SubjectID) Model fit statistics: AIC BIC LogLikelihood Deviance 50.771 71.715 -15.386 30.771 Fixed effects coefficients (95% CIs): Name Estimate SE tStat DF pValue Lower Upper {'(Intercept)' } 1.0812 0.085804 12.601 57 4.0661e-18 0.90938 1.253 {'Comparison_BT'} 0.0064249 0.065342 0.098328 57 0.92202 -0.12442 0.13727 {'Comparison_OT'} -0.63243 0.12768 -4.9533 57 6.8595e-06 -0.88811 -0.37676 Random effects covariance parameters: Group: SubjectID (20 Levels) Name1 Name2 Type Estimate {'(Intercept)' } {'(Intercept)' } {'std' } 0.34073 {'Comparison_BT'} {'(Intercept)' } {'corr'} -0.28926 {'Comparison_OT'} {'(Intercept)' } {'corr'} -0.8768 {'Comparison_BT'} {'Comparison_BT'} {'std' } 0.15197 {'Comparison_OT'} {'Comparison_BT'} {'corr'} 0.58718 {'Comparison_OT'} {'Comparison_OT'} {'std' } 0.51356 Group: Error Name Estimate {'sqrt(Dispersion)'} 0.17649